
Section 12.1 Three-Dimensional Coordinate Systems

Section 12.1

Three-Dimensional Coordinate Systems

Goals:

Plot points in a three-dimensional coordinate system.

Use the distance formula.

Recognize the equation of a sphere and find its radius and center.

Graph an implicit function with a free variable.
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Section 12.1 Three-Dimensional Coordinate Systems

Key Observations from Two-Dimensional Space
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1 Assign origin and two directions (x , y).

2 y is 90 degrees anticlockwise from x .

3 Axes consist of the points displaced in
only one direction.

4 Coordinates refer to displacement from
the origin in each direction.

5 Either displacement can happen first.

6 The possible coordinates are in bijection
with the points in the plane.
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Section 12.1 Three-Dimensional Coordinate Systems

Directions and Axes in Three-Dimensional Space
(Three-Space)

In a three-dimensional Cartesian coordinate system. We can extrapolate
from two dimensions.

1 Assign origin and two three
directions (x , y , z).

2 Each axis makes a 90 degree
angle with the other two.

3 The z direction is determined by
the right-hand rule.
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Section 12.1 Three-Dimensional Coordinate Systems

The Right-Hand Rule

The right hand rule says that if you make the fingers of your right hand
follow the (counterclockwise) unit circle in the xy -plane, then your thumb
indicates the direction of the positive z-axis.
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Section 12.1 Three-Dimensional Coordinate Systems

Drawing a Location in Three-Dimensional Coordinates

The point (2, 3, 5) is the point displaced from the origin by

2 in the x direction
3 in the y direction
5 in the z direction.

How do we draw a reasonable diagram of where this point lies?
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Section 12.1 Three-Dimensional Coordinate Systems

Negative Coordinate Values

How can we draw a reasonable diagram of (−5, 1,−4)?
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Section 12.1 Three-Dimensional Coordinate Systems

Exercise

Draw diagrams of points with the following coordinates.

1 (6, 1, 2)

2 (−3, 0, 0)

3 (2,−1, 4)

4 (0, 3, 5)
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Section 12.1 Three-Dimensional Coordinate Systems

Distance Formula in Three-Space

Theorem

The distance from the origin to the point (x , y , z) is given by the
Pythagorean Theorem

D =
√
x2 + y2 + z2
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Section 12.1 Three-Dimensional Coordinate Systems

General Formula

Theorem

The distance from the point (x1, y1, z1) to the point (x2, y2, z2) is given by

D =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
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Section 12.1 Three-Dimensional Coordinate Systems

Graphs in 3 Dimensions

Definition

The graph of an implicit equation is the set of points whose coordinates
satisfy that equation. In other words, the two sides are equal when we plug
the coordinates in for x , y and z .

Example 1

The graph of

x2 + (y − 4)2 + (z + 1)2 = 9

is the set of points that are distance 3
from the point (0, 4,−1)
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Example 2

Sketch the graph of the equation y = 3.
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Section 12.1 Three-Dimensional Coordinate Systems

Coordinate Planes

In addition to coordinate axes, 3 dimensional space has 3 coordinate
planes.

1 The graph of z = 0 is the xy -plane.
2 The graph of x = 0 is the yz-plane.
3 The graph of y = 0 is the xz-plane.
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Section 12.1 Three-Dimensional Coordinate Systems

Example 3 - Free Variable Method

Sketch the graph of the equation z = x2 − 3.
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Section 12.1 Three-Dimensional Coordinate Systems

Implicit Equations

Notice that the graph of an implicit equation in the plane is generally
one-dimensional (a curve), whereas the graph of an implicit equation in
three-space is generally two-dimensional (a surface).

y = x2 − 3 z = x2 − 3
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Section 12.1 Three-Dimensional Coordinate Systems

Exercise

Sketch the graph of each equation.

1 x = −4

2 x2 + y2 = 9

3 x2 + 4x + y2 + z2 − 2z = 4
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Section 12.1 Three-Dimensional Coordinate Systems

Summary Questions

What is the right hand rule and what does it tell you about a
three-dimensional coordinate system?

In three-space, what is the y -axis? What are the coordinates of a
general point on it?

In three space, what is the xz plane? What are the coordinates of a
general point on it? What is its equation?

How do we use a free variable to sketch a graph?

How do we recognize the equation of a sphere?
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Section 12.2

Vectors

Goals:

Distinguish vectors from scalars (real numbers) and points.

Add and subtract vectors, multiply by scalars.

Express real world vectors in terms of their components.
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Section 12.2 Vectors

What is a Vector?

