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Solutions to Odd-Numbered Problems

Q1(
5254

)3
=
(
56
)3

= 518.

Q3

2 log5 x+ log5 y − 3 log5 z = log5 x
2 + log5 y + log5

1
z3 = log5

x2y
z3 .

Q5

2ex − 7 = 22

2ex = 15

ex =
15

2

x = ln
15

2

Q7

2 sin2 x− 1 = 0

2 sin2 x = 1

sin2 x =
1

2

sinx = ±
√
2

2

x =
π

4
+ 2nπ or x =

3π

4
+ 2nπ

Q9

43x−2 = 15

3x− 2 = log4 15

3x = log4 15 + 2

3x = log4 15 + log4 16

3x = log4 240

x =
log4 240

3

2



Solutions to Odd-Numbered Problems

Q17

x2 + 5x− 6

x− 1
= 0

set x2 + 5x− 6 = 0

(x+ 6)(x− 1) = 0

x = 1 or x = −6

plug into denominator: 1− 1 = 0 or − 6− 1 ̸= 0

Since x = 1 casues the left side to be undefined, the only solution is x = −6.

Q19

3x2 − 5

2ex − 7
= 0

set 3x2 − 5 = 0

3x2 = 5

x2 =
5

3

x = ±
√

5

3

The only value that makes the denominator 0 is x = ln 7
2 . Both our solutions are valid. x = ±

√
5

3
.

Q21

lnx− 4

3− x
= 0

set lnx− 4 = 0

lnx = 4

x = e4

plug in 3− e4 ̸= 0

Our solution is valid. x = e4.
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Solutions to Odd-Numbered Problems

Q23

5

(u+ 1)2
=

u

u+ 1

5

(u+ 1)2
− u

u+ 1
= 0

5

(u+ 1)2
− u(u+ 1)

(u+ 1)2
= 0

5− u− u2

(u+ 1)2
= 0

set u2 + u− 5 = 0

x =
−1±

√
1− 4(1)(−5)

2

x =
−1±

√
21

2

plug in

(
−1±

√
21

2
+ 1

)2

̸= 0

Our solutions are valid. x = −1±
√
21

2 .
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Solutions to Odd-Numbered Problems

Q1

a lim
x→−3−

f(x) = 1

b lim
x→−3+

f(x) = 2

c lim
x→−2

f(x) = 1

d lim
x→0

f(x) D.N.E.

e lim
x→4−

f(x) = ∞

f lim
x→4+

f(x) = 1

Q3

This function is continuous on its domain because it is the quotient of an exponential function and a
polynomial. Its domain is all real numbers, because x2 + 3 is never 0.

Q5

We will use the one-sided limits to compute the two-sided limit of f(x).

lim
x→0−

f(x) lim
x→0+

f(x)

= lim
x→0−

sin(2x) = lim
x→0+

−x2

= 0 = 0

So lim
x→0

f(x) = 0. On the other hand f(0) = 4. Since lim
x→0

f(x) ̸= f(0), f is not continuous at x = 0.

Q7

We will use the one-sided limits to compute the two-sided limit of f(x).

lim
x→1−

f(x) lim
x→1+

f(x)

= lim
x→1−

x+ 5 = lim
x→1+

x2 + 4x+ 1

= 6 = 6

So lim
x→1

f(x) = 6. Furthermore, f(1) = 6. Since lim
x→1

f(x) = f(1), f is continuous at x = 1.
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Solutions to Odd-Numbered Problems

Q9

lim
x→3

x− 3

x2 − 9
= lim

x→3

x− 3

(x− 3)(x+ 3)

= lim
x→3

1

x+ 3
since the functions agree except at x = 3

=
1

3 + 3
since

1

x+ 3
iscontinuousatx = 3

=
1

6

Q11

lim
x→9

2x− 18√
x− 3

= lim
x→9

2(
√
x− 3)(

√
x+ 3)√

x− 3

= lim
x→3

2
√
x+ 3 since the functions agree except at x = 9

= 2
√
9 + 3 since 2

√
x+ 3iscontinuousatx = 9

= 9

Q13

Let g(x) = sinx − 2x + 1. g is continuous since it is the sum of a linear function and a trig function.
g(0) = 1 > 0. g(1) = sin(1) − 1 < 0, since sin(x) ranges from −1 to 1. Thus by the Intermediate
Value Theorem there is a number c in [0, 1] such that g(c) = 0. Since g(c) = 0, sin c = 2c− 1.

Q15

Nothing. f(x) is not continuous on [−1, 1] because 0 is not in its domain. The Intermediate Value
Theorem does not apply to this situation.

Q17

lim
x→∞

x2 + 2x− 9

3x− 6
= lim

x→∞

x2
(
1 + 2

x − 9
x2

)
3x
(
1− 2

x

)
= lim

x→∞

x2

x

= lim
x→∞

x

= ∞
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Solutions to Odd-Numbered Problems

Q19

This is a composition of functions. Let v = 1
x . Let w = ev.

lim
x→∞

v = lim
x→∞

1

x

= 0

lim
v→0

w = lim
v→0

ev

= e0

= 1

lim
x→∞

√
e1/x = lim

w→1

√
w

=
√
1

= 1

Q21

This is a composition of functions. Let v = ex.

lim
x→−∞

v = lim
x→−∞

ex

= 0

lim
x→−∞

ee
x

= lim
v→0

ev

= e0

= 1
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Solutions to Odd-Numbered Problems

Q23

a Average rate of change is computed

rise

run
=

f(5)− f(2)

5− 2
=

125− 8

3
= 39

b The line has slope 39 and passes through (2, 8). It’s point-slope equation is

y − 8 = 39(x− 2)

c

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

(2 + h)3 − 23

h

= lim
h→0

8 + 12h+ 6h2 + h3 − 8

h

= lim
h→0

12h+ 6h2 + h3

h

= lim
h→0

12 + 6h+ h2

= 12

Q25

f ′(6) = lim
h→0

f(6 + h)− f(6)

h

= lim
h→0

3(6 + h)2 − 7− 3(6)2 + 7

h

= lim
h→0

108 + 36h+ 3h2 − 7− 108 + 7

h

= lim
h→0

36h+ 3h2

h

= lim
h→0

36 + 3h

= 36

8



Solutions to Odd-Numbered Problems

Q27

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
(x+h)2 − 1

x2

h

= lim
h→0

x2−(x+h)2

x2(x+h)2

h

= lim
h→0

x2 − x2 − 2xh− h2

x2(x+ h)2h

= lim
h→0

−2xh− h2

x2(x+ h)2h

= lim
h→0

−2x− h

x2(x+ h)2

=
−2x

x2x2

= − 2

x3

9



Solutions to Odd-Numbered Problems

Q29

a
d

dx
(5x7 − 3x2 +

5

x2
) =

d

dx
(5x7 − 3x2 + 5x−2) = 35x6 − 6x− 10x−3

b
d

dx

4x5 − 2x2 + 3x+ 4

x
=

d

dx
(4x4 − 2x+ 3− 4x−1) = 16x3 − 2 + 4x−2

c
d

dx
(x2 + 2x) sinx = (2x+ 2x) sinx+ (x2 + 2x) cosx

d
d

dx

ex

x2
=

d

dx
(exx−2) = exx−2 − 2x−3ex

e
d

dx

√
x− 5 = 1

2
√
x−5

f
d

dx
cos(4x) = −4 sin(4x)

g
d

dx
sin(ex) = cos(ex)ex

h
d

dx
(x2 + 5x+ 4)60 = 60(x2 + 5x+ 4)59(2x+ 5)

i
d

dx
ex

2 sin x = ex
2 sin x(2x sinx+ x2 cosx)

j
d

dx

ln(x2 + 2)

x2 + 3x
=

1
x2+2 (2x)(x

2 + 3x)− (2x+ 3) ln(x2 + 2)

(x2 + 3x)2

Q31

f ′(x) = 3 cos(3x)

f ′′(x) = −9 sin(3x)

f ′′′(x) = −27 cos(3x)

10



Solutions to Odd-Numbered Problems

Q33

f(x) is increasing where f ′(x) > 0.

f ′(x) = 3x2 − 2x

set 0 < 3x2 − 2x

0 < x(3x− 2)

We perform a sign analysis on f ′(x) = x(3x− 2)

x − + +

(3x− 2) − − +

f ′(x) + − +

0 2
3

So f is increasing on (−∞, 0) ∪
(
2
3 ,∞

)
.

Q35

f(x) is increasing where f ′(x) > 0. Notice f has domain [0,∞).

f ′(x) = 512x−1/2 − 4x3

set 0 < 512x−1/2 − 4x3

0 < 4x−1/2(128− x7/2)

0 < 128− x7/2 since x > 0 on the domain

x7/2 < 128

x < 1282/7

x < 4

Thus f(x) is increasing on [0, 4).

