Section 13.1

Vector Functions and Space Curves

Goals:

- Graph certain plane curves.
- Compute limits and verify the continuity of vector functions.

Equation of a Line

The equation of a line was our first example of a vector valued function. For example

$$\mathbf{r}(t) = \langle 3-2t, 5+t, 2+4t \rangle \,.$$

Observe

- **1** The input of this function is a number: *t*.
- **2** The output of this function is a vector: $\mathbf{r}(t)$.
- **3 r** is really defined by three real-valued functions:

$$x = 3 - 2t$$
 $y = 5 + t$ $z = 2 + 4t$.

Vector Valued Functions

Definition

A general vector valued function $\mathbf{r}(t)$ has a number as an input and a vector of some fixed dimension as its output.

If the outputs are two-dimensional, then there are **component functions** f(t) and g(t) such that

$$\mathbf{r}(t) = \langle f(t), g(t) \rangle$$

or
 $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}.$

The **domain** of \mathbf{r} is the set of all t for which both component functions are defined.

The Plane Curve Associated to a Vector Function

If we view the outputs of a vector function

$$\mathbf{r}(t) = \langle f(t), g(t) \rangle$$

as position vectors, then the points they define trace out a shape in two-dimensional space.

Definition

A plane curve is the set of points defined by two parametric equations

$$x = f(t)$$
 $y = g(t)$.

The variable t is called the **parameter**. We might restrict t to some interval, or let t range over the entire real number line.

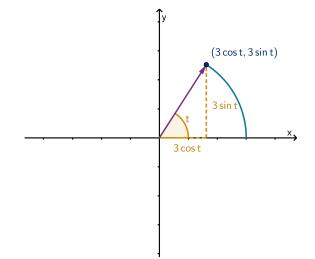
Graph the plane curves associated to the following vector functions:

$$\mathbf{1} \mathbf{r}(t) = \langle 4 + 2t, 3 - 3t \rangle$$

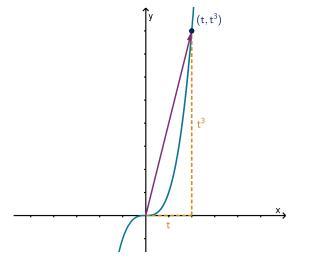
2
$$\mathbf{r}(t) = \langle 4 + 2t, 3 - 3t \rangle$$
 $0 \le t \le 1$

3
$$\mathbf{r}(t) = \langle 3 \cos t, 3 \sin t \rangle$$

$$\mathbf{3} \mathbf{r}(t) = \langle 3\cos t, 3\sin t \rangle$$



4
$$\mathbf{r}(t) = \langle t, t^3 \rangle$$



Exercises

- 1 Sketch the plane curve of $\mathbf{r}(t) = (3+t)\mathbf{i} + (5-4t)\mathbf{j}$ $0 \le t \le 1$.
- **2** Sketch the plane curve of $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) \rangle$ $0 \le t \le 2\pi$.
- 3 How would $\mathbf{r}(t) = \langle 2\cos(t), 2\sin(t) + 4 \rangle$ $0 \le t \le 2\pi$ differ from 2? Plot some points if you need to.
- 4 How would $\mathbf{r}(t) = \langle 6\cos(t), 2\sin(t) \rangle$ $0 \le t \le 2\pi$ differ from 2? Does this plane curve have a shape you recognize?
- **5** What graph is defined by $\mathbf{r}(t) = (t^3 4t)\mathbf{i} + t\mathbf{j}$?

The Space Curve Associated to a Vector Function

If the outputs of $\mathbf{r}(t)$ are three-dimensional vectors then we have three component functions and $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$.

Definition

A space curve is the set of points defined by three parametric equations

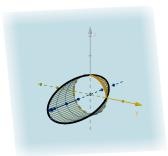
$$x = f(t)$$
 $y = g(t)$ $z = h(t)$.

