
Section 14.1 Functions of Several Variables

Section 14.1

Functions of Several Variables

Goals:
For functions of several variables be able to:

Convert an implicit function to an explicit function.

Calculate the domain.

Calculate level curves and cross sections.
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Section 14.1 Functions of Several Variables

Functions of Two Variables

Definition

A function of two variables is a rule that assigns a number (the output) to
each ordered pair of real numbers (x , y) in its domain. The output is
denoted f (x , y).

Some functions can be defined algebraically. If f (x , y) =
√

36− 4x2 − y2

then
f (1, 4) =

√
36− 4 · 12 − 42 = 4.
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Section 14.1 Functions of Several Variables

Example 1

Identify the domain of f (x , y) =
√

36− 4x2 − y2.

Multivariable Calculus 3 / 104



Section 14.1 Functions of Several Variables

Example - Temperature Function

Many useful functions cannot be defined algebraically. If (x , y) are the
longitude and latitude of a position on the earth’s surface. We can define
T (x , y) which gives the temperature at that position.

T (−71.06, 42.36) = 50

T (−84.38, 33.75) = 59

T (−83.74, 42.28) = 41
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Section 14.1 Functions of Several Variables

Example - Digital Images

A digital image can be defined by a brightness function B(x , y).
y

x
687

1024

B(339, 773) = 158 B(340, 773) = 127
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Section 14.1 Functions of Several Variables

The Graph of a Function of Two Variables

Definition

The graph of a function f (x , y) is the set of all points (x , y , z) that satisfy

z = f (x , y).

Here is the graph

z =
√

36− 4x2 − y2

We see that f (1, 4) is realized
geometrically by the height of
the graph above (1, 4, 0).
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Section 14.1 Functions of Several Variables

Level Curves

Definition

A level set of a function f (x , y) is the graph of the equation f (x , y) = c
for some constant c. For a function of two variables this graph lies in the
xy -plane and is called a level curve.

Example

Consider the function

f (x , y) =
√

36− 4x2 − y2.

The level curve
√

36− 4x2 − y2 = 4 simplifies to
4x2 + y2 = 20. This is an ellipse.
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Section 14.1 Functions of Several Variables

The Geometry of Level Curves

Level curves take their shape from the intersection of z = f (x , y) and
z = c . Seeing many level curves at once can help us visualize the shape of
the graph.
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Section 14.1 Functions of Several Variables

Example 3

Where are the level curves on this temperature map?
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Section 14.1 Functions of Several Variables

Example 4

What features can we discern from the level curves of this topographical
map?
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Section 14.1 Functions of Several Variables

Example 5 - Cross Sections

Definition

The intersection of a plane with a graph is a cross section. A level curve
is a type of cross section, but not all cross sections are level curves.

Find the cross section of z =
√

36− 4x2 − y2 at the plane y = 1.

Multivariable Calculus 11 / 104



Section 14.1 Functions of Several Variables

Example 6 - Converting to Explicit Functions

Definition

We sometimes call an equation in x , y and z an implicit function. Often
in order to graph these, we convert them to explicit functions of the form
z = f (x , y)

Write the equation of a paraboloid x2 − y + z2 = 0 as one or more explicit
functions so it can be graphed. Then find the level curves.

Multivariable Calculus 12 / 104



Section 14.1 Functions of Several Variables

Exercise

Consider the implicit equation zx = y

1 Rewrite this equation as an explicit function z = f (x , y).

2 What is the domain of f ?

3 Solve for and sketch a few level sets of f .

4 What do the level sets tell you about the graph z = f (x , y)?
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Section 14.1 Functions of Several Variables

Functions of More Variables

We can define functions of three variables as well. Denoting them

f (x , y , z).

The definitions of this section can be extrapolated as follows.