11



Solutions to Odd-Numbered Problems

Q1

The equation is y− f(4) = f ′(4)(x− 4). We need to find f(4) and f ′(4). Since we are given the point
of tangency, we know f(4) = 2.

f ′(x) =
1

2
√
x

f ′(4) =
1

2
√
4

=
1

4

The equation of the tangent line is y − 2 = 1
4 (x− 4).

Q3

a The equation is L(x) = f
(
π
3

)
+ f ′ (π

3

) (
x− π

3

)
. We need to solve for f

(
π
3

)
and f ′ (π

3

)
.

f
(π
3

)
=

√
3

2
f ′(x) = cosx

f ′
(π
3

)
=

1

2

The linearization is L(x) =

√
3

2
+

1

2

(
x− π

3

)
.

b We would need approximations of

√
3

2
and

π

3
. It would also be okay to have approximations of

√
3 and π. We would obtain the needed values by long division.

c Using

√
3

2
= 0.866 and

π

3
= 1.047 we get

sin(1) ≈ L(1)

≈ 0.866 +
1

2
(1− 1.047)

≈ 0.866 +
1

2
(−0.047)

≈ 0.866− 0.024

≈ 0.842

12



Solutions to Odd-Numbered Problems

Q5

a

L(t) = f(5) + f ′(5)(t− 5)

= 3 + 0.2(t− 5)

b L(8) = 3 + 0.2(8− 5) = 3.6.

c It is an underestimate. If m′′(t) > 0 then the derivative is increasing. The linearization assumes

the derivative is constant. The actual function has a larger derivative and thus larger values for
t > 5.

Q7

f ′(x) = 8x−1/3 − 1. This is undefined at x = 0 since we cannot devide by 0. To find the other critical
points we solve:

8x−1/3 − 1 = 0

8x−1/3 = 1

x−1/3 =
1

8

x1/3 = 8

x = 512

x = 0 and x = 512 are the critical points of f(x).

Q9

First we use the derivative to find critical points.

f ′(x) = 3x2 − 75

set 0 = 3x2 − 75

0 = 3(x− 5)(x+ 5)

x = ±5

We apply the second derivative test using f ′′(x) = 6x.

f ′(5) = 6(5) > 0 f ′(−5) = 6(−5) < 0

The second derivative test tells us that x = 5 is a local minimum, while x = −5 is a local maximum.

13



Solutions to Odd-Numbered Problems

Q11

f(x) is continuous and [−8, 1] is a closed interval, so the EVT guarantees a maximum and a minimum.
We find the critical points. f ′(x) = 2

3x1/3 . This is never 0, but is undefined at x = 0. Thus x = 0 is
the only critical point. We evaluate f at the critical point and at the endpoints.

f(−8) = 4 maximumf(1) = 1

f(0) = 0 minimum

Q13

lim
x→0+

x cos(x− π)

ex − 1

0

0
form, apply l’Hôpital’s

= lim
x→0+

lim
x→0+

cos(x− π)− x sin(x− π)

ex
continuous, plug in x = 0

=
−1

1
= −1

Q15

lim
x→∞

x lnx

x5/2 + 3

∞
∞

form, apply l’Hôpital’s

= lim
x→∞

lnx+ 1
5
2x

3/2

∞
∞

form, apply l’Hôpital’s

= lim
x→∞

1
x

15
4 x1/2

= lim
x→∞

4

15x3/2

=0

14



Solutions to Odd-Numbered Problems

Q1

There are infinitely many. Two examples are 1
2x

2 + 5x and 1
2x

2 + 5x+ 1.

Q3

4 sinx+ 2x3 + c.

Q5

F (x)−G(x) = c for some constant c, so 3F (x)− bG(x) = (3− b)F (x)− bc. This is an antiderivative
f(x) when b = 2.

Q7

(3)(2)− 2 + (3)(3)− 2 + (3)(4)− 2 + (3)(5)− 2 = 34.

Q9

b∑
k=a

c = c+c+c+c+ · · ·+c where there are b−a+1 occurances of c. The sum simplifies to c(b−a+1).

Q11

This notation indicates that we add up the values of the function for k between 1 and k, which is
nonsense. The index variable cannot also be a bound on itself.

Q13

a This sequence is obtained by repeatedly adding 4. We can represent it with multiplication:
4∑

k=0

3+

4k.

b This sequence is obtained by repeatedly multipying by 2. We can represent it with an exponentail:

5∑
k=0

6(2k).

c This sequence is obtained by repeatedly adding 1 in the numerator and denominator. We can

model them seperately:
5∑

k=0

3 + k

4 + k
.

15



Solutions to Odd-Numbered Problems

Q15

No. On the interval
(
1
2 , 1
)
, y lnx is below the x−axis.

∫ 1

1/2
lnx dx computes the signed area, which is

the negative of the area below the x-axis annd above y = lnx.

Q17

We will omit the graph. To divide [1, 11] into 5 subintervals means each has length 11−1
5 = 2. Let left

endpoints are 1, 3, 5, 7, and 9. The sum of the areas of the rectangles is

√
1(2) +

√
3(2) + sqrt5(2) +

√
7(2) +

√
9(2)

= 2(4 +
√
3 +

√
5 +

√
7)

Q19

The graph is a horizontal line of height 7. The area under this graph over [3, 8] is a rectangle of length
5 and height 7. This area and the integral have a value of (7)(5) = 35.

Q21

By the Fundamental Theorem of Calculus, g(x) is an antiderivative of f(x). This means g′(x) = f(x),
or more specifically g′(8) = f(8).

Q23

If f is increasing, then f ′(x) is positive. That means the integral of f ′(x) over [22, 31] is positive. We
can argue this geometrically, noting that y = f ′(x) is above the x-axis and hence has a positive signed
area beneath it. Instead we could note that the integral is a limit of rectangle approximations, which
are all positive.

Q25∫
f(x) dx is an indefinite integral. It is the general antiderivative of f(x) and is thus a family of

functions.

∫ b

a

f(x) dx is a definite integral. It represents the signed area under y = f(x) from a to b.

It is a number.

16
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Q27

∫ 8

1

x− 3

x
dx =

x2

2
− 3 lnx

∣∣∣∣8
1

=
64

2
− 3 ln 8− 1

2
+ 0

=
63

2
− 3 ln 8

Q29∫
ex − 6x2 dx = ex − 2x3 + c

Q31∫ √
t dt =

2

3
x3/2 + c.

Q33∫
3

5
sin y dy = −3

5
cos y + c.

Q35

∫ 3π/4

π/6

2 cos v dv = 2 sin v
∣∣∣3π/4
π/6

= 2 sin(3π/4)− 2 sin(π/6)

= 2

(√
2

2

)
− 2

(
1

2

)
=

√
2− 1

Q37

We can use the chain rule for these.

a

∫
f(x+ a) dx = F (x+ a) + c.

b

∫
f(ax) dx =

1

a
F (ax) + c.

17



Solutions to Odd-Numbered Problems

Q39

Perform a u-substitution. Let u = 7x.

7 dx = du

dx =
1

7
du∫

e7x dx =

∫
1

7
eu du

=
1

7
eu + c

=
1

7
e7x + c

Q41

Perform a u-substitution. Let u = θ
3 .

1

3
dθ = du

dx = 3 du∫
cos

(
θ

3

)
dθ =

∫
3 cos (u) du

= 3 sin(u) + c

= 3 sin

(
θ

3

)
+ c

Q43

Perform a u-substitution. Let u = πt.

π dx = du x = 0 ⇒ u = 0

dx =
1

π
du x =

1

4
⇒ u =

π

4∫ 1/4

0

sin(πt) dt =

∫ π/4

0

1

π
sinu du

= − 1

π
cosu

∣∣∣∣π/4
0

= − 1

π

√
2

2
+

1

π
(1)

=
2−

√
2

2π

18
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Q45

Perform a u-substitution. Let u = x5 − 2x.

5x4 − 2 dx = du∫
(x5 − 2x)(5x4 − 2) dx =

∫
u du

=
u2

2
+ c

=
(x5 − 2x)2

2
+ c

19



Solutions to Odd-Numbered Problems

Q1

f(x)− g(x) is the height of the line segment at x above g(x) and below f(x).

Q3

We can compute the inverses x = g−1(y) and x = f−1(y). If, for instance, x = g−1(y) is the left hand

boundary of the region and x = f−1(y) is the right hand boundary, the area is
∫ b

a
f−1(y)− g−1(y) dy.

Q5

We need to solve for their intersections and test between each pair of intersections. We integrate the
larger function minus the smaller function over that interval. Since we are integrating a positive function,
we get a positive result for area.