Visualizing Space Curves

The space curve defined by

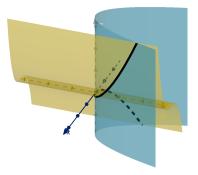
$$\mathbf{r}(t) = (1 - \cos(t) - \sin(t))\mathbf{i} + \cos(t)\mathbf{j} + \sin(t)\mathbf{k}$$

is best understood by projecting a yz unit circle onto a plane x = 1 - y - z.



Visualizing Space Curves

The space curve defined by $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ can be understood as the intersection of two surfaces:

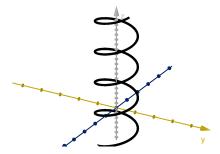


Visualizing Space Curves

The space curve defined by

$$\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + rac{t}{4}\mathbf{k}$$

can be understood by a projectile motion argument.



Limits

Definition

If $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ then

$$\lim_{t\to a} \mathbf{r}(t) = \left\langle \lim_{t\to a} f(t), \lim_{t\to a} g(t), \lim_{t\to a} h(t) \right\rangle$$

Provided the limits of all three component functions exist.

Continuity

Definition

A vector function **r** is **continuous** at *a* if

 $\lim_{t\to a}\mathbf{r}(t)=\mathbf{r}(a).$

This is the case if and only if the component functions f(t), g(t) and h(t) are continuous at a.

ls

$$\mathbf{r}(t) = t^2 \mathbf{i} + e^t \mathbf{j} + \frac{\sin t}{t} \mathbf{k}$$

continuous at t = 0? Justify your answer using the definition of continuity.

Summary Questions

- What is the difference between a vector function and a plane or space curve?
- Describe 4 different types of plane curves you'll be expected to know.

Section 13.2

Derivatives and Integrals of Vector Functions

Goals:

- Compute derivatives and integrals of vector functions.
- Calculate tangent vectors and tangent lines.
- Interpret derivatives as velocity and acceleration.

The Derivative of a Vector Function

Definition

We define the **derivative** of $\mathbf{r}(t)$ by

$$\frac{d\mathbf{r}}{dt} = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}$$

Notice since the numerator is a vector and the denominator is a scalar, we are taking the limit of a vector function.

Computing the Derivative

If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$ then what is $\mathbf{r}'(t)$?

Computing the Derivative

Theorem

If $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j}$ then

$$\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j},$$

Provided these derivatives exist.

Similarly, if $\mathbf{r}(t) = f(t)\mathbf{i} + g(t)\mathbf{j} + h(t)\mathbf{k}$ then

$$\mathbf{r}'(t) = f'(t)\mathbf{i} + g'(t)\mathbf{j} + h'(t)\mathbf{k},$$

Provided these derivatives exist.

Properties of the Derivative

The following properties follow from applying the derivative rules you learned in single-variable calculus to each component of a vector function.

Theorem

For any differentiable vector functions u(t), v(t), differentiable real-valued function f(t) and constant c we have

1
$$(\mathbf{u} + \mathbf{v})' = \mathbf{u}' + \mathbf{v}'$$

2 $(c\mathbf{u})' = c\mathbf{u}'$
3 $(f\mathbf{u})' = f'\mathbf{u} + f\mathbf{u}'$
4 $(\mathbf{u} \cdot \mathbf{v})' = \mathbf{u}' \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{v}$

5
$$(\mathbf{u} \times \mathbf{v})' = \mathbf{u}' \times \mathbf{v} + \mathbf{u} \times \mathbf{v}'$$

The Tangent Vector

Definition

The vector $\mathbf{r}'(t_0)$ is called a **tangent vector** to the curve defined by $\mathbf{r}(t)$. If $\mathbf{r}(t_0)$ defines the point *P*, then we call $\mathbf{r}'(t_0)$ the tangent vector at *P*.

We can construct the **unit tangent vector** at *P* by diving by the length of $\mathbf{r}(t)$. It is denoted $\mathbf{T}(t_0)$.

$$\mathbf{T}(t_0) = \frac{\mathbf{r}'(t_0)}{|\mathbf{r}'(t_0)|}$$

By replacing t_0 with a variable t, we can define the **derivative function** $\mathbf{r}'(t)$.

The Tangent Line and Linearization

Definition

The **tangent line** or **linearization** to $\mathbf{r}(t)$ at *P* is the line through $P = \mathbf{r}(t_0)$ in the direction of $\mathbf{r}'(t)$. Its equation is

$$\mathbf{L}(t) = \mathbf{r}(t_0) + \mathbf{r}'(t_0)(t-t_0).$$

Remarks:

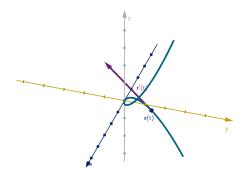
- **1** L(t) is similar to other linearizations we've learned in calculus.
- **2** L(t) is a line. Its direction vector is $\mathbf{r}'(t_0)$.
- 3 Like other linearizations, if we plug in t close to t_0 , then L(t) gives a good approximation of $\mathbf{r}(t)$.
- 4 We can make L(t) look more like the vector equation of a line by replacing $t t_0$ with a parameter s.

$$\mathsf{L}(s) = \mathsf{r}(t_0) + s \mathsf{r}'(t_0).$$

- Let $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$
 - **1** Compute $\mathbf{r}'(-1)$.
 - **2** Compute T(-1).
 - **3** Compute an equation of the tangent line to $\mathbf{r}(t)$ at t = -1.

Interpreting the Tangent Vector as a Velocity

If we imagine that $\mathbf{r}(t)$ describes the position of an object at time t, then $\mathbf{r}'(t)$ tells us the velocity (direction and magnitude) of the object.



The Definite Integral of a Vector Function

Definition

The **definite integral** from *a* to *b* of a vector function $\mathbf{r}(t)$ is denoted and defined:

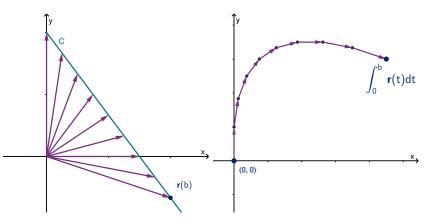
$$\int_{a}^{b} \mathbf{r}(t) dt = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbf{r}(t_{i}^{*}) \Delta t$$

Where $\Delta t = \frac{b-a}{n}$ and t_i^* is any representative of the *i*th subinterval of [a, b].

Besides the name of the function, this is identical to how we defined a real-valued integral.

Visualizing a Definite Integral

The vectors of $\mathbf{r}(t)$ are added together to estimate $\int_a^b \mathbf{r}(t)dt$. We can visualize $\int_a^b \mathbf{r}(t)dt$ as the change in position of a particle that has traveled with velocity $\mathbf{r}(t)$ from time t = a until t = b.



Computing the Definite Integral

Since limits and sums can be broken down by components, we have the following formula:

Theorem

$$\int_{a}^{b} \mathbf{r}(t)dt = \left(\int_{a}^{b} f(t)dt\right)\mathbf{i} + \left(\int_{a}^{b} g(t)dt\right)\mathbf{j} + \left(\int_{a}^{b} h(t)dt\right)\mathbf{k}$$

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus applies just as well to vector functions as real-valued functions.

Theorem

If $\mathbf{r}(t)$ is continuous, then

$$\frac{d}{dx}\left(\int_0^x \mathbf{r}(t)dt\right) = \mathbf{r}(x)$$

If $\mathbf{R}(t)$ is an antiderivative of $\mathbf{r}(t)$ then

$$\int_{a}^{b} \mathbf{r}(t) dt = \mathbf{R}(b) - \mathbf{R}(a).$$

Example 2 - Physics Application

Suppose we are given that the velocity of a particle at time t is given by $\mathbf{v}(t) = 2t\mathbf{i} + t^2\mathbf{j}$. If the particle is at the position (2, -3) at t = 0, what is its position at t = 3?

Conclusions from "Trigonometric Space Curves"

Summary Questions

- How do you interpret the derivatives of a vector function in terms of motion?
- What is the relationship between a tangent vector, a unit tangent vector and a tangent line?
- What type of object is $\int \mathbf{r}(t) dt$? What type of object is $\int_a^b \mathbf{r}(t) dt$?