Definition

A vector in the plane or in three-space consists of a magnitude (length)
and a direction. Two vectors with the same direction are parallel. Two
vectors with the same magnitude and the same direction are equal.

Example

Here are four vectors represented by arrows. Two of them are equal.
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Section 12.2 Vectors

Examples of Vectors

Here are some vectors

3 miles south

The force that a magnetic field applies to a charged particle

The velocity of an airplane

Here are some non-vectors

17

The mass of an automobile

3:15 PM

Atlanta, GA
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Section 12.2 Vectors

Endpoint Notation

The vector v from point A to point B can be represented by the notation

−→
AB.

A is the initial point and B is the terminal point.

Theorem
−→
AB =

−→
CD if and only if ABDC is a parallelogram (perhaps a squished one).
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Section 12.2 Vectors

Coordinate Notation

We can represent a vector in Cartesian 3-space by the x , y and z
components of its displacement. If A = (2, 3, 7) and B = (5, 3, 6) then we
can represent

−→
AB = 〈3, 0,−1〉

Theorem

v = u if and only if their coordinate representations match in each
component.

A vector in the Cartesian plane only has two components.
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Section 12.2 Vectors

The Position Vector

Every point in a Cartesian coordinate system has a position vector, which
gives the displacement of that point from the origin. The components of
the vector are simply the coordinates of the point.

There is only one point (−5, 1,−4) but there are many vectors 〈−5, 1,−4〉.
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Section 12.2 Vectors

Vector Sums

Definition

The sum of two vectors v + u is calculated by positioning v and u head to
tail. The sum is the vector from the initial point of one to the terminal
point of the other. In coordinate notation, we just add each component
numerically.

〈 1, 3〉
+〈 3, −1〉
〈 4, 2〉
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Section 12.2 Vectors

Scalar Multiples

Definition

Given a number (called a scalar) λ and a vector v we can produce the
scalar multiple λv, which is the vector in the same direction as v but λ
times as long.

If λ is negative then λv extends in
the opposite direction. Either way,
we say λv is parallel to v.

In coordinates scalar multiplication is distributed to each component.

2.5 〈6, 4〉 = 〈15, 10〉
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Section 12.2 Vectors

Example 1

Given diagrams of two vectors u and v, how would we calculate 1
2u + v?

What if we are instead given the coordinates u = 〈a, b〉 and v = 〈c , d〉?
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Section 12.2 Vectors

Exercise

Given diagrams of two vectors u and v, how would we draw u− v? What
it its significance?
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Section 12.2 Vectors

Standard Basis Notation

We can represent any vector in the plane or 3-space as a sum of scalar
multiples of the following standard basis vectors

Plane

i = 〈1, 0〉
j = 〈0, 1〉

3-Space

i = 〈1, 0, 0〉
j = 〈0, 1, 0〉
k = 〈0, 0, 1〉

The vector 〈3, 5,−2〉 can be written as 3i + 5j− 2k. You can check
yourself that the sum on the right gives the correct vector.
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Section 12.2 Vectors

The Length of a Vector

The length or magnitude of a vector is calculated using the distance
formula and notated |v|. If v = ai + bj + ck, then

|v| =
√
a2 + b2 + c2
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Section 12.2 Vectors

Example 2

If v = 〈3, 5,−2〉 calculate |v|
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Section 12.2 Vectors

Unit Vectors

A unit vector is a vector of length 1. Given a vector v the scalar multiple

1

|v|
v

is a unit vector parallel to v.
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Section 12.2 Vectors

Angles Between Vectors

Angles are a good way of comparing directions. In general, two vectors will
not intersect to form an angle, so we use the following definition:

Definition

The angle between two vectors is the angle they make when they are
placed so their initial points are the same.

If they make a right angle, we call them orthogonal. If they make an
angle of 0 or π, they are parallel.

Note that there is no good way to measure clockwise in 3 or more
dimensions, so the angle between two vectors is never negative, nor more
than π.
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Section 12.2 Vectors

Summary Questions

How is a vector similar to a point? To a number?

How is a vector different from a point? From a number?

How can you tell if two vectors point in the same direction? Opposite
directions?

If u and v are position vectors of the points P and Q, how are u and

v related to
−→
PQ?
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Section 12.3

The Dot Product

Goals:

Calculate the dot product of two vectors.

Determine the geometric relationship between two vectors based on
their dot product.