Q7

a The area would shift up and include an extra k by (b − a) rectangle, incresaing the integral by

k(b− a).

b Not necessarily. If y = f(x) is less than k units above the x-axis, then some of the area would

shift below the axis. If we counted this as geometric area, we may end up with more area than we
stared with.

Q9

In the first case, positive and negative signed area between y = f(x) and y = 0 would be made positive
and added together. In the second, they would be added (and perhaps cancel) before being made
positive.
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Q11

If y = g(x) is above y = f(x) then g(x)−f(x) is positive and
∫ b

a
g(x)−f(x) dx computes the geometric

area between them. This is the same test and the same integral that we use when the graphs are above
the x-axis. Thus the signs of f(x) and g(x) don’t matter. The formula works either way.

Q13

x3 = 4x

x3 − 4x = 0

x(x− 2)(x+ 2) = 0

x = 0 or x = 2 or x = −2

These graphs don’t cross between x = 3 and x = 5. We can use a test at x = 3, 33 > 4(3). The area
is

Area =

∫ 5

3

x3 − 4x dx

=
x4

4
− 2x2

∣∣∣∣5
3

=
54

4
− 2(25)− 34

4
+ 2(9)

= 104

Q15

Solve for intersections

x2 =
√
x

x2 −
√
x = 0

√
x(x3/2 − 1) = 0

x = 1 or x = 0

We can use the test point 1
2 .
√

1
2 > 1

4 so we compute the area:

Area =

∫ 1

0

√
x− x2 dx

=
2

3
x3/2 − 1

3
x3

∣∣∣∣1
0

=
2

3
− 1

3
− 0 + 0

=
1

3
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Q17

We solve for the intersections

x2 = 2x− 1

x2 − 2x+ 1 = 0

(x− 1)2 = 0

x = 1

So our x bounds are x = 1 and x = −3 (given). We can use x = 0 to test for top and bottom.

y = x2 y = 2x− 1

y = 0 y = 0− 1

So y = x2 is on top. We can now set up the integral and compute the area.

Area =

∫ 1

−3

x2 − (2x− 1) dx

=
x3

3
− x2 + x

∣∣∣∣1
−3

=
1

3
− 1 + 1 +

27

3
+ 9 + 3

=
64

3

Q19

The intersection points are where sinx = cosx. According to our unit circle this occurs at x = π
4 and

x = 5π
4 . We can use test points of x = 0, x = π and x = 2π, or we can draw the graphs to see which

is the top. The resulting area is

Area =

∫ π/4

0

cosx− sinx dx+

∫ 5π/4

π/4

sinx− cosx dx+

∫ 2π

5π/4

cosx− sinx dx

= (sinx+ cosx)
∣∣∣π/4
0

+ (− cosx− sinx)
∣∣∣5π/4
π/4

+ (sinx+ cosx)
∣∣∣2π
5π/4

=

√
2

2
+

√
2

2
− 0− 1 +

√
2

2
+

√
2

2
+

√
2

2
+

√
2

2
+ 0 + 1 +

√
2

2
+

√
2

2

= 4
√
2
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Q21

Intersections:

xex
2

= ex

xex
2

− ex = 0

x(ex
2

− e) = 0

x = 0 or x = −1 or x = 1

We can use x = 1
2 and x = − 1

2 as test points.

1

2
e(

1
2 )

2

< frac12e −1

2
e(−

1
2 )

2

> −frac12e

Now we can compute the area. We need a u-subtitution for half of the integrand, so we should divide
each intergral into a sum of two. The substituion is u = x2.

Area =

∫ 0

−1

ex− xex
2

dx+

∫ 1

0

xex
2

− ex dx

=

∫ 0

−1

ex dx−
∫ 0

−1

xex
2

dx+

∫ 1

0

xex
2

dx−
∫ 1

0

ex dx

=

∫ 0

−1

ex dx−
∫ 0

1

1

2
eu du+

∫ 1

0

1

2
eu du−

∫ 1

0

ex dx

=
ex2

2

∣∣∣∣0
−1

+
1

2
eu
∣∣∣∣1
0

+
1

2
eu
∣∣∣∣1
0

− ex2

2

∣∣∣∣1
0

= −e

2
+

e

2
− 1

2
+

e

2
− 1

2
− e

2
= 1

Q23

If f(x) − g(x) has a double root at x = a, then the sign will not change at a. The previous problem
had a double root at x = 0, since x2 was a factor of both functions.
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Q25

Since we have three curves of the form y =, we know there cannot be one top and one bottom curve.
y =

√
x and y = −2x meet at (0, 0). We invert both of them

y =
√
x y = −2x

y2 = x −y

2
= x

Between y = 0 and y = 6, y2 > −y
2 so our integral is

Area =

∫ 6

0

y2 +
y

2
dy

=
y3

3
+

y2

4

∣∣∣∣6
0

=
216

3
+

36

4
− 0− 0

= 81

Q27

1 We can write the area as a sum or difference of dx integrals. Here is one way to do it:

Area =

∫ −8

−14

9− (−5− x) dx+

∫ 1

−8

9− 3 dx+

∫ 3

1

9− 3x dx

2 We can write the area as a single dy integral.

Area =

∫ 9

3

y

3
− (−5− y) dy

3 This is a trapezoid. You might remember the formula from geometry.

Area =
1

2
(b1 + b2)h =

1

2
(17 + 9)6
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Q29

The intersections are

√
x = x2

0 = x2 −
√
x

0 =
√
x(x3/2 − 1)

x = 0 or x = 1

Plugging these into y = x2 gives (0, 0) and (1, 1) as intersection points.

a We can look at the graphs or use a test point like x = 1
2 to see that y =

√
x is on top.

Area =

∫ 1

0

√
x− x2 dx

b We invert each function.

y =
√
x y = x2

y2 = x ±
√
x = x2

Since we are between y = 0 and y = 1 we can use a test point like y = 1
2 to see that x =

√
y is

to the right of x = y2.

Area =

∫ 1

0

√
y − y2 dy

Q31

If f ′(a) > g′(a) then f grows faster than g to the right of a. Since we know that g doesn’t catch up
until the next intersection, we can say f(x) > g(x) until that intersection. By the same reasoning f
will be below g to the left of a, until their next intersection. We can make the opposite conclusions if
g′(a) > f ′(a).
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Q1

A plane is intersected with the solid. The part of the plane that is inside the solid is the cross-section.

Q3

Prisms, because we know a cvolukme formula for them already.

Q5

A ball, cube, and cone have volume.

Q7

The volume is the same either way, but the numerical value will be higher with cubic centimeters. Cubic
centimeters are smaller, so we can fit more of them into the solid than cubic inches.

Q9

The cross sections are circles. The grow from radius 0 at x = −5 to radius 5 at x = 0. Then they
shrink back to radius 0 at x = 5.

Q11

S is a prism, though it might be slanted or twisted if the cross sections are located or rotated differently
from each other.

Q13

a The sum of the prisms approximates the volume of S. V ≈ 5.1 + 6 + 7.2 + 9.6

b The prisms have height 3. We can divide their volumes by 3 to get the volumes of the cross-sections

we used as their bases: 1.7, 2, 2.4, 3.2.
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Q15

We’ll take three cross-sections, one cross-section at the base, one cross-section a third of the way up,
and the last cross-section two thirds of the way up. The height of each prism is 3.

At the base, the cross-section is a square of side length 6. Its area is 36. The volume of the prism
is 108

The next cross-section is one third smaller. It’s side length is 4. Its area is 16. The volume of the
prism is 48.

The last cross-section is two-thirds smaller than the base. Its side length is 2, its area is 4 and the
volume of the prism is 12.

In total, we approximate the volume to be V ≈ 108 + 48 + 12 = 168.

Q17

The cross-sections have area A(x) = (ex)2 = e2x. We compute the volume:

Volume =

∫ 3

0

e2x dx

=
1

2
e2x
∣∣∣∣3
0

=
1

2

(
e6 − e0

)
=

e6 − 1

2

Q19

The bases are the veritcal distance between y = 3x and y = x2. x2 < 3x when 0 < x < 3, so the base
at x is 3x− x2.

A(x) =
1

2
bh

=
1

2
(3x− x2)(3x− x2)

=
9

2
x2 − 3x3 +

1

2
x4

Volume =

∫ 3

0

9

2
x2 − 3x3 +

1

2
x4 dx

=
3

2
x3 − 3

4
x4 +

1

10
x5

∣∣∣∣3
0

=
81

2
− 243

4
+

243

10

=
81

20
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Q21

A(x) = π(
√
x)2

= πx

Volume =

∫ 9

0

πx dx

=
pi

2
x2

∣∣∣∣9
0

=
81π

2

Q23

A(x) = π(4− x2)2

= π(16− 8x2 + x4)

Volume =

∫ 2

−2

π(16− 8x2 + x4) dx

= π

(
16x− 8x3

3
+

x5

5

) ∣∣∣∣2
−2

= π

(
32− 64

3
+

32

5
+ 32− 64

3
+

32

5

)
=

512π

15

Q25

y = − 1
2x + 3 meets the x-axis where 0 = − 1

2x + 3, or x = 6. The bases of the cross sections have
length − 1

2x+ 3.