Variables 2 3

Function f (x , y) f (x , y , z)

Domain subset of R2 subset of R3

Graph z = f (x , y) in R3 w = f (x , y , z) in R4

Level Sets level curve in R2 level surface in R3
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Section 14.1 Functions of Several Variables

Functions and Level Sets

Observation

We might hope to solve an implicit equation of n variables to obtain an
explicit function of n− 1 variables. However, we can also treat it as a level
set of an explicit function of n variables (whose graph lives in n + 1
dimensional space).

x2 + y2 + z2 = 25

w = x2 + y2 + z2

w = 25

z = ±
√

25− x2 − y2

Both viewpoints will be useful in the future.
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Section 14.1 Functions of Several Variables

Summary

What does the height of the graph z = f (x , y) represent?

What is the distinction between a level set and a cross section?

What is the difference between an implicit equation and explicit
function?
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Section 14.2

Limits and Continuity

Goals:

Understand the definition of a limit of a multivariable function.

Use the Squeeze Theorem

Apply the definition of continuity.
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Section 14.2 Limits and Continuity

The Definition of a Limit

Definition

We write
lim

(x ,y)→(a,b)
f (x , y) = L

if we can make the values of f stay arbitrarily close to L by restricting to a
sufficiently small neighborhood of (a, b).

Proving a limit exists requires a formula or rule. For any amount of
closeness required (ε), you must be able to produce a radius δ around
(a, b) sufficiently small to keep |f (x , y)− L| < ε.
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Section 14.2 Limits and Continuity

Non-Example 1

Show that lim
(x ,y)→(0,0)

x2 − y2

x2 + y2
does not exist.
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Section 14.2 Limits and Continuity

Non-Example 2

Show that lim
(x ,y)→(0,0)

xy

x2 + y2
does not exist.
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Section 14.2 Limits and Continuity

Non-Example 3

Show that lim
(x ,y)→(0,0)

xy2

x2 + y4
does not exist.
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Section 14.2 Limits and Continuity

Limit Laws and the Squeeze Theorem

The limit laws from single variable limits transfer comfortably to multi
variable functions.

1 Sum/Difference Rule

2 Constant Multiple Rule

3 Product/Quotient Rule

The Squeeze Theorem

If g < f < h in some neighborhood of (a, b) and

lim
(x ,y)→(a,b)

g(x , y) = lim
(x ,y)→(a,b)

h(x , y) = L,

then
lim

(x ,y)→(a,b)
f (x , y) = L.
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Section 14.2 Limits and Continuity

Continuity

Definition

We say f (x , y) is continuous at (a, b) if

lim
(x ,y)→(a,b)

f (x , y) = f (a, b).
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Section 14.2 Limits and Continuity

Three of More Variables

Everything we’ve done has a three or n-dimensional analogue.

Multivariable Calculus 24 / 104



Section 14.2 Limits and Continuity

Summary

Why is it harder to verify a limit of a multivariable function?

What do you need to check in order to determine whether a function
is continuous?
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Section 14.3

Partial Derivatives

Goals:

Calculate partial derivatives.

Realize when not to calculate partial derivatives.
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Section 14.3 Partial Derivatives

Motivational Example

The force due to gravity between two objects depends on their masses and
on the distance between them. Suppose at a distance of 8, 000km the
force between two particular objects is 100 newtons and at a distance of
10, 000km, the force is 64 newtons.

How much do we expect the force between these objects to increase or
decrease per kilometer of distance?
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Section 14.3 Partial Derivatives

Derivatives of Single-Variable Functions

Derivatives of a single-variable function were a way of measuring the
change in a function. Recall the following facts about f ′(x).

1 Average rate of change is realized as the slope of a secant line:

f (x)− f (x0)

x − x0

2 The derivative f ′(x) is defined as a limit of slopes:

f ′(x) = lim
h→0

f (x + h)− f (x)

h

3 The derivative is the instantaneous rate of change of f at x .

4 The derivative f ′(x0) is realized geometrically as the slope of the
tangent line to y = f (x) at x0.

5 The equation of that tangent line can be written in point-slope form:

y − y0 = f ′(x0)(x − x0)
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Section 14.3 Partial Derivatives

Limit Definition of Partial Derivatives

A partial derivative measures the rate of change of a multivariable function
as one variable changes, but the others remain constant.