Calculate vector and scalar projections of one vector onto another.
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Section 12.3 The Dot Product

Definition of the Dot Product

Definition

The dot product of two vectors is a number.
For two dimensional vectors v = 〈v1, v2〉 and u = 〈u1, u2〉 we define

v · u = v1u1 + v2u2

For three dimensional vectors v = 〈v1, v2, v3〉 and u = 〈u1, u2, u3〉 we
define

v · u = v1u1 + v2u2 + v3u3
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Section 12.3 The Dot Product

Example 1

1 Calculate 〈2, 3,−1〉 · 〈4, 1, 5〉

2 Calculate (−2i + 4k) · (i + 2j− k)
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Section 12.3 The Dot Product

Questions

1 How does the dot product behave algebraically? Why is it called a
“product?”

2 How does the dot product behave geometrically? Does knowing the
dot product of two vectors tell us anything about them?
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Section 12.3 The Dot Product

Exercise

Let u = 〈2, 3〉, v = 〈4,−1〉 and w = 〈−5, 2〉.

1 Compute u · u and u · v and u ·w.

2 Compute v · u. How does it compare to u · v?

3 How is u · u related to |u|?

4 Compute 3u and 3v then take their dot product. How is it related to
u · v?

5 Compute v + w then compute u · (v + w). How is it related to u · v
and u ·w?

6 Why do you think we call this operation a “dot product” and not a
“dot sum?”

7 If you wanted to prove that relationships your noticed in 2 - 5 work
for all possible vectors, how would you do that?
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Section 12.3 The Dot Product

Algebraic Properties of the Dot Product

The following properties hold for any vectors u, v and w and scalars m and
n.

Commutative u · v = v · u

Distributive u · (v + w) = u · v + u ·w

Associative mu · nv = mn(u · v)
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Section 12.3 The Dot Product

Dot Products of Parallel Vectors

Theorem

If u and v are parallel then

u · v =

{
|u||v| if u and v have the same direction

−|u||v| if u and v have opposite directions
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Section 12.3 The Dot Product

Dot Products of Orthogonal Vectors

Theorem

If u and v are orthogonal then

u · v = 0.
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Section 12.3 The Dot Product

Vector Projections and Scalar Projections

Two vectors need not be parallel or orthogonal, but given vectors u and v
we can always write v = vproj + vorth.

The properties of the dot product
tell us that

u · v =u · (vproj + vorth)

=± |u||vproj|+ 0

Definition

The number
u · v
|u|

is called the

scalar projection of v onto u.
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Section 12.3 The Dot Product

The Cosine Formula

Theorem

Let u and v have the same initial point and meet at angle θ. The
following formula holds in any dimension:

u · v = |u||v| cos θ

Recall that cos θ is

positive when θ < π/2

negative when θ > π/2

zero when θ = π/2.

So the sign of u · v tells us
whether θ is acute, obtuse or
right.
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Section 12.3 The Dot Product

Example 2

What is the angle between 〈1, 0, 1〉 and 〈1, 1, 0〉?
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Section 12.3 The Dot Product

Application - Work

In physics, we say a force works on an object if it moves the object in the
direction of the force. Given a force F and a displacement d , the formula
for work is:

W = Fs
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Section 12.3 The Dot Product

Work in More Dimensions

In higher dimensions, displacement and force are vectors.

If the force and the displacement are not in the same direction, then only
Fproj contributes to work.

W = Fproj · s = F · s
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Section 12.3 The Dot Product

Summary Questions

What algebraic properties does a dot product share with real number
multiplication?

How is the angle between two vectors related to their dot product?

What is a scalar projection, and how do you compute it?
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Section 12.4

The Cross Product

Goals:

Calculate the determinant of a 2× 2 or 3× 3 matrix.

Calculate the cross product of two vectors.

Understand the geometric relationship between two vectors and their
cross product.
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Section 12.4 The Cross Product

Matrices

Definition

A matrix is a rectangular array of values (usually numbers). An m × n
matrix has m rows and n columns. If a matrix has the same number of
rows and columns, it is sqaure.

Examples

a 2× 4 matrix[
3 0 4 −2
4 2 0 1

] a 3× 1 matrix 2
0
5


a square 3× 3 matrix 1 3 0

0 2 2
3 1 1
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Section 12.4 The Cross Product

The Determinant of a Matrix

A determinant is a number that we can compute and associate to a
square matrix. If the matrix has a name (like M), we use the notation
detM or |M|. We can also write

det

 1 3 0
0 2 2
3 1 1

 or
1 3 0
0 2 2
3 1 1
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Section 12.4 The Cross Product

Computing the Determinant

The determinant of a 2× 2 matrix is calculated by the formula∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc

The formulas for larger matrices are derived from those of smaller minor
matrices.∣∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣∣ = a

∣∣∣∣∣ e f

h i

∣∣∣∣∣− b

∣∣∣∣∣ d f

g i

∣∣∣∣∣+ c

∣∣∣∣∣ d e

g h

∣∣∣∣∣
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Section 12.4 The Cross Product

Example 1

Calculate
1 3 0
0 2 2
3 1 1
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Section 12.4 The Cross Product

The Geometric Meaning of the Determinant

The absolute value of the determinant of a matrix is the volume of the
parallelepiped constructed from the row (or column) vectors.

1 3 0
0 2 2
3 1 1

= 18

Multivariable Calculus 52 / 80



Section 12.4 The Cross Product

The Cross Product

Definition

The cross product is a product of three-dimensional vectors u and v,
whose output is also a three dimensional vector denoted

u× v.

The cross product is defined as follows on the standard basis vectors:

i× j = k j× k = i k× i = j

j× i = −k k× j = −i i× k = −j

i× i = j× j = k× k = 0

Notice that the cross product of two vectors is a vector, whereas the dot
product is a number.
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Section 12.4 The Cross Product

The Cross Product - Algebraic Definition

In order to finish defining the cross product, we need the following
algebraic properties:

1 The cross product is associative with scalar multiplication:

(au)× v = u× (av) = a(u× v)

2 The cross product distributes across vector sums:

(u1 + u2)× v = u1 × v + u2 × v

u× (v1 + v2) = u× v1 + u× v2
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Section 12.4 The Cross Product

Example 2

If u = 2i + 3j + 4k and v = i + 2j− 3k, compute u× v.
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Section 12.4 The Cross Product

The Determinant Formula

Formula

If u = 〈u1, u2, u3〉 and v = 〈v1, v2, v3〉 then

u× v =
u2 u3
v2 v3

i− u1 u3
v1 v3

j +
u1 u2
v1 v2

k

If we’re a bit sloppy and allow our matrix to have vectors as entries, we
can write more compactly:

u× v =
i j k
u1 u2 u3
v1 v2 v3
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Section 12.4 The Cross Product

Example 3

Calculate 〈2, 0, 3〉 × 〈3, 1, 1〉.
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Section 12.4 The Cross Product

Direction of the Cross Product

The direction of u× v is given by the following facts:

u× v is orthogonal to both u and v.
If your right hand traces a circle from u through v, then your thumb
points in the direction of u× v.
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Section 12.4 The Cross Product

Magnitude of the Cross Product

If θ is the angle between u and v, the length satisfies the formula

|u× v| = |u||v| sin θ.

|u× v| is also the area of the parallelogram defined by u and v.
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Section 12.4 The Cross Product

Example 4

If u = 4k and v is in the xy -plane, then what can we say about u× v?
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Section 12.4 The Cross Product

Application - Torque

In physics, torque measures the tendency of a rigid body to rotate around
a fixed origin. If we apply the force F at the position r from the origin, the
torque is

τ = r × F.

Viewing torque as a vector is very useful. For example, if more than one
force is applied, the torques can be added to compute a total torque on
the object.
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Section 12.4 The Cross Product

Summary Questions

What do the cross product and dot product have in common? How
are they different?

Would you rather use the minor matrices or the distributive method
to compute a cross product? Why?

Can a cross product be used to compute the angle between two
vectors? Would you prefer to use the dot product? Why?
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Section 12.5

Equations of Lines and Planes

Goals:

Give equations of lines in both vector and parametric form.

Give equations of planes in both vector and normal forms.

Use equations to find intersections of lines and planes.
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Section 12.5 Equations of Lines and Planes

Equation of a Line, First Attempt

In two dimensions, lines have equations like y = −0.5x + 3. If we used this
equation in three dimensions, z would be a free variable, and we’d get a
plane.
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Section 12.5 Equations of Lines and Planes

Parametric and Vector Equations

Definition

The graph of a vector equation

r(t) = f (t)i + g(t)j + h(t)k.

or a parametric equation

x = f (t) y = g(t) z = h(t)

is the set of points (f (t), g(t), h(t)) obtained when all possible real
numbers t are plugged into the equations.

Generally the graph of a parametric equation is one-dimensional, like a line
or a curve.
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Section 12.5 Equations of Lines and Planes

Equation of a Line, Vector Version

Here is a way to describe a line by vector equation:

Equation

If r0 is the position vector of an
known point, and v is a direction
vector parallel to the line, then the
line is described by

r(t) = r0 + tv

where t can be any real number.

Multivariable Calculus 66 / 80



Section 12.5 Equations of Lines and Planes

Visualizing the Vector Equation

The endpoints of the vectors r(t) trace out the line as t ranges over all
real numbers.
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Section 12.5 Equations of Lines and Planes

Exercise

Suppose you want to give the vector equation of a line whose known point
is (3, 2) and which also passes through (5, 1).

1 Compute a direction vector v of this line.

2 Write a vector equation for it.

3 What is the slope of this line? How is it related to v?

4 Is the point (−1, 4) on this line? What t does it correspond to?
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Section 12.5 Equations of Lines and Planes

Equation of a Line, Parametric Version

Equation

If r0 = 〈x0, y0, z0〉 and v = 〈a, b, c〉 then the vector equation resolves as

r(t) = 〈x0, y0, z0〉+ t 〈a, b, c〉
= 〈x0, y0, z0〉+ 〈ta, tb, tc〉
= 〈x0 + ta, y0 + tb, z0 + tc〉 .

This gives the following parametric equations.

x = x0 + ta

y = y0 + tb

z = z0 + tc
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Section 12.5 Equations of Lines and Planes

Equation of a Line, Symmetric Equations Version

If we want we can solve for t in the parametric equations,

x = x0 + ta

y = y0 + tb

z = z0 + tc

and get three expressions that all equal t, and hence all equal each other.

Equation

x − x0
a

=
y − y0

b
=

z − z0
c
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Section 12.5 Equations of Lines and Planes

Exercise

1 Rewrite the vector equation r(t) = 〈2, 5, 1〉+ t 〈2,−1,−4〉 as a triple
equation.

2 Use the triple equation to determine whether this line passes through
(7, 3,−9).
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Section 12.5 Equations of Lines and Planes

The Equation of a Line Segment

If we restrict the values of t to a finite interval, we get a segment instead
of a line.

Formula

A vector equation of the segment from the endpoint r0 to the endpoint r1
is

r(t) = (1− t)r0 + tr1 0 ≤ t ≤ 1
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Section 12.5 Equations of Lines and Planes

Review - Normal Equation of a Line

In algebra, you learned the normal equation of a line: e.g. 2x + 3y = 12.
Why is it called this?
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Section 12.5 Equations of Lines and Planes

Normal Vectors to a Plane

A normal vector to a plane is orthogonal to every vector in the plane.

Theorem

In three-dimensional space, every plane has normal vectors. They are all
parallel to each other.
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Section 12.5 Equations of Lines and Planes

Equation of a Plane, Vector Version

Theorem

If r0 = 〈x0, y0, z0〉 describes an known point on a plane, and n = 〈a, b, c〉
is a normal vector. Then the equation of the plane is

(r − r0) · n = 0

or

a(x − x0) + b(y − y0) + c(z − z0) = 0

Notice that since x0, y0 and z0 are constants, we can distribute and collect
them into a single term: d .

ax + by + cz − ax0 − by0 − cz0 = 0

ax + by + cz + d = 0
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Section 12.5 Equations of Lines and Planes

Example 1

Find the equation of the plane that contains the points (2, 1, 1), (3, 4,−1)
and (0, 5, 2).
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Section 12.5 Equations of Lines and Planes

Example 2

Find the equation of the plane that contains the point (0, 0, 4) and the line
r(t) = 〈2, 0, 2〉+ t 〈3, 1, 0〉.
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Section 12.5 Equations of Lines and Planes

Example 3

Find the equation of the plane with intercepts (4, 0, 0), (0, 3, 0) and
(0, 0, 8).
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Section 12.5 Equations of Lines and Planes

Exercises

Consider the plane that contains (0, 0, 0), (4, 0, 3) and (4, 5, 3)

1 Give the equation of this plane.

2 Where does this plane intersect the line r(t) = 〈2 + 3t, 4− t, 3t〉?

3 Where does this plane intersect the line r(t) = 〈2− 4t, 2 + t, 3− 3t〉?

4 Given any plane and any line, what are the possible numbers of
intersection points that they can have? Can you justify your answer
with algebra?
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Section 12.5 Equations of Lines and Planes

Summary Questions

Why do we use the vector equation of a line instead of slope-intercept
form?

What two pieces of information do you need to write the vector
equation of a line?

What information do you need in order to write the equation of a
plane?

How do you find the intersection of a plane with a line?

How are the normal vectors of a plane related to each other?
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