A(x) =
1

2
bh

=
1

2
(−1

2
x+ 3)(8)

= −2x+ 12

Volume =

∫ 6

0

−2x+ 12 dx

= −x2 + 12x
∣∣∣6
0

= −36 + 72

= 36
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Q27

We can place the triangle on the xy-plane, with a leg on the x-axis and vertices (0, 0), (4, 0), and (4, 3).
The diameters are the heights from the axis to the hypotenuse: y = 3x

4 . The radii are half that.

A(x) =
1

2
πr2

=
1

2
π

(
3x

8

)2

=
9πx2

128

Volume =

∫ 4

0

9πx2

128
dx

=
3πx3

128

∣∣∣∣4
0

=
192π

128

=
3π

2

Q29

a Solve for the intersections of y = x2 − 6x and y = 0.

x2 − 6x = 0

x(x− 6)− 0

x = 0 or x = 6

Our x bounds are from 0 to 6. To see which graph is on top, use a test point. I used x = 1.

12 − 6(1) = −5 < 0

So y = 0 is on top.

b A(x) is the area of a semicircle with diameter 6x− x2 This semicircle has radius 6x−x2

2 and area

1
2π
(

6x−x2

2

)2
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Q31

There are several options. Since the information we have is not evenly-spaced, the prisms can have
different heights. We compute our estimate by taking the area of each base times the height and
summing the volumes.

Volume = (10)(1) + (12)(4) + (11)(2) + (7)(3) + (2)(2) = 105
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Q1

Integrands that are products of two functions are good candidates, though there are some other functions
we can integrate by parts.

Q3

Each factor in the product is sorted into its category: I, L, A, T or E. The one in the category farther
to the left should be u, the one to the right should be dv.

Q5

This looks like something that could be the result of the product rule. f(x) could be sinx and g(x)
could be tan−1 x. The antiderivative is thus sinx tan−1 x+ c.

Q7

Choose u = lnx and dv = 1
x3 dx. We compute du = 1

x dx and v = − 1
2x2 .∫

lnx

x3
dx = − 1

2x2
lnx−

∫
− 1

2x2

1

x
dx

= − lnx

2x2
+

∫
1

2x3
dx

= − lnx

2x2
− 1

4x2
+ c

or = −2 lnx+ 1

4x2
+ c

Q9

Choose u = tan−1 x and dv = dx.∫
tan−1 x dx = x tan−1 x−

∫
x

1

1 + x2
dx

= x tan−1 x−
∫

1

2u
du substitute u = x2 + 1

= x tan−1 x
1

2
ln |u|+ c

= x tan−1 x
1

2
ln(x2 + 1) + c
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Q11

Choose u = sin−1 x and dv = dx. du = 1√
1−x2∫

sin−1 x dx = x sin−1 x−
∫

x
1√

1− x2
dx

= x sin−1 x+

∫
1

2
u−1/2 du substitute u = 1− x2

= x sin−1 x+ u1/2 + c

= x sin−1 x+
√
1− x2 + c

Q13

∫
x2 cos(x+ 2) dx = x2 sin(x+ 2)−

∫
2x sin(x+ 2) dx u = x2 dv = cos(x+ 2) dx

= x2 sin(x+ 2) + 2x cos(x+ 2)−
∫

2 cos(x+ 2) dx u = 2x dv = sin(x+ 2) dx

= x2 sin(x+ 2) + 2x cos(x+ 2)− 2 sin(x+ 2) + c

Q15

We will want dv = x−3 sin(x−2) dx, so that v = 1
2 cos(x

−2).∫
x−7 sin(x−2) dx

=
1

2
x−4 cos(x−2) +

∫
2x−5 cos(x−2) dx u = x−4 dv = x−3 sin(x−2) dx

=
1

2
x−4 cos(x−2)− x−2 sin(x−2)−

∫
2x−3 sin(x−2) dx u = 2x−2 dv = x−3 cos(x−2) dx

=
1

2
x−4 cos(x−2)− x−2 sin(x−2)− cos(x−2) + c
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Q17

∫
e3x sinx dx =

1

3
e3x sinx−

∫
1

3
e3x cosx dx u = sinx dv = e3x dx

=
1

3
e3x sinx−

∫
1

3
e3x cosx dx u =

1

3
cosx dv = e3x dx

=
1

3
e3x sinx− 1

9
e3x cosx−

∫
1

9
e3x sinx dx

10

9

∫
e3x sinx dx =

1

3
e3x sinx− 1

9
e3x cosx∫

e3x sinx dx =
3

10
e3x sinx− 1

10
e3x cosx+ c

Q19

Choose u = x2 and dv = xex
2

dx∫
x3ex

2

dx =
1

2
x2ex

2

−
∫

xex
2

dx

=
1

2
x2ex

2

− 1

2
ex

2

+ c

Q21

First we find the intersection points

xex = ex

x(ex − e) = 0

x = 0 or x = 1

For a test point x = 1
2 we have 1

2e
1/2 < 1

2e.

Area =

∫ 1

0

ex− xex dx

=

∫ 1

0

ex dx−
∫ 1

0

xex dx

=
ex2

2

∣∣∣∣1
0

− xex
∣∣∣1
0
+

∫
ex dx

=
ex2

2
− xex + ex

∣∣∣∣1
0

=
e

2
− e+ e− 1

=
e

2
− 1
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Q23

We will need the result that
∫
lnx dx = x lnx− x+ c.

A(x) = πr2

= π(lnx)2

Volume =

∫ 5

1

π(lnx)2 dx

= πx(lnx)2
∣∣∣5
1
−
∫ 5

1

πx
2 lnx

x
dx u = π(lnx)2 dv = 1 dx

= πx(lnx)2 − 2π(x lnx− x)
∣∣∣5
1

= π
(
5(ln 5)2 − 10 ln 5 + 10− 2

)
= π

(
5(ln 5)2 − 10 ln 5 + 8

)
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Q1

The approximated value minus the actual value

Q3

Midpoint converges most quickly, trapezoid’s error bound is always twice a large, left and right coverge
much more slowly.

Q5

The largest approximation is 2((−4)2+(−2)2+22+42) = 80. The smallest is 2((−2)2+02+02+22) =
16. The largest difference they can obtain is 80− 16 = 64.

Q7

∆x = 15/5 = 3. The left endpoints are 1, 4, 7, 10, and 13

L5 = ∆x(f(1) + f(4) + f(7) + f(10) + f(13))

= 3(13/2 + 43/2 + 73/2 + 103/2 + 133/2)

= 3(9 + 73/2 + 103/2 + 133/2)

Q9

∆x = 2/4 = 0.5. The left endpoints are 0, 0.5, 1 and 1.5

L4 = ∆x(f(0) + f(0.5) + f(1) + f(1.5))

= 0.5

(
0 +

e1/2

8
+ e+

27e3/2

8

)

Q11

f ′(x) = 1
3x

−2/3. This is a decreasing positive function on [1, 8] so the largest value occurs at x = 1.
We can use

S = f ′(1)

=
1

3

|EL| ≤
S(b− a)2

2n

≤
1
3 (8− 1)2

(2)(14)

≤ 7

12
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Q13

f ′(x) = 1
x ln 2 , which is a positive decreasing function on [2, 8]. The largest value occurs at x = 2.

S = f ′(2)

=
1

2 ln 2

|EL| ≤
S(b− a)2

2n

≤
1

2 ln 2 (8− 2)2

2n

Set
1

10000
≥ 9

n ln 2

n ≥ 90000

ln 2
n ≥ 129, 842.553

We need at least 129, 843 rectangles to guarantee that the error is less that 1
10000 .

Q15

L4 < L8 < M4 = M8 = actual value < R8 < R4

Q17

∆x = 16−1
3 , the endpoints of the subintervals are 1, 6, 11, and 16.

T3 =
1

2
∆x(f(1) + f(6) + f(6) + f(11) + f(11) + f(16))

=
1

2
(5)(0 + 30 + 30 + 110 + 110 + 240)

= 1300

Q19

∆x = 9−1
4 = 2, the midpoints are 2, 4, 6, and 8.

M4 = ∆x(f(2) + f(4) + f(6) + f(8))

= 2

(
cos
(π
3

)
+ cos

(
4π

3

)
+ cos (3π) + cos

(
16π

3

))
= 2

(
1

2
− 1

2
− 1− 1

2

)
= −3
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Q21

a ∆x = 15−3
2 = 6. The midpoints are 6 and 12.

M2 = ∆x(f(6) + f(12))

= (6)(11 + 13)

= 144

b ∆x = 18−0
3 = 6. The endpoints are 0, 6, 12 and 18.

T3 =
1

2
∆x(f(0) + f(6) + f(6) + f(12) + f(12) + f(18))

=
1

2
(6)(10 + 11 + 11 + 13 + 13 + 9)

= 201

Q23

The error bound on Rn requires a bound K on the second derivative.

f ′(x) = −3x−4

f ′′(x) = 12x−5

This is a decreasing function so it is largest at x = 3. We can use K = 12
35 . We can set the bound in

the midpoint remainder theorem to be less than 1
10000

1

10000
≥ K(b− a)3

24n2

1

10000
≥ 12(2)3

(35)(24)n2

n2 ≥ (10000)(12)(8)

(35)(24)

n ≥

√
(10000)(12)(8)

(35)(24)

We can simplify this, but the problem does not require us to. The resulting number is between 164 and
165 so in practice we could use any n ≥ 165.
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Q25

a ∆x = 12−0
3 = 4. The midpoints are 2, 6, and 10.

M3 = ∆x(f(2) + f(6) + f(10))

= 4(5 + 9 + 4)

= 72

b

|EM | ≤ K(b− a)3

24n2

≤
1
4 (12− 0)3

24(3)2

≤ 2

Q27

We can pick a function where the endpoints have higher values than the points in between them. A trig
function would work well. Here is f(x) = cos(πx) for 0 ≤ x ≤ 8.
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Q29

a ∆x = 8−2
3 = 2. The endpoints are 2, 4, 6 and 8.

T3 =
1

2
∆x(f(2) + f(4) + f(4) + f(6) + f(6) + f(8))

=
1

2
(2)(8 + 64 + 64 + 216 + 216 + 512)

= 1080

b f ′′(x) = 6x, which is an increasing, positive function. Its greatest value is at x = 8.

K = 6(8)

= 48

|EM | = 48(8− 2)3

24(3)2

= 48

c The function is concave up on [2, 8]. Thus the trapezoids will be above the graph. T3 overestimates

the actual value, meaning our error is positive.

Q31

First, notice Ln +Rn = 2Tn, so Un =
Mn + 3Tn

4
. However, we know that Mn and Tn give the exact

value of the integral or a linear function. Denote that value as V . We can compute

Un =
Mn + 3Tn

4
=

V + 3V

4
= V

Un also gives the exact value of the integral.
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Q1

An integral of an unbounded region, either because the x-values are unbounded or the function is
unbounded.

Q3

Improper integrals are limits. If the limit exists, the integral converges. If it does not exist, the integral
diverges.

Q5

1, 3, 4

Q7

a lim
x→∞

x2 + 3x+ 5

ex
= 0

b lim
x→−∞

x2 + 3x+ 5

ex
= ∞

Q9

x2

x = x except at x = 0. Thus they have equal integrals.∫ 3

0

x2

x
dx =

∫ 3

0

x dx

=
x2

2

∣∣∣∣3
0

=
9

2
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Q11

∫ 8

1

g(x) dx =

∫ 4

1

g(x) dx+

∫ 6

4

g(x) dx+

∫ 8

6

g(x) dx

=

∫ 4

1

√
x dx+

∫ 6

4

3 dx+

∫ 8

6

1

x2
dx

=
2x3/2

3

∣∣∣∣4
1

+ 3x
∣∣∣6
4
+ − 1

x

∣∣∣∣8
6

=
16

3
− 2

3
+ 18− 12− 1

8
+

1

6

=
257

24
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Q13

a

b 1
x has a vertical asymptote at x = 0. We’ll compute the limits from each side. We will use

different variables for each limit to avoid confusion, but this is not strictly necessary.

lim
s→0−

∫ s

−2

1

x
dx+ lim

t→0+

∫ 2

t

1

x
dx

c We will examine the first limit.

lim
s→0−

∫ s

−2

1

x
dx = lim

s→0−
ln |x|

∣∣∣∣s
−2

= lim
s→0−

ln | − s| − ln 2 because s < 0, we know |s| = −s

As x → 0, lnx goes to −∞, so this limit does not exist. We do not need to examine the second
limit. We already know this integral diverges.
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Q15

This function has vertical asymptotes at x = 0 and x = 4. We can break up the integral at x = 1
(which has a nice square root) and write each half as a limit.∫ 1

0

1√
x
+

1√
4− x

dx = lim
t→0+

∫ 1

t

1√
x
+

1√
4− x

dx

= lim
t→0+

2
√
x− 2

√
4− x

∣∣∣1
t

= lim
t→0+

2
√
1− 2

√
3− 2

√
t+ 2

√
4− t

= 2− 2
√
3 + 4∫ 4

1

1√
x
+

1√
4− x

dx = lim
t→4−

∫ t

1

1√
x
+

1√
4− x

dx

= lim
t→4−

2
√
x− 2

√
4− x

∣∣∣t
1

= lim
t→4−

2
√
t− 2

√
4− t− 2

√
1 + 2

√
3

= 4− 2 + 2
√
3∫ 4

0

1√
x
+

1√
4− x

dx =

∫ 1

0

1√
x
+

1√
4− x

dx+

∫ 4

1

1√
x
+

1√
4− x

dx

= 2− 2
√
3 + 4 + 4− 2 + 2

√
3

= 4

Q17

a ∆x = 16−4
3 = 4

b ∆x = b−a
n

c It doesn’t matter how big n is. The length of the interval [a,∞) is infinite. No set of n finite

rectangles can cover it.
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Q19

lim
t→−∞

∫ 0

t

ex dx = lim
t→−∞

ex
∣∣∣∣0
t

= lim
t→−∞

e0 − et

= 1

This limit exists, so

∫ 0

−∞
ex dx = 1.

Q21

We used integration by parts to show the antiderivative of lnx is x lnx− x+ c.∫ 1

0

lnx dx = lim
t→0+

∫ 1

t

lnx dx

= lim
t→0+

x lnx− x
∣∣∣1
t

= lim
t→0+

0− 1− t ln t+ t

= −1− lim
t→0+

t ln t

= −1− lim
t→0+

ln t
1
t

∞
∞

form

= −1− lim
t→0+

1
t

− 1
t2

l’Hôpital’s rule

= −1− lim
t→0+

−t

= −1
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Q23

We break this integral into two limits. For both limits, we’ll need an antiderivative of xe−x2

.∫
xe−x2

dx

= −
∫

1

2
eu du

= −1

2
eu + c

= −1

2
e−x2

+ c

u = −x2

du = −2x dx

u-substitution

We choose a = 0 as the break point. Both limits must converge for the integral to converge.

lim
s→−∞

∫ 0

s

xe−x2

dx lim
t→∞

∫ t

0

xe−x2

dx

= lim
s→−∞

−1

2
e−x2

∣∣∣∣0
s

= lim
t→∞

−1

2
e−x2

∣∣∣∣t
0

= lim
s→−∞

−1

2
+

1

2
e−s2 = lim

t→∞
−1

2
e−t2 +

1

2

= −1

2
=

1

2

Both limits converge. This means that

∫ ∞

−∞
xe−x2

dx converges. Its value is their sum: − 1
2 + 1

2 = 0.

Q25

We choose x = −2 as the break point and compute the limits.

lim
s→−∞

∫ −2

s

f(x) dx lim
t→∞

∫ t

−2

f(x) dx

= lim
s→−∞

∫ −2

s

1

x3
dx = lim

t→∞

∫ t

−2

1

(x+ 4)2
dx

= lim
s→−∞

(
− 1

2x2

) ∣∣∣∣−2

s

= lim
t→∞

(
− 1

x+ 4

) ∣∣∣∣t
−2

= lim
s→−∞

−1

8
+

1

2s2
= lim

t→∞
− 1

t+ 4
+

1

2

= −1

8
=

1

2

So

∫ ∞

−∞
f(x) dx = −1

8
+

1

2
=

3

8
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Q27

a Each branch of the function is continuous. To check for continuity at x = 8 we will compute the

limit.

lim
x→8−

f(x) = lim
x→8−

3
√
x lim

x→8+
f(x) = lim

x→8+
10− x

=
3
√
8 = 10− 8

= 2 = 2

So limx→8 f(x) = 2. This is equal to f(8) = 10 − 8 = 2. We conclude that f(x) is continuous
at x = 8. Since we already knew it was continuous everywhere else, it is continuous on all real
numbers.

b First we should solve for where each branch is above and below the x-axis.

3
√
x ≥ 0 10− x ≥ 0

x ≥ 0 10 ≥ x

The enclosed region is between x = 0 and x = 10. f(x) > 0 on this region.

Area =

∫ 10

0

f(x) dx

=

∫ 8

0

f(x) dx+

∫ 10

8

f(x) dx

=

∫ 8

0

3
√
x dx+

∫ 10

8

10− x dx

=
3x4/3

4

∣∣∣∣8
0

+ 10x− x2

2

∣∣∣∣10
8

=
3(16)

4
− 0 + 100− 100

2
− 80 +

64

2
= 14
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Q29

a

Area =

∫ ∞

1

1

x
dx

= lim
t→∞

∫ t

1

1

x
dx

= lim
t→∞

lnx
∣∣∣t
1

= lim
t→∞

ln t

= ∞

This interval diverges.

b

A(x) = πr2

=
π

x2

Volume =

∫ ∞

1

A(x) dx

= lim
t→∞

∫ t

1

π

x2
dx

= lim
t→∞

−π

x

∣∣∣t
1

= lim
t→∞

−π

t
+ π

= π

c I find it pretty annoying. Your milage may vary.
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Q1

A continuous random variable can take on values on an interval, or union of intervals. A discrete random
variable has a finite number of possible outcomes (actually they can have infinitely many, but they have
to be spaced out).

Q3

It must be non-negative and it must integrate to 1.

Q5

Infinitely many

Q7

P (X = 13) = 0. No outcome of a continuous random variable has positive probability.

Q9

The probability that T is less than or equal to 5.

Q11

4 ≤ U2 ≤ 9 solves to −3 ≤ U ≤ −2 and 2 ≤ U ≤ 3.

P (4 ≤ U2 ≤ 9) =

∫ −2

−3

fU (u) du+

∫ 3

2

fU (u) du

Q13

P (2 ≤ W ≤ 9) =

∫ 9

2

fW (w) dw

=

∫ 6

2

fW (w) dw +

∫ 9

6

fW (w) dw

=

∫ 6

2

36− w2

144
dw +

∫ 9

6

0 dw

=

∫ 6

2

1

4
− w2

144
dw

=

(
w

4
− w3

432

) ∣∣∣∣6
2

=
6

4
− 216

432
− 2

4
+

8

432

=
14

27
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Q15

The density function fU (u) is
1

7.5−4 = 2
7 over [4, 7.5] and 0 elsewhere.

P (U ≤ 5.5) =

∫ 5.5

−∞
fU (u) du

=

∫ 5.5

4

2

7
du

=
2u

7

∣∣∣∣5.5
4

=
2(5.5− 4)

7

=
3

7

Q17

We will set the probaility equal to 2
7 and solve for λ

P (W ≥ 1) =
2

7∫ ∞

1

λe−λw dw =
2

7

lim
t→∞

∫ t

1

λe−λw dw =
2

7

lim
t→∞

−e−λw
∣∣∣t
1
=
2

7

lim
t→∞

−e−λt + e−λ =
2

7

e−λ =
2

7

−λ = ln
2

7

λ = ln
7

2
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Solutions to Odd-Numbered Problems

Q19

a In order for f(x) to be positive, we need b > 0. To find the exact value we set

∫ ∞

−∞
f(x) dx = 1∫ ∞

2

bx−3 dx = 1

lim
t→∞

∫ t

2

bx−3 dx = 1

lim
t→∞

−bx−2

2

∣∣∣∣t
2

= 1

lim
t→∞

− b

2t2
+

b

8
= 1

b

8
= 1

b = 8

b

E[Z] =

∫ ∞

−∞
xf(x) dx

=

∫ ∞

2

x8x−3 dx

= lim
t→∞

∫ t

2

8x−2 dx

= lim
t→∞

−8x−1
∣∣∣t
2

= lim
t→∞

−8

t
+

8

2

= 4
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Q21

a You would need to check that fX(x) ≥ 0 for all x, and you would need to check that
∫∞
−∞ fX(x) dx =

1

b

E[X] =

∫ ∞

−∞
xfX(x) dx

=

∫ 4

0

x
3
√
x

16
dx because fX(x) = 0 outside [0, 4]

=

∫ 4

0

3

16
x3/2 dx

=
3

40
x5/2

∣∣∣∣4
0

=
3

40
45/2 − 0

=
12

5

Q23

The expected value of a uniform random variable is the midpoint of the interval.
5.2 + 9.4

2
= 7.3.

Q25

We can’t divide by 0, but we also can’t define a uniform random variable on an interval of length 0.
There is no function that we can integrate over a single point and get 1.

Q27

E[X] = 1
p , while E[Y ] = 1

2p , so E[Y ] is half as large as E[X].
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Q29

a λ = 3 so

fX(x) =

{
3e−3x if x ≥ 0

0 if x < 0

b E[X] =
1

λ
=

1

3

c

P (X > 1) =

∫ ∞

1

3e−3x dx

= lim
t→∞

∫ t

1

3e−3x dx

= lim
t→∞

−e−3x
∣∣∣t
1

= lim
t→∞

−e3t + e−3

= e−3

Q31

Let m be the median. m is the solution to P (X ≥ m) = 0.5

P (X ≥ m) = 0.5∫ ∞

m

fX(x) dx = 0.5∫ b

m

1

b− a
dx+

∫ ∞

b

0 dx = 0.5∫ b

m

1

b− a
dx = 0.5

1

b− a
x
∣∣∣b
m

= 0.5

b

b− a
− m

b− a
= 0.5

b−m = 0.5(b− a)

a+ b

2
= m
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Q33

Let m be the median. m is the solution to P (T ≥ m) = 0.5

P (T ≥ m) = 0.5∫ ∞

m

fT (t) dt = 0.5∫ 1

m

2
√
t

3
dt+

∫ ∞

1

0 dx = 0.5∫ 1

m

2
√
t

3
dt = 0.5

t3/2
∣∣∣1
m

= 0.5

1−m3/2 = 0.5

1

2
= m3/2

1

22/3
= m

Q35

[3, 4] should be half of the interval [a, b]. There are a few ways to accomplish this.

If [3, 4] covers the right half of [a, b], then 3 is the midpoint of [a, b] so 3 < b ≤ 4 and a = 6− b.

If [3, 4] covers the left half of [a, b], then 4 is the midpoint of [a, b] so 3 ≤ a < 4 and b = 8− a.

If [3, 4] covers the middle of [a, b], then [a, b] has length 2. 2 ≤ a ≤ 3 and b = a+ 2.

Q37

a

∫ ∞

−∞
g(x) dx =

∫ 0

−∞
g(x) dx+

∫ ∞

0

g(x) dx

1 =

∫ 0

−∞
g(x) dx+ 0

1 =

∫ 0

−∞
g(x) dx

In words, since X cannot be greater than 0, P (X ≤ 0) = 1.

b E[X] =

∫ ∞

−∞
xg(x) dx. Since g(x) ≥ 0 when x ≤ 0 and g(x) = 0 when x > 0, the integrand of

this is either 0 or negative for all x. Thus E[X] < 0.
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Q1

A function of a random variable is itself a random variable.

Q3

We assume that the random variable is uniform over the specified interval.

Q5

We could let Y = 60X.

Q7

Dominic made $P where P = 200V − 12000.

Q9

E[Y ] =

∫ ∞

−∞
cxfX(x) dx. By the constant multiple rule, we can factor out the c and get c times the

formula for E[X].

Q11

Y ranges from 20 to 50. For a and b in this range, P (a < Y < b) = P
(

a
10 < x < b

10

)
=

1
10 (b−a)

3 = b−a
30 .

This indicates that Y is a uniform random variable. Its density function is

fY (y) =

{
1
30 if 20 ≤ y ≤ 50

0 otherwise
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Q13

E

[
1

W

]
=

∫ ∞

−∞

1

w
fW (w) dw

=

∫ 0

−∞

1

w
0 dw +

∫ 6

0

1

w

36− w2

144
dw +

∫ ∞

6

1

w
0 dw

=

∫ 6

0

1

4w
− w

144
dw

= lim
t→0+

∫ 6

t

1

4w
− w

144
dw vertical asymptote at x = 0

= lim
t→0+

lnw

4
− w2

288

∣∣∣∣6
t

= lim
t→0+

ln t

4
− t2

288
− ln 6

4
+

36

288

= −∞

This integral diverges, so the expected value of 1/W is undefined.

Q15

E[X2] =

∫ ∞

−∞
x2fX(x) dx

=

∫ 0

−∞
0 dx+

∫ ∞

0

x2λe−λx dx

= lim
t→∞

∫ t

0

x2λe−λx dx

= lim
t→∞

−x2e−λx
∣∣∣t
0
+

∫ t

0

2xe−λx dx u = x2 dv = λe−λx dx

= lim
t→∞

−x2e−λx
∣∣∣t
0
− 2xe−λx

λ

∣∣∣∣t
0

+

∫ t

0

2

λ
e−λx dx u = 2x dv = e−λx dx

= lim
t→∞

−x2e−λx − 2xe−λx

λ
− 2e−λx

λ2

∣∣∣∣t
0

= lim
t→∞

− t2

eλt
− 2t

λeλt
− 2

λ2eλt
+ 0 + 0 +

2

λ2

The ratios with t are of indeterminate form. We can use l’Hôpital’s rule to show that their limits are 0.

Thus E[X2] =
2

λ2
.
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Q17

a This means that
∫ b

a
f(x) dx = 0. Thus the signed area under y = f(x) from a to b is 0. In other

words, the area above the x-axis is equal to the area below the x-axis.

b In this case, there is no area below the x-axis. Thus there is also no area above the x-axis. The

function has value 0 from x = a to x = b.

Q19

fave =
1

3− 0

∫ 3

0

x2 dx

=
x3

9

∣∣∣∣3
0

=
27

9
− 0

= 3

Q21

fave =
1

2− 0

∫ 2

0

x2e3x dx

=
1

2

(
x2e3x

3

∣∣∣∣2
0

−
∫ 2

0

2xe3x

3
dx

)
by parts u = x2, dv = e3xdx

=
1

2

(
x2e3x

3

∣∣∣∣2
0

− 2xe3x

9

∣∣∣∣2
0

+

∫ 2

0

2e3x

9
dx

)
by parts u = 2x, dv = e3x/3dx

=
1

2

(
x2e3x

3
− 2xe3x

9
+

2e3x

27

)∣∣∣∣2
0

=
1

2

(
4e6

3
− 4e6

9
+

2e6

27
− 0 + 0− 2e0

27

)
=

13e6

27
− 1

27
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Q23

We already know E[X] = 1
λ from an earlier example and E[X2] = 2

λ2 from a previous exercise. We’ll
look for opportunities to apply this as we evaluate the variance formula.

σ2 =

∫ ∞

−∞

(
x− 1

λ

)2

fX(x) dx

=

∫ ∞

0

(
x− 1

λ

)2

λe−λx dx

=

∫ ∞

0

(
x2 − 2x

λ
+

1

λ2

)
λe−λx dx

=

∫ ∞

0

x2λe−λx dx−
∫ ∞

0

2x

λ
λe−λx dx+

∫ ∞

0

1

λ2
λe−λx dx

=

∫ ∞

0

x2λe−λx dx− 2

λ

∫ ∞

0

xλe−λx dx+
1

λ2

∫ ∞

0

λe−λx dx

= E[X2]− 2

λ
E[X] +

1

λ2
(1)

=
2

λ2
− 2

λ

1

λ
+

1

λ2

=
1

λ2
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Q25

First we compute E[W ]

E[W ] =

∫ ∞

−∞
wfW (w) dw

=

∫ 0

−∞
wfW (w) dw +

∫ 6

0

wfW (w) dw +

∫ ∞

6

wfW (w) dw

=

∫ 6

0

w
36− w2

144
dw

=

∫ 6

0

w

4
− w3

144
dw

=
w2

8
− w4

576

∣∣∣∣6
0

=
36

8
− 1296

576

=
9

4

Next we can compute the variance.

σ2 =

∫ ∞

−∞

(
w − 9

4

)2

fW (w) dw

=

∫ 0

−∞

(
w − 9

4

)2

fW (w) dw +

∫ 6

0

(
w − 9

4

)2

fW (w) dw +

∫ ∞

6

(
w − 9

4

)2

fW (w) dw

=

∫ 6

0

(
w − 9

4

)
36− w2

144
dw

=

∫ 6

0

(
w2 − 9w

2
+

81

16

)2
36− w2

144
dw

=

∫ 6

0

− w4

144
+

w3

32
+

55w2

256
− 9w

8
+

81

64
dw

= − w5

720
+

w4

128
+

552

768
− 9x2

16
+

81w

64

∣∣∣∣6
0

=
171

80
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Q27

If X > a, then Y > ca. These events have the same probability. We can convert that equivalence into
a statement about integrals.

P (a ≤ X ≤ b) = P (ca ≤ Y ≤ cb)∫ b

a

fX(x) dx =

∫ cb

ca

fY (y) dy

The change in bounds could be achieved by a u-substituion. If we apply this substitution to the integrand,
we will know that the two integrals area equal.

ucx

du = c dx

1

c
du = dx

P (a ≤ x ≤ b) = intbafX(x) dx =

∫ cb

ca

1

c
fX(u) du

So 1
cfX(u) = 1

cfX(cx) is a function we can integrate from ca to cb to obtain the probability that
a ≤ X ≤ b and ca ≤ Y ≤ cb. Thus if we change the name of the variable, we get a density function
for Y :

fY (y) =
1

c
fX(cy)

Q29

We’ll begin with the formula we have and derive E[X2]− E[X]2

σ2 =

∫ ∞

−∞
(x− E[X])2fX(x) dx

=

∫ ∞

−∞
(x2 − 2xE[X] + (E[X])2)fX(x) dx

=

∫ ∞

−∞
x2fX(x) dx−

∫ ∞

−∞
2xE[X]fX(x) dx+

∫ ∞

−∞
(E[X])2fX(x) dx sum rule

=

∫ ∞

−∞
x2fX(x) dx− 2E[X]

∫ ∞

−∞
xfX(x) dx+ (E[X])2

∫ ∞

−∞
fX(x) dx constant multiple rule

= E[X2]− 2E[X]E[X] + (E[X])2(1)

= E[X2]− 2(E[X])2 + (E[X])2

= E[X2]− (E[X])2
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Q1

They approximate the values of the original function near the center, but they are easier to evaluate.

Q3

We would need to be able to evaluate lnx and its derivatives 1
x , −

1
x2 etc at the center. The only place

where all of these are rational numbers is at x = 1.

Q5

a 3
√
6 = f(6).

b I’d expect L(6) to overestimate f(6). f(x) is concave down over positive values of x, so it curves

below its tangent lines. This means the values (heights) of the tangent line are above the values
of f .

Q7

Yes, T1(x) = f(a) + f ′(a)(x− a) = L(x).

Q9

The coefficient of the (x− a) term is the first derivative. It should be negative.
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Q11

a T8(x) requires 8 derivatives. Fortunately f(x) = ex has repetitive derivatives.

f(x) = ex f(0) = 1

f ′(x) = ex f ′(0) = 1

f ′′(x) = ex f ′′(0) = 1

...
...

We can plug these into the summation formula:

T8(x) =

8∑
k=0

f (k)(0)

k!
(x− 0)k

=

8∑
k=0

1

k!
xk

=
1

0!
(1) +

1

1!
x+

1

2!
x2 +

1

3!
x3 +

1

4!
x4 +

1

5!
x5 +

1

6!
x6 +

1

7!
x7 +

1

8!
x8

b To approximate e, we approximate f(1) = e1 by evaluating T8(1).

T8(1) =
1

0!
(1) +

1

1!
1 +

1

2!
12 +

1

3!
13 +

1

4!
14 ++

1

5!
15 +

1

6!
16 +

1

7!
17 +

1

8!
18

=
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
+

1

7!
+

1

8!

There is a bit more arithmetic to do here. It could be done by hand in a reasonable amount of
time.

c Since f (k)(0) = 1 for all k, we can write

Tn(x) =

n∑
k=0

1

k!
xk

Q13

The derivatives follow the pattern cosx, − sinx, − cosx, sinx . . .. At x = π these are−1, 0, 1, 0,−1, . . ..
The Taylor polynomial is

T10(x) = −1 +
1

2
(x− π)2 − 1

4!
(x− π)4 +

1

6!
(x− π)6 − 1

8!
(x− π)8 +

1

10!
(x− π)10
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Q15

a
4∑

k=0

15(3)k

b
6∑

k=0

24− 5k

c
7∑

k=2

1

2k2

Q17

We compute the first few derivatives to see if we can find an expression for f (k)(x)

f(x) = ln(x) f(1) = 0

f ′(x) = x−1 f ′(1) = 1

f ′′(x) = −x−2 f ′′(1) = −1

f ′′′(x) = 2x−3 f ′′′(1) = 2

f (4)(x) = −6x−4 f (4)(1) = −6

f (5)(x) = 24x−5 f (5)(1) = 24

These answers look like factorials, but they’re shifted by 1. They’re also alternating signs, which we can
model with (−1)k, except that the even powers are negative. The power of x is −k. One way to model
this is f (k)(x) = (−1)k+1(k − 1)!x−k. Plugging in x = 1 gives f (k)(1) = (−1)k+1(k − 1)! except at
k = 0. For that case we compute ln 1 = 0. This means we can leave it out of the summation. The
form for the remaining terms allows for some nice simplification.

T53(x) =

53∑
k=1

(−1)k+1(k − 1)!

k!
(x− 1)k

=

53∑
k=1

(−1)k+1

k
(x− 1)k
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Q19

We compute the first few derivatives to find a pattern.

f(x) = cosx f(0) = 1

f ′(x) = − sinx f ′(0) = 0

f ′′(x) = − cosx f ′′(0) = −1

f ′′′(x) = sinx f ′′′(0) = 0

f (4)(x) = cosx f (4)(0) = 1

f (5)(x) = − sinx f (5)(0) = 0

The coefficient is only nonzero for even order derivatives, so we can use x2k to produce only even terms.
To create a degree 100 polynomial, k will go to 50. Since they alternate, we can use (−1)k as the
derivative for each.

T100(x) =

50∑
k=0

(−1)k

(2k)!
x2k

Q21

In some cases the Taylor function is exactly equal to the function. For example a linear function is
exactly equal to its Taylor polynomials of degree ≥ 1. In this case the rror is 0. More generally, any
method with a minimum error is unlikely to be much use, as we want to be able to make our errors
small, preferably arbitrarily small.

Q23

We’ll use Taylor’s inequality. |R4(5)| ≤
∣∣M
5! (5− 1)5

∣∣. M is a bound on f (5)(x) on [1, 5].

f (5)(x) =
d

dx
f (4)(x) = 3x2ex

3

This derivative is increasing (at least where x is positive), so its largest value occurs at x = 5.

M = f (5)(5) = (3)(25)e125

Putting this into Taylor’s inequality gives us |R4(5)| ≤
∣∣∣ 75e1255! (4)5

∣∣∣. This tells us that the difference

between T4(5) and f(5) is no larger than 75e125

5! (4)5.
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Q25

a The bound on R3(x) produced by Taylor’s Inequality is dependent on f (4)(x).

b f (4)(x) = − 15
16x

−7/2. We cannot put a bound on this, because lim
x→0+

−15

16
x−7/2 = −∞.

c f (4)(x) decreases in absolute value as x increases. Thus on the interval [4, 5], it has largest

absolute value at x = 4. f (4)(4) = − 15
164

−7/2 = − 15
2048 . We can write the bound

|f (4)(x)| ≤
∣∣∣∣ 15

2048

∣∣∣∣
d

|R3(5)| ≤
∣∣∣∣ 15
2048

4!
(5− 4)4

∣∣∣∣
≤ 5

16384

Q27

a All the derivatives of ex are ex and have value 1 at x = 0.

T5(x) =

5∑
k=0

1

k!
xk

b

1√
e
= e−1/2 ≈ T5

(
−1

2

)
=

5∑
k=0

1

2kk!

c Taylor’s Inequality requires a bound M of |f (6)(x)| over
[
− 1

2 , 0
]
. f (6)(x) = ex, which is positive

and increasing. Its largest value over
[
− 1

2 , 0
]
is at x = 0. We can use M = |e0| = 1.∣∣∣∣R5

(
−1

2

)∣∣∣∣ ≤
∣∣∣∣∣M6!

(
−1

2
− 0

)6
∣∣∣∣∣

≤ 1

266!
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Q29

a We compute the first 4 derivatives of f at 0:

f(x) = cos 3x f(0) = 1

f ′(x) = −3 sin 3x f ′(0) = 0

f ′′(x) = −9 cos 3x f ′′(0) = −9

f ′′′(x) = 27 sin 3x f ′′′(0) = 0

f (4)(x) = 81 cos 3x f (4)(0) = 81

T4(x) =

4∑
k=0

f (k)(0)

k!
xk

= 1− 9

2
x2 +

81

24
x4

b

cos
3π

4
= f

(π
4

)
≈ T4

(π
4

)
= 1− 9

2

(π
4

)2
+

81

24

(π
4

)4
c Taylor’s inequality requires a bound on

∣∣f (5)(x)
∣∣ over [0, π

4

]
. f (5)(x) = −243 sin 3x, which is not

stritcly increasing or decreasing on
[
0, π

4

]
. Instead we can use the fact that −0 ≤ sinx ≤ 1 and

use M = |(−243)(1)| = 243. ∣∣∣R5

(π
4

)∣∣∣ ≤ ∣∣∣∣M5! (π4 − 0
)5∣∣∣∣

≤ 243

120

(π
4

)5
≤ 81π5

40960
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Q31

a We compute the first 3 derivatives of f at x = 2:

f(x) = x3 − 3x+ 5 f(2) = 7

f ′(x) = 3x2 − 3 f ′(2) = 9

f ′′(x) = 6x f ′′(2) = 12

f ′′′(x) = 6 f ′′′(2) = 6

T3(x) =

3∑
k=0

f (k)(2)

k!
(x− 2)k

= 7 + 9(x− 2) + 6(x− 2)2 + (x− 2)3

b Taylor’s inequality bounds |R3(x)| using a bound on the fourth derivative of f . The fourth

derivative of f is 0 at all x. Thus |R3(x)| ≤ 0, meaning R3(x) = 0.

c Since the error is always 0 for all x, this suggests that f(x) = T3(x) for all x.

d

T3(x) = 7 + 9(x− 2) + 6(x− 2)2 + (x− 2)3

= 7 + 9x− 18 + 6x2 − 24x+ 24 + x3 − 6x2 + 12x− 8

= x3 − 3x+ 5

= f(x)

e If f(x) is a degree n polynomial, then the nth (or higher) Taylor polynomial of f(x) is equal to f(x).

We can verify this because |Rn(x)| ≤
∣∣∣ M
(n+1)! (x− a)n+1

∣∣∣, but M is a bound on f (n+1)(x) = 0.

This tells us that Rn(x) = 0 for all x.
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Q1

The index for a sqeuence only takes integer values, we typically use x for real numbers.

Q3

When an = f(n) for all integers n (perhaps ignoring some number of initial terms), and limx→∞ f(x)
exists.

Q5

There are multiple ways to express these, especially since the problem does not specifiy what value of n
to start with. The following solutions all begin with n = 1.

a an = n2 + 1 or {n2 + 1}∞n=1

b an = −3
(−2)n or

{
−3

(−2)n

}∞

n=1

c an = 1
n(n+1) or

{
1

n(n+1)

}∞

n=1

Q7

The distance between sinn
n2 and 0 is less than 1

n2 which we can make as small as we want by choosing
a large n.

Q9

No. It could be increasing, but slower and slower so that it never exceeds a certain number. For instance
n−1
n is increasing, but all the terms are less than 1.

Q11

a f(x) = 2x.

b No, it goes to ∞.

c No. The theorem requires that limx→∞ f(x) converges to L.

d Yes. Since each term of 2n is twice the term before it, 2n eventually grows much larger than any

finite number, so its limit cannot exist.
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Q13

n dominates log n, so this limits to 0. We could use l’Hôpital’s rule instead.

Q15

This is a ratio of polynomials. They have the same degree, so the limit is the ratio of their leading

coefficients. lim
n→∞

n3 + 3

4n3 − 9
=

1

4
.

Q17

en dominates
√
n so this limit is ∞. We could use l’Hôpital’s rule instead.

Q19

n! dominates 5n, so lim
n→∞

n!

5n
= ∞.

Q21

Each term in an = n! is n times as large as the last. Each term in bn = nn is nn

(n−1)n−1 =
(

n
n−1

)n−1

n

times as large. This suggests nn grows faster than n!.

Q23

Only the limit of g(x) is relevent. When computing a limit we can ignore any finite number of terms.
In this case specifically, ignoring the firt 342 terms shows that f(x) has no bearing on the limit of the
sequence.
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Q1

A sequence is an ordered list of nmumbers. A series is a sum of a list of numbers.

Q3

A geometric series has a constant ratio between consecutive terms. If this ratio r has absolute value
less than 1, the sum is a

1−r .

Q5

a kp becomes a factor of (k+1)p

kp , which limits to 1.

b ck becomes a factor of ck+1

ck
= c. The ratio test takes an absolute value so this factor contributes

c.

c k! becomes a factor of (k+1)!
k! = k + 1. This limits to ∞ (unless something cancels it out).

Q7

a e

b 2
3
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Q9

a 1
2 ,

1
6 ,

1
12 ,

1
20

b 1
2 ,

2
3 ,

3
4 ,

4
5

c lim
n→∞

n

n+ 1
= 1

d Notice that 1
k(k+1) =

1
k − 1

k+1 . Thus we have

sn =
1

2
+

1

6
+

1

12
+ · · ·+ 1

n(n+ 1)

=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1

=
n

n+ 1

This is called a telescoping series because when we write each term as a difference, the com-
ponents cancel and the expression collapses into part of the first term minus part of the last
term.

Q11

The sums are

− 1 = −1

− 1 + 1 = 0

− 1 + 1− 1 = −1

− 1 + