
Section 15.1 Double Integrals

Section 15.1

Double Integrals

Goals:

Approximate the volume under a graph by adding prisms.

Calculate the volume under a graph using a double integral.
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Section 15.1 Double Integrals

The Single Variable Integral

We approximate the area under the graph y = f (x) by rectangles. Smaller
rectangles gives a better approximation, and we define the limit of these
approximations to be the definite integral.

∫ b

a
f (x)dx = lim

∆x→0

n∑
i=1

f (x∗i )∆x
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Section 15.1 Double Integrals

The Two Variable Integral

A similar method approximates the signed volume under the graph
z = f (x , y) (where volume below the xy -plane counts as negative). We
divide the domain

0 ≤ x ≤ 4

0 ≤ y ≤ 2

into rectangles of area A. We draw a
prism over each square whose height
is the value of the function over
some test point (x∗i , y

∗
i ).

Volume ≈
n∑

i=1

f (x∗i , y
∗
i )A.
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Section 15.1 Double Integrals

Non-Rectangular Subdivisions

If our domain is not a rectangle, we may not be able to divide it into
rectangles. Luckily, the formula for volume of a prism works for any shape
base.

Volume ≈
n∑

i=1

f (x∗i , y
∗
i )Ai .
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Section 15.1 Double Integrals

The Double Integral

For a reasonably well-behaved function f (x , y) the volume can be
computed by taking a limit of these approximations. We call this limit the
double-integral.

Definition

Let D be a domain in R2. For a given division of D into n regions denote

Ai , the area of the i th region.

(x∗i , y
∗
i ), any point in the i th region

A is the area of the largest region.

We define the double integral of f (x , y) to be a limit over all possible
divisions of D. ∫∫

D
f (x , y)dA = lim

A→0

n∑
i=1

f (x∗i , y
∗
i )Ai
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Section 15.1 Double Integrals

Example 1

Consider

∫∫
D
x2ydA, where D is the region shown here. Approximate the

integral using the division of D shown, and evaluating f (x , y) at the
midpoint of each rectangle.

x

y

1

21
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Section 15.1 Double Integrals

Fubini’s Theorem

Theorem

For any domain D we have∫∫
D
f (x , y)dA =

∫∫
D
f (x , y)dxdy =

∫∫
D
f (x , y)dydx .
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Section 15.1 Double Integrals

Fubini’s Theorem∫ 4

0

∫ 2

0
f (x , y)dydx is defined as

∫ 4

0

(∫ 2

0
f (x , y)dy

)
dx . The inner

integral computes the area of the cross section at each x . As in single
variable calculus, integrating these areas

∫ 4
0 A(x)dx gives volume.
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Section 15.1 Double Integrals

Example 2

Compute
∫∫

D x2ydA, where D is the region shown here:

x

y

1

21
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Section 15.1 Double Integrals

Integrals of Products

We can rewrite some double integrals as a product of single integrals.

Theorem ∫ b

a

∫ d

c
f (x)g(y)dydx =

(∫ b

a
f (x)dx

)(∫ d

c
g(y)dy

)
We won’t be able to use this theorem all the time. It has two important
requirements:

1 The bounds of integration (a, b, c , d) are constants. We’ll see
integrals soon where this is not the case.

2 The function can be factored into a function of x times a function of
y . Most two-variable functions cannot.
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Section 15.1 Double Integrals

Example 2 Again

Compute
∫∫

D x2ydA, where D is the region shown here:

x

y

1

21
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Section 15.1 Double Integrals

Applications of Single and Double Integrals

Single integrals are useful for computing total change given a rate of
change.

meters traveled per second −→ total meters traveled.

GDP growth per year −→ total GDP growth.

mass of a chemical produced per second −→ total mass produced.

Double integrals are useful when we have a rate per unit of area
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Section 15.1 Double Integrals

Application of Double Integrals - Rainfall

Integrating rainfall per square kilometer gives the total rain that fell in a
watershed.
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Section 15.1 Double Integrals

Application of Double Integrals - Energy

Integrating watts per square meter on a solar array gives the total energy
generated.
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Section 15.1 Double Integrals

Application of Double Integrals - Probability

If we generate a data set in which we’ve measured two variables, then the
probability that a random data point lies in a given region is the double
integral of a probability distribution over that area.
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Section 15.1 Double Integrals

Summary

What shape do we use to approximate volume under a curve? What
is the formula for its volume?