Definition

The partial derivatives of a two-variable function f (x , y) are the functions

fx(x , y) = lim
h→0

f (x + h, y)− f (x , y)

h

and

fy (x , y) = lim
h→0

f (x , y + h)− f (x , y)

h
.
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Section 14.3 Partial Derivatives

Notation

The partial derivative of a function can be denoted a variety of ways. Here
are some equivalent notations

fx
∂f
∂x
∂z
∂x
∂
∂x f

Dx f
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Section 14.3 Partial Derivatives

Example 1

To find fy , we perform regular differentiation, treating y as the
independent variable and x as a constant.

1 Find ∂
∂y (y2 − x2 + 3x sin y).
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Section 14.3 Partial Derivatives

Example 2

Below are the level curves f (x , y) = c for some values of c . Can we tell
whether fx(−4, 1.25) and fy (−4, 1.25) are positive or negative?
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Section 14.3 Partial Derivatives

Geometry of the Partial Derivative

The partial derivative fx(x0, y0) is realized geometrically as the slope of the
line tangent to z = f (x , y) at (x0, y0, z0) and traveling in the x direction.

Since y is held constant, this tangent line lives in the cross section y = y0.
For instance, here is fx(x0, y0) for f (x , y) =

√
36− 4x2 − y2.
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Section 14.3 Partial Derivatives

Example 3

Find fx for the following functions f (x , y):

1 f =
√
xy x > 0, y > 0

2 f = y
x

3 f =
√
x + y

4 f = sin (xy)
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Section 14.3 Partial Derivatives

Exercises

Find fx and fy for the following functions f (x , y)

1 f (x , y) = x2 − y2

2 f (x , y) =
√

y
x x > 0, y > 0

3 f (x , y) = yexy

Multivariable Calculus 35 / 104



Section 14.3 Partial Derivatives

Limitations of the Partial Derivative

Suppose Jinteki Corporation makes widgets which is sells for $100 each. If
W is the number of widgets produced and C is their operating cost,
Jinteki’s profit is modeled by

P = 100W − C .

Since ∂P
∂W = 100 does this mean that increasing production can be

expected to increase profit at a rate of $100 per widget?
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Section 14.3 Partial Derivatives

Functions of More Variables

We can also calculate partial derivatives of functions of more variables. All
variables but one are held to be constants. For example if

f (x , y , z) = x2 − xy + cos(yz)− 5z3

then we can calculate ∂f
∂y :
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Section 14.3 Partial Derivatives

Exercise

For an ideal gas, we have the law P = nRT
V , where P is pressure, n is the

number of moles of gas molecules, T is the temperature, and V is the
volume.

1 Calculate ∂P
∂V .

2 Calculate ∂P
∂T .

3 (Science Question) Suppose we’re heating a sealed gas contained in a
glass container. Does ∂P

∂T tell us how quickly the pressure is increasing
per degree of temperature increase?
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Section 14.3 Partial Derivatives

Higher Order Derivatives

Taking a partial derivative of a partial derivative gives us a higher order
derivative. We use the following notation.

Notation

(fx)x = fxx =
∂2f

∂x2

We need not use the same variable each time

Notation

(fx)y = fxy =
∂

∂y

∂

∂x
f =

∂2f

∂y∂x
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Section 14.3 Partial Derivatives

Example 4

If f (x , y) = sin(3x + x2y) calculate fxy .
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Section 14.3 Partial Derivatives

Exercise

If f (x , y) = sin(3x + x2y) calculate fyx .
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Section 14.3 Partial Derivatives

Does Order Matter?

No. Specifically, the following is due to Clairaut:

Theorem

If f is defined on a neighborhood of (a, b) and the functions fxy and fyx
are both continuous on that neighborhood, then fxy (a, b) = fyx(a, b).

This readily generalizes to larger numbers of variables, and higher order
derivatives. For example fxyyz = fzyxy .
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Section 14.3 Partial Derivatives

Summary Questions

What does the partial derivative fy (a, b) mean geometrically?

Can you think of an example where the partial derivative does not
accurately model the change in a function?

What is Clairaut’s Theorem?
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Section 14.4 Tangent Planes and Linear Approximations

Section 14.4

Tangent Planes and Linear Approximations

Goals:

Calculate the equation of a tangent plane.

Rewrite the tangent plane formula as a linearization or differential.

Use linearizations to estimate values of a function.

Use a differential to estimate the error in a calculation.
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Section 14.4 Tangent Planes and Linear Approximations

Tangent Planes

Definition

A tangent plane at a point P = (x0, y0, z0) on a surface is a plane
containing the tangent lines to the surface through P.
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Section 14.4 Tangent Planes and Linear Approximations

The Equation of a Tangent Plane

Equation

If the graph z = f (x , y) has a tangent plane at (x0, y0), then it has the
equation:

z − z0 = fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0).

Remarks:

1 This is the normal equation of a plane if we move the z − z0 terms to
the other side.

2 x0 and y0 are numbers, so fx(x0, y0) and fy (x0, y0) are numbers. The
variables in this equation are x , y and z .
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Section 14.4 Tangent Planes and Linear Approximations

Understanding the Tangent Plane Equation

The cross sections of the tangent plane give the equation of the tangent
lines we learned in single variable calculus.

y = y0 x = x0

z − z0 = fx(x0, y0)(x − x0) + 0 z − z0 = 0 + fy (x0, y0)(y − y0)
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Example 1

Give an equation of the tangent plane to f (x , y) =
√
xey at (4, 0)
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Section 14.4 Tangent Planes and Linear Approximations

Exercise

Compute the equation of the tangent plane to z =
√

36− 4x2 − y2 at
(2, 2, 4).
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Section 14.4 Tangent Planes and Linear Approximations

Linearization

Definition

If we write z as a function L(x , y), we obtain the linearization of f at
(x0, y0).

L(x , y) = f (x0, y0) + fx(x0, y0)(x − x0) + fy (x0, y0)(y − y0)

If the graph z = f (x , y) has a tangent plane, then L(x , y) approximates
the values of f near (x0, y0).

Notice f (x0, y0) just calculates the value of z0.
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Section 14.4 Tangent Planes and Linear Approximations

Example 2

Use a linearization to approximate the value of
√

4.02e0.05.
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The Two-Variable Differential

The differential dz measures the change in the linearization given
particular changes in the inputs: dx and dy . It is a useful shorthand when
one is estimating the error in an initial computation.

Definition

For z = f (x , y), the differential or total differential dz is a function of a
point (x , y) and two independent variables dx and dy .

dz = fx(x , y)dx + fy (x , y)dy

=
∂z

∂x
dx +

∂z

∂y
dy
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Section 14.4 Tangent Planes and Linear Approximations

Exercise

Suppose I decide to invest $10, 000 expecting a 6% annual rate of return
for 12 years, after which I’ll use it to purchase a house. The formula for
compound interest

P = P0e
rt

indicates that when I want to buy a house, I will have P = 10, 000e0.72.

I accept that my expected rate of return might have an error of up to
dr = 2%. Also, I may decide to buy a house up to dt = 3 years before or
after I expected.

1 Write the formula for the differential dP at (r , t) = (0.06, 12).

2 Given my assumptions, what is the maximum estimated error dP in
my initial calculation?

3 What is the actual maximum error in P?
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Section 14.4 Tangent Planes and Linear Approximations

Summary Questions

What do you need to compute in order to give the equation of a
tangent plane?

When is it preferable to approximate using a linearization?

How is the differential defined for a two variable function? What does
each variable in the formula mean?
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Section 14.5

The Chain Rule

Goals:

Use the chain rule to compute derivatives of compositions of
functions.

Perform implicit differentiation using the chain rule.
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Section 14.5 The Chain Rule

Motivational Example

Suppose a Jinteki Corporation makes widgets which is sells for $100 each.
It commands a small enough portion of the market that its production level
does not affect the price of its products. If W is the number of widgets
produced and C is their operating cost, Jinteki’s profit is modeled by

P = 100W − C

The partial derivative ∂P
∂W = 100 does not correctly calculate the effect of

increasing production on profit. How can we calculate this correctly?
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Section 14.5 The Chain Rule

The Chain Rule

Recall that for a differentiable function z = f (x , y), we computed
dz = ∂z

∂x dx + ∂z
∂y dy .

Theorem

Consider a differentiable function z = f (x , y). If we define x = g(t) and
y = h(t), both differential functions, we have

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
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Section 14.5 The Chain Rule

Example 1

If P = R − C and we have R = 100W and C = 3000 + 70W − 0.1w2,
calculate dP

dW .
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Section 14.5 The Chain Rule

The Chain Rule, Generalizations

The chain rule works just as well if x and y are functions of more than one
variable. In this case it computes partial derivatives.

Theorem

If z = f (x , y), x = g(s, t) and y = h(s, t), are all differentiable, then

∂z

∂s
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

We can also modify it for functions of more than two variables.

Theorem

If w = f (x , y , z), x = g(s, t), y = h(s, t) and z = j(s, t) are all
differentiable, then

∂w

∂s
=
∂w

∂x

∂x

∂s
+
∂w

∂y

∂y

∂s
+
∂w

∂z

∂z

∂s
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Section 14.5 The Chain Rule

Application to Implicit Differentiation

Recall that an implicit function on n variables is a level curve of a
n-variable function. How can we use this to calculate dy

dx for the graph
x3 + y3 − 6xy = 0?
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Section 14.5 The Chain Rule

Exercise

Recall that for an ideal gas P(n,T ,V ) = nRT
V . R is a constant. n is the

number of molecules of gas. T is the temperature in Celsius. V is the
volume in meters. Suppose we want to understand the rate at which the
pressure changes as an air-tight glass container of gas is heated.

1 Apply the chain rule to get an expression for dP
dT .

2 What is dn
dT ?

3 What is dT
dT ?

4 Suppose that dV
dT = (5.9× 10−6)V . Calculate and simplify the

expression you got for dP
dT .
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Section 14.5 The Chain Rule

Summary Questions

What is the difference between dz
dx and ∂z

∂x ? How is the first one
computed?

How do you use the chain rule to differentiate implicit functions?
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Section 14.6

Directional Derivatives and the Gradient Vector

Goals:

Calculate the gradient vector of a function.

Relate the gradient vector to the shape of a graph and its level curves.

Compute directional derivatives.
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Section 14.6 Directional Derivatives and the Gradient Vector

Generalization of the Partial Derivative

The partial derivatives of f (x , y) give the instantaneous rate of change in
the x and y directions. This is realized geometrically as the slope of the
tangent line. What if we want to travel in a different direction?
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Section 14.6 Directional Derivatives and the Gradient Vector

The Directional Derivative

Definition

For a function f (x , y) and a unit vector u ∈ R2, we define Duf to be the
instantaneous rate of change of f as we move in the u direction. This is
also the slope of the tangent line to f in the direction of u.
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Section 14.6 Directional Derivatives and the Gradient Vector

Limit Definition of the Directional Derivative

Recall that we compute the Dx f by comparing the values of f at (x , y) to
the value at (x + h, y), a displacement of h in the x-direction.

Dx f (x , y) = lim
h→0

f (x + h, y)− f (x , y)

h

To compute Duf for u = ai + bj, we compare the value of f at (x , y) to
the value at (x + ta, y + tb), a displacement of t in the u-direction.

Limit Formula

Duf (x , y) = lim
t→0

f (x + ta, y + tb)− f (x , y)

t
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Section 14.6 Directional Derivatives and the Gradient Vector

Other Cross Sections Worksheet

1 What direction produces the greatest directional derivative? The
smallest?

2 How are these directions related to the geometry (specifically the level
curves) of the graph?

3 How these directions related to the partial derivatives?
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Section 14.6 Directional Derivatives and the Gradient Vector

Conclusions from the Other Cross Sections Worksheet

If u is tangent to a level curve of f , then
Duf = 0. (This was u0).

The direction that gives the maximum
Duf is normal to the level curve of f .
(This was umax)

fy
fx

=
y component of umax

x component of umax

Since the proportion of fx and fy seems important, maybe we should treat
it as a direction too.
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Section 14.6 Directional Derivatives and the Gradient Vector

The Gradient Vector

Definition

The gradient vector of f at (x , y) is

∇f (x , y) = 〈fx(x , y), fy (x , y)〉

Remarks:

1 The gradient vector is a function of (x , y). Different points have
different gradients.

2 umax, which maximizes Duf , points in the same direction as ∇f .

3 u0, which is tangent to the level curves, is orthogonal to ∇f .

Multivariable Calculus 69 / 104



Section 14.6 Directional Derivatives and the Gradient Vector

The Gradient Vector and Directional Derivatives

The tangent lines live in the tangent plane. We can compute their slope
by rise over run.

Let u be a unit vector from (x0, y0) to (x1, y1). Let the associated z values
in the tangent plane be z0 and z1 respectively.

Duf (x0, y0) =
rise

run
=

z1 − z0
|u|

=fx(x0, y0)(x1 − x0) + fy (x0, y0)(y1 − y0)

=∇f (x0, y0) · u.

This formula generalizes to functions of three or more variables.
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Section 14.6 Directional Derivatives and the Gradient Vector

Example 1

Let f (x , y) =
√

9− x2 − y2 and let u = 〈0.6,−0.8〉.

1 What are the level curves of f ?

2 What direction does ∇f (1, 2) point?

3 Without calculating, is Duf (1, 2) positive or negative?

4 Calculate ∇f (1, 2) and Duf (1, 2).
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Section 14.6 Directional Derivatives and the Gradient Vector

Example 2

Let h(x , y) give the altitude at longitude x and latitude y . Assuming h is
differentiable, draw the direction of ∇h(x , y) at each of the points labeled
below. Which gradient is the longest?

A

B

C
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Section 14.6 Directional Derivatives and the Gradient Vector

Application - Edge Detection

The length of the gradient of a brightness function detects the edges in a
picture, where the brightness is changing quickly.

∂B
∂x (336, 785) ≈ 185−187

1

∂B
∂y (336, 785) ≈ 179−187

1

∇B(336, 785) ≈ (−2,−8)

∂B
∂x (340, 784) ≈ 97−139

1

∂B
∂y (340, 784) ≈ 72−139

1

∇B(340, 784) ≈ (−42,−67)

∇B

∇B
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Section 14.6 Directional Derivatives and the Gradient Vector

Application - Tangent Planes

Use a gradient vector to find the equation of the tangent plane to the
graph x2 + y2 + z2 = 14 at the point (2, 1,−3).
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Section 14.6 Directional Derivatives and the Gradient Vector

Summary Questions

What does the direction of the gradient vector tell you?

What does the directional derivative mean geometrically? How do
you compute it?

How is the gradient vector related to a level set?
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Section 14.7

Maximum and Minimum Values

Goals:

Find critical points of a function.

Test critical points to find local maximums and minimums.

Use the Extreme Value Theorem to find the global maximum and
global minimum of a function over a closed set.
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Section 14.7 Maximum and Minimum Values

Local Maximum and Minimum

Definition

Given a function f (x , y) we say

1 (a, b) is a local maximum if f (a, b) ≥ f (x , y) for all (x , y) in some
neighborhood around (a, b).

2 (a, b) is a local minimum if f (a, b) ≤ f (x , y) for all (x , y) in some
neighborhood around (a, b).
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Section 14.7 Maximum and Minimum Values

Relation to the Gradient

If fx(a, b) 6= 0 or fy (a, b) 6= 0,
then (a, b) is not a local extreme.
The nonzero partial derivative
guarantees we can find higher
and lower values in that direction.

If both these partial derivatives are 0, then ∇f (a, b) = 〈0, 0〉.
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Critical Points

Definition

We say (a, b) is a critical point of f if either

1 ∇f (a, b) = 〈0, 0〉 or

2 ∇f (a, b) does not exist (because one of the partial derivatives does
not exist).

From the observation on the previous slide, it follows that local extremes
must reside at critical points.
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Section 14.7 Maximum and Minimum Values

Example 1

The function z = 2x2 + 4x + y2 − 6y + 13 has a minimum value. Find it.
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Identifying Local Extremes

A critical point could be a local maximum. f decreases in every direction
from (0, 0).
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Identifying Local Extremes

A critical point could be a local minimum. f increases in every direction
from (0, 0).
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Section 14.7 Maximum and Minimum Values

Identifying Local Extremes

A critical point could be neither. f increases in some directions from (0, 0)
but decreases in others. This configuration is called a saddle point.
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Section 14.7 Maximum and Minimum Values

The Second Derivatives Test

Theorem

Suppose f is differentiable at (a, b) and fx(a, b) = fy (a, b) = 0. Then we
can compute

D = fxx(a, b)fyy (a, b)− [fxy (a, b)]2

1 If D > 0 and fxx(a, b) > 0 then (a, b) is a local minimum.

2 If D > 0 and fxx(a, b) < 0 then (a, b) is a local maximum.

3 If D < 0 then (a, b) is a saddle point.

Unfortunately, if D = 0, this test gives no information.
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The Hessian Matrix

Definition

The quantity D in the second derivatives test is actually the determinant
of a matrix called the Hessian of f .

fxx(a, b)fyy (a, b)− [fxy (a, b)]2 = det

[
fxx(a, b) fxy (a, b)
fyx(a, b) fyy (a, b)

]
︸ ︷︷ ︸

Hf (a,b)

This can be a useful mnemonic for the second derivatives test.
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Section 14.7 Maximum and Minimum Values

Exercise

Let f (x , y) = cos(2x + y) + xy

1 Verify that ∇f (0, 0) = 〈0, 0〉.
2 Is (0, 0) a local minimum, a local maximum, or neither?
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The Extreme Value Theorem

Theorem

A continuous function f on a closed and bounded domain D has an
absolute maximum and an absolute minimum somewhere in D.

Definition

Let D be a subset of R2 or R3.

D is closed if it contains all of the points on its boundary.

D is bounded if there is some upper limit to how far its points get
from the origin (or any other fixed point). If there are points of D
arbitrarily far from the origin, then D is unbounded.
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Closed Domains

Closed

x2 + y2 ≤ 9

Not Closed

x2 + y2 < 9
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Closed Domains

Not Closed

−2 ≤ x ≤ 2 and −3 < y < 3

Not Closed

−2 ≤ x ≤ 2 and −3 ≤ y ≤ 3
and (x , y) 6= (1, 2)
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Bounded Domains

Bounded

−2 ≤ x ≤ 2 and −3 ≤ y ≤ 3

Unbounded

−2 ≤ x ≤ 2
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Section 14.7 Maximum and Minimum Values

Example 2

Find the maximum value of f (x , y) = x2 + 2y2 − x2y on the domain

D = { (x , y)︸ ︷︷ ︸
points in R2

: x2 + y2 ≤ 5, x ≤ 0︸ ︷︷ ︸
conditions

}
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Exercise

Let f (x , y) be a differentiable function and let

D = {(x , y) : y ≥ x2 − 4, x ≥ 0, y ≤ 5}.

1 Sketch the domain D.

2 Does the Extreme Value Theorem guarantee that f has an absolute
minimum on D? Explain.

3 List all the places you would need to check in order to locate the
minimum.
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Section 14.7 Maximum and Minimum Values

Summary

Where must the local maximums and minimums of a function occur?
Why does this make sense?

What does the second derivatives test tell us?

What hypotheses does the Extreme Value Theorem require? What
does it tell us?
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Section 14.8

Lagrange Multipliers

Goal:

Find minimum and maximum values of a function subject to a
constraint.

If necessary, use Lagrange multipliers.
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Section 14.8 Lagrange Multipliers

Maximums on a Constraint Worksheet

Sometimes we aren’t interested in the maximum value of f (x , y) over the
whole domain, we want to restrict to only those points that satisfy a
certain constraint equation.

The maximum on the constraint is
unlikely to be the same as the
unconstrained maximum (where
∇f = 0). Can we still use ∇f to
find the maximum on the
constraint?

max f such that x + y = 1
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Section 14.8 Lagrange Multipliers

Conclusions from Maximums on a Constraint Worksheet

At the point on budget constraint 0.8x + 0.5y + z = 7 where the utility
function f (x , y , z) was maximized, we made the following observations
about the gradient ∇f (x , y , z)

1 The components of ∇f (x , y , z) are proportional to 0.8, 0.5 and 1

2 ∇f (x , y , z) is a normal vector of 0.8x + 0.5y + z = 7

3 ∇f (x , y , z) is parallel to the gradient vector of
p(x , y , z) = 0.8x + 0.5y + z

Remarkably, the final observation is true in general for differentiable
functions, and not just when the constraint is a plane.

Multivariable Calculus 96 / 104



Section 14.8 Lagrange Multipliers

The Method of Lagrange Multipliers

Theorem

Suppose an objective function f (x , y) and a constraint function g(x , y)
are differentiable. The local extremes of f (x , y) given the constraint
g(x , y) = k occur where

∇f = λ∇g

for some number λ, or else where ∇g = 0. The number λ is called a
Lagrange Multiplier.

This theorem generalizes to functions of more variables.
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Section 14.8 Lagrange Multipliers

Lagrange and the Directional Derivatives and Level Curves

When ∇f is not parallel to ∇g , we can see that we can travel along
g(x , y) = k and increase the value of f . This is because Duf > 0 for some
u tangent to the constraint. When ∇f is parallel to ∇g , we see that the
level curves of f are tangent to the level curve g(x , y) = k .
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Section 14.8 Lagrange Multipliers

Example 1

Find the point(s) on the ellipse 4x2 + y2 = 4 on which the function
f (x , y) = xy is maximized.
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Section 14.8 Lagrange Multipliers

Exercise

Refer to your “Maximums on a Constraint” worksheet.

1 What system of equations would you set up to find the critical points
of f on the constraint p(x , y , z) = 7?

2 Can you solve it?

3 Which was easier, using Lagrange or using substitution?
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Section 14.8 Lagrange Multipliers

Using the Extreme Value Theorem (Two Variable)

To find the absolute minimum and maximum of f (x , y) over a closed
domain D with boundaries g(x , y) = c .

1 Compute ∇f and find the critical points inside D.

2 Identify the boundary components. Find the critical points on each
using substitution or Lagrange multipliers.

3 Identify the intersection points between boundary components.

4 Evaluate f (x , y) at all of the above. The minimum is the lowest
number, the maximum is the highest.
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Section 14.8 Lagrange Multipliers

Example 2

Use Lagrange multipliers to find the maximum value of
f (x , y) = x2 + 2y2 − x2y on the domain

D = {(x , y) : x2 + y2 ≤ 5, x ≤ 0}
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Section 14.8 Lagrange Multipliers

More than One Constraint?

If we have two constraints, g(x , y , z) = k and h(x , y , z) = l , then their
intersection is a curve. The gradient vectors to g and h are both normal to
the curve. For the curve to be tangent to the level curves of f , we need
that ∇f lies in the normal plane to the curve. In other words:

∇f = λ∇g + µ∇h.

This system of equations is usually difficult to solve.
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Section 14.8 Lagrange Multipliers

Summary

What is a constraint?

What equations do you write when you apply the method of Lagrange
multipliers?

How does a constraint arise when finding the maximum over a closed
and bounded domain?
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