What does Fubini’s Theorem tell us?

What conditions do you need in order to write a double integral as a
product of single integrals?
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Section 15.2 Double Integrals over General Regions

Section 15.2

Double Integrals over General Regions

Goals:

Set up double integrals over regions that are not rectangles.

Evaluate integrals where the bounds contain variables.

Decide when to make
∫
dy the outer integral, and compute the

change of bounds.
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Section 15.2 Double Integrals over General Regions

Example 1

Let D be the triangle with vertices (0, 0), (4, 0) and (4, 2). Calculate∫∫
D

4xydA
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Section 15.2 Double Integrals over General Regions

Rewriting Integrals of the First Type

To find the bounds of a double integral

1 Find the x value where the domain begins and ends. These numbers
are the bound of the outer integral.

2 Find the functions (of the form y = g(x)) which define the top and
bottom of the domain. These functions are the bounds of the inner
integral.
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Section 15.2 Double Integrals over General Regions

Exercise

Let f (x , y) be a function and D be the trapezoid with vertices
(3, 1), (3, 6), (6, 5) and (6, 4). Draw D and set up the bounds of∫∫

D f (x , y)dA.
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Section 15.2 Double Integrals over General Regions

Integral Laws

Some single variable integral laws apply to double integrals as well
(provided the integrals exist).

1 The sum rule:∫∫
D
f (x , y) + g(x , y)dA =

∫∫
D
f (x , y)dA +

∫∫
D
g(x , y)dA

2 The constant multiple rule:∫∫
D
cf (x , y)dA = c

∫∫
D
f (x , y)dA

3 If D is the union of two non-overlapping subdomains D1 and D2 then∫∫
D
f (x , y)dA =

∫∫
D1

f (x , y)dA +

∫∫
D2

f (x , y)dA
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Section 15.2 Double Integrals over General Regions

Example 2

Let D be the region bounded by y =
√
x , y = 0 and y = x − 6. Calculate∫∫

D
(x + y)dA.
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Section 15.2 Double Integrals over General Regions

Exercise

Let R = {(x , y) : x2 + y2 ≤ 9, x ≥ 0}. Draw D and set up
∫∫

D f (x , y)dA
in two different ways.
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Section 15.2 Double Integrals over General Regions

Example 3

Let D be the region x2 + y2 ≤ 9. Evaluate
∫∫

D
3
√
x
√
y + 3dA.
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Section 15.2 Double Integrals over General Regions

Anti-Symmetry Arguments

We can argue that an integral

∫∫
D
f (x , y)dA is equal to zero when

1 D is symmetric about some line L.

2 f is antisymmetric about L. For each point (x , y) in D the image of
(x , y) across L, denoted rL(x , y) has the property:

f (rL(x , y)) = −f (x , y).
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Section 15.2 Double Integrals over General Regions

Example 4

Let D be the triangle with vertices (0, 0),
(0, 2) and (1, 2). Calculate∫∫

D
e(y2)dA.
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Section 15.2 Double Integrals over General Regions

Additional Applications

Theorem

The area of a region D can be calculated:∫∫
D

1dA.

Definition

The average value of a function f over a region D is defined:

fave =

∫∫
D f (x , y)dA

Area of D
or

∫∫
D f (x , y)dA∫∫

D 1dA
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Section 15.2 Double Integrals over General Regions

Summary

What are the steps for writing a double integral over a general region?

How do you decide whether dx or dy is the inner variable?
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Section 15.4 Applications of Double Integrals

Section 15.4

Applications of Double Integrals

Goals:

Integrate a probability distribution to calculate a probability.
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Section 15.4 Applications of Double Integrals

Probabilities

Most probabilities that people think about are discreet.

A flipped coin has a 1
2 chance to be heads, 1

2 to be tails.

A random M&M has a 1
6 chance to be red, 1

6 orange, 1
6 yellow, 1

6
green, 1

6 blue and 1
6 brown.
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Section 15.4 Applications of Double Integrals

Continuous Probability Distributions

A person’s chance of being exactly 68 inches tall is zero. Even people who
say they are 5′8′′ are slightly more or slightly less.

Instead we can ask what your chance is of being between 68 and 69 inches
tall.

Definition

A function f is a probability distribution for an event, if the chance of an
outcome between a and b is

∫ b
a f (x)dx .
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Section 15.4 Applications of Double Integrals

Example 1

Darmok and Jalad each travel to the island of Tanagra and arrive between
noon and 4PM. Let (x , y) represent their respective arrival times in hours
after noon. Suppose the probability that (x , y) falls in a certain domain D
which is a subset of {(x , y) : 0 ≤ x ≤ 4, 0 ≤ y ≤ 4} is

∫∫
D

x
32dydx .

Calculate the probability that:

1 Darmok arrives after 3PM.

2 Jalad arrives before 1PM.

3 They both arrive before 2PM.

4 Darmok arrives before Jalad.

5 They arrive within an hour of each other (set it up, don’t evaluate).

6 What does the distribution say about when Darmok is likely to arrive?
What about Jalad?
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Section 15.6 Triple Integrals

Section 15.6

Triple Integrals

Goals:

Set up triple integrals over three-dimensional domains.

Evaluate triple integrals.
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Section 15.6 Triple Integrals

The Triple Integral

Definition

Given a domain D in three dimension space, and a function f (x , y , z). We
can subdivide D into regions

Vi is the volume of the i th region.

(x∗i , y
∗
i , z
∗
i ) is a point in the i th region.

V is the volume of the largest region.

We define the triple integral of f over D to be the following limit over all
possible divisions of D:∫∫∫

D
f (x , y , z)dV = lim

V→0

n∑
i=1

f (x∗i , y
∗
i , z
∗
i )Vi
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Section 15.6 Triple Integrals

Fubini’s Theorem Again

Theorem ∫∫∫
D
f (x , y , z)dV =

∫∫∫
D
f (x , y , z)dxdydz

where the dx , dy and dz can occur in any order.
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Section 15.6 Triple Integrals

Example 1

Let R = {(x , y , z : 0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 3)}. Set up∫∫∫
R

3zy + x2dV .
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Section 15.6 Triple Integrals

The Geometry of Triple Integrals∫ 3

0
f (x , y , z)dz computes the area under the graph w = f (x , y , z) over

each vertical string in the domain.

Multivariable Calculus 37 / 87



Section 15.6 Triple Integrals

The Geometry of Triple Integrals∫ 2

0

∫ 3

0
f (x , y , z)dzdy computes the volume under the graph

w = f (x , y , z) over each x = c cross-section of the domain.
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Section 15.6 Triple Integrals

Applications of the Triple Integral

1 Integrating density gives mass.

2 Integrating density × position gives center of mass.

3 Integrating a three-dimensional probability distribution gives
probability.

4 Integrating 1dV gives volume.
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Section 15.6 Triple Integrals

Visualizing Density

Density is a useful model for visualizing a triple integral without referring
to a fourth (geometric) dimension.

∫ 3

0
f (x , y , z)dz computes the

density of the vertical string
at each (x , y).∫ 2

0

∫ 3

0
f (x , y , z)dzdy

computes the density of the
rectangle at each x .

∫ 4

0

∫ 2

0

∫ 3

0
f (x , y , z)dzdydx computes the total mass of the prism.
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Section 15.6 Triple Integrals

Exercise

Suppose we want to integrate over T , the tetrahedron (pyramid) with
vertices (0, 0, 0), (4, 0, 0), (4, 2, 0) and (4, 0, 2).

1 Draw a careful picture of T .

2 For each (x , y) what face defines the lower bound of z . Which face
defines the upper bound?

3 Sketch the set of (x , y) coordinates that belong to T . How would you
set up the bounds of integration of this set?

4 Can you write equations for the faces your found in 2 ? How would
you set up the integral?
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Section 15.6 Triple Integrals

Exercise

z bounds of T x , y bounds of T
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Section 15.6 Triple Integrals

Example 2

Suppose D is the bounded region between the graph of z = 4x2 + y2 and

the plane z = 4. Set up the bounds of the integral

∫∫∫
D
f (x , y , z)dV .
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Section 15.6 Triple Integrals

Exercise

Let R be the region given by x2 + y2 + z2 ≤ 25.

1 Describe R geometrically.

2 Set up the bounds of integration for

∫∫∫
R
f (x , y , z)dV .

3 If we plug in the function f (x , y , z) = 1 do you happen to know the
value of this integral?

Multivariable Calculus 44 / 87



Section 15.6 Triple Integrals

Integrals of Products

The product theorem from double integrals also works here:

Theorem

∫ b

a

∫ d

c

∫ f

e
f (x)g(y)h(z)dzdydx

=

(∫ b

a
f (x)dx

)(∫ d

c
g(y)dy

)(∫ f

e
h(z)dz

)
This will actually come in handy once we get to spherical integrals. They
frequently have constant bounds.
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Section 15.6 Triple Integrals

Summary Questions

What does Fubini’s theorem say about dV ?

How do you find the bounds of the inner variable in a triple integral?

How to you find the bounds of the other two variables?
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Section 15.9 Change of Variables

Section 15.9

Change of Variables

Goals:

Calculate the Jacobian to convert from one coordinate system to
another.
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Section 15.9 Change of Variables

Single Variable Substitution

The substitution rule lets us change the variable of integration. Once we
decide what variable to use, there are three things to change.

∫ 1

−1
2
√

1− x2dx

∫ π/2

−π/2︸ ︷︷ ︸
bounds

2
√

1− sin2 u︸ ︷︷ ︸
integrand

cos udu︸ ︷︷ ︸
differential
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Section 15.9 Change of Variables

Multi-variable Example - Parabolic Coordinates

Instead of the Cartesian coordinates, we can use other coordinate systems
for the plane. Here is some parabolic graph paper. Each point has
coordinates (σ, τ). The gold curves are σ = 0, 1, 2, 3, . . .. The blue curves
are τ = 0, 1, 2, 3, . . ..
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Section 15.9 Change of Variables

Converting Cartesian Coordinates to Parabolic

Formula

For a given point (σ, τ), we can calculate the corresponding (x , y)
coordinates:

x = στ

y =
1

2
(τ2 − σ2)

We can express this as a function

r(σ, τ) =

〈
στ,

1

2
(τ2 − σ2)

〉
.

Multivariable Calculus 50 / 87



Section 15.9 Change of Variables

Multi-variable Substitution - The Problem

Suppose we want to integrate the function f (x , y) = x2 over the domain
below left. It’s easier to describe this domain in (σ, τ) coordinates.

1 The bounds of integration are 2 ≤ σ ≤ 5, and 3 ≤ τ ≤ 5.

2 We can substitute the integrand: x2 = σ2τ2.

3 But

∫ 5

2

∫ 5

3
σ2τ2dτdσ computes the volume over the rectangle

(below right), not over our domain, which provides a larger base.
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Section 15.9 Change of Variables

Multi-variable Substitution

When we take a ∆σ by ∆τ rectangle in a Cartesian coordinate system,
how much bigger does it get when we map it into the parabolic coordinate
system? Its too difficult to compute it precisely. Instead, we can
approximate the effect of ∆σ and ∆τ by linearization.

change in σ change in τ

dx = ∂x
∂σdσ dx = ∂x

∂τ dτ

dy = ∂y
∂σdσ dy = ∂y

∂τ dτ
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Section 15.9 Change of Variables

Example 1

Given the formula:

〈x , y〉 = r(σ, τ) =

〈
στ,

1

2
(τ2 − σ2)

〉
.

Find an expression for dA in terms of dτdσ.
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Section 15.9 Change of Variables

The Jacobian

Definition

Given a coordinate system (u, v), the matrix

J =

 ∂x
∂u

∂y
∂u

∂x
∂v

∂y
∂v


is called the Jacobian matrix. The Jacobian is the absolute value of the
determinant and is denoted:

∂(x , y)

∂(u, v)
= | det J|

In an integral, dxdy = ∂(x ,y)
∂(u,v)dudv .

We will define the Jacobian similarly for a three variable coordinate system.
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Section 15.9 Change of Variables

Summary Questions

What does the Jacobian do?

What three steps must we follow when rewriting an integral with a
new coordinate system?
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Section 15.3 Polar Coordinates

Section 15.3

Polar Coordinates

Goals:

Convert integrals from Cartesian to polar coordinates.

Evaluate integrals in polar coordinates.

Multivariable Calculus 56 / 87



Section 15.3 Polar Coordinates

Polar Coordinates

Definition

The polar coordinates of a point are denoted (r , θ) where

θ (“theta”) is the direction to the point from the origin (measured
anticlockwise from the positive x axis).

r is the distance to the point in that direction (negative r means
travel backwards).

Unlike Cartesian coordinates, a point can be represented in several
different ways.

(1, 0) = (1, 2π) = (1, 4π).

(1, 0) = (−1, π)

(0, α) = (0, β) for all α, β.
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Section 15.3 Polar Coordinates

Exercise

Plot and label the following points and sets in polar coordinates

A = (2, π3 )
B = (1.5, 3π)
C = (−3,−π

4 )
R = {(r , θ) : r ≤ 2}
S = {(r , θ) : π6 ≤ θ ≤

π
4 , r ≥ 1}
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Section 15.3 Polar Coordinates

Converting to Polar Coordinates

Cartesian to Polar

p(r , θ) = r cos(θ)i + r sin(θ)j

x = r cos θ

y = r sin θ

Notice: x2 + y2 = r2

r =
√

x2 + y2

θ =

{
tan−1

( y
x

)
x > 0

tan−1
( y
x

)
+ π x < 0

A full circle is 0 ≤ θ ≤ 2π.
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Section 15.3 Polar Coordinates

Example 1

Calculate the Jacobian
∂(x , y)

∂(r , θ)
such that dxdy =

∂(x , y)

∂(r , θ)
drdθ.
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Section 15.3 Polar Coordinates

Example 2

Let D be the disk: x2 + y2 ≤ 9. Calculate∫∫
D

√
x2 + y2dA.
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Section 15.3 Polar Coordinates

Example 3

Let D = {(x , y) : x ≥ 0, x ≤ y , x2 + y2 ≤ 2}. Sketch D and calculate∫∫
D
x2dA.
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Section 15.3 Polar Coordinates

Exercise

For each of the integrals below, sketch the domain of integration then
convert to polar. You need not evaluate.

1

∫∫
D

2x − 3y2dydx

where D = {(x , y) : x2 + y2 ≤ 16,−y ≤ x ≤ y}

2

∫∫
D
x2ydydx

where D = {(x , y) : 4 ≤ x2 + y2 ≤ 9, y ≤ 0}

3

∫ 3

−3

∫ √9−y2

0
x2 + y2dxdy

Which of your integrals can be solved using the product formula?
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Section 15.3 Polar Coordinates

Example 4

Let D be the domain (x − 1)2 + y2 ≤ 1. Evaluate∫∫
D
x2 + y2dA.
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Section 15.3 Polar Coordinates

Trig Formulas

Higher powers of sine and cosine arise naturally in polar integrals. You’ll
be responsible for applying the following formulas.

Formulas

sin2 θ =
1

2
− cos(2θ)

2

cos2 θ =
1

2
+

cos(2θ)

2
sin3 θ = sin θ − cos2 θ sin θ

cos3 θ = cos θ − sin2 θ cos θ
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Section 15.3 Polar Coordinates

Summary Questions

How do you recognize when an integral is better evaluated in polar
coordinates?

What is the dA in polar coordinates?
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Section 15.7 Cylindrical Coordinates

Section 15.7

Cylindrical Coordinates

Goal:

Convert an integral to cylindrical coordinates.
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Section 15.7 Cylindrical Coordinates

The Jacobian in Three Dimensions

The following generalizes the Jacobian to three dimensional coordinates:

Definition

Given a coordinate system (u, v ,w), The Jacobian matrix is

J =


∂x
∂u

∂y
∂u

∂z
∂u

∂x
∂v

∂y
∂v

∂z
∂v

∂x
∂w

∂y
∂w

∂z
∂w


The Jacobian is the absolute value of the determinant.

∂(x , y , z)

∂(u, v ,w)
= | det J|
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Section 15.7 Cylindrical Coordinates

Cylindrical Coordinates

Cylindrical coordinates are a three dimensional coordinate system, where
the xy coordinates are replaced by polar coordinates. The conversions are

Cartesian to Cylindrical

x = r cos θ

y = r sin θ

z = z
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Section 15.7 Cylindrical Coordinates

Exercises

1 Describe (or draw?) the following regions in cylindrical coordinates.

a R = {(r , θ, z) : r = 2}

b R = {(r , θ, z) : r ≤ 5}

c R = {(r , θ, z) : 0 ≤ θ ≤ π
4 }

d R = {(r , θ, z) : z = 3}

2 Compute the Jacobian
∂(x , y , z)

∂(r , θ, z)
.

Multivariable Calculus 70 / 87



Section 15.7 Cylindrical Coordinates

Setting up Bounds in Cylindrical Integrals

1 Most frequently, the region is bounded below by z = f (r , θ) and
bounded above by z = g(r , θ). In this case, z is your inner variable.

2 If R is the region between two graphs, you’ll need to find their
intersection in order to determine the (r , θ) values of the domain.

3 The set of (r , θ) values is two-dimensional. Sketch this set in the
plane and set up the bounds as in polar coordinates.

Multivariable Calculus 71 / 87



Section 15.7 Cylindrical Coordinates

Example 1

Set up the integral for f (x , y , z) over the region R enclosed between the
graphs z = x2 + y2 and z =

√
1− x2 − y2.
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Section 15.7 Cylindrical Coordinates

Example 2

Convert the following triple integral to cylindrical coordinates:∫ 3

0

∫ 0

−
√

9−x2

∫ √9−x2−y2

0
yz2dzdydx
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Section 15.7 Cylindrical Coordinates

Exercise

Set up the integrals of f (x , y , z) over the following regions using
cylindrical coordinates.

1 The cylinder of radius 4 about the z-axis between z = −2 and z = 2.

2 The intersection of the sphere x2 + y2 + z2 ≤ 1 and the half-spaces
x ≥ 0 and y ≤ x .
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Section 15.7 Cylindrical Coordinates

Example 3

The (r , θ) domain might be described by some function r ≤ h(θ). In this
case, r goes inside θ in the order of integration.

Set up the integral for f (x , y , z) over the region R which lies between the
graphs z = x2 + y2 and z = 4x .
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Section 15.7 Cylindrical Coordinates

Exercise

Let R be the region between the graphs of z = 1− x2 − (y − 1)2 and

z = 0. Evaluate

∫∫∫
R
ydV .
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Section 15.7 Cylindrical Coordinates

Summary Questions

How do you recognize when an integral is better evaluated in
cylindrical coordinates?

What is the dV in cylindrical coordinates?
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Section 15.8 Spherical Coordinates

Section 15.8

Spherical Coordinates

Goal:

Convert an integral to spherical coordinates.
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Section 15.8 Spherical Coordinates

Spherical Coordinates

Spherical coordinates are a three dimensional coordinate system. Here ρ
(“rho”) is the (three dimensional) distance from the origin. φ (“phi”) is
the angle the radius makes with the positive z axis. θ is the angle that the
projection to the xy -plane makes with the positive x-axis.
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Section 15.8 Spherical Coordinates

Converting to Spherical

The following formulas follow from trigonometry.

Cartesian to Spherical

x = ρ cos θ sinφ

y = ρ sin θ sinφ

z = ρ cosφ

Notice: x2 + y2 + z2 = ρ2

A full sphere is 0 ≤ θ ≤ 2π

0 ≤ φ ≤ π
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Section 15.8 Spherical Coordinates

Exercise

Describe (or draw?) the following regions in spherical coordinates.

1 R = {(ρ, θ, φ) : φ = π
2 }

2 R = {(ρ, θ, φ) : ρ ≤ 5}

3 R = {(ρ, θ, φ) : 0 ≤ θ ≤ π
4 }

4 R = {(ρ, θ, φ) : φ ≥ 2π
3 }
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The Jacobian

Theorem

The Jacobian for spherical coordinates is

ρ2 sinφ.
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Section 15.8 Spherical Coordinates

Example 1

Calculate the volume of a sphere of radius R.
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Section 15.8 Spherical Coordinates

Example 2

Convert the following triple integral to spherical coordinates:∫ 3

0

∫ 0

−
√

9−x2

∫ √9−x2−y2

0
yz2dzdydx
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Section 15.8 Spherical Coordinates

Setting up Bounds in Spherical Integrals

Spherical coordinates are only worth using if the domain is reasonably well
behaved.

1 In many cases, all the bounds of integration are constants.

2 The bounds of ρ involve the expression x2 + y2 + z2.

3 The bounds of θ are given by inequalities containing only x and y .
Draw these in the plane.

4 The bounds of φ are given by inequalities concerning z .

5 In some more advanced applications, the ρ bounds may be a function
of φ or θ, meaning ρ should be the inner variable.
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Section 15.8 Spherical Coordinates

Exercise

Set up the integrals of g(x , y , z) over the following regions using spherical
coordinates.

1 The intersection of x2 + y2 + z2 ≤ 4 and z ≤ 0.

2 The intersection of the sphere x2 + y2 + z2 ≤ 1 and the half-spaces
x ≥ 0 and y ≤ x .

3 The intersection of the cone z ≥
√
x2 + y2 and the sphere

x2 + y2 + z2 ≤ 9.
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Section 15.8 Spherical Coordinates

Summary Questions

How do you recognize when an integral is better calculated in
spherical coordinates?

What is dV in spherical coordinates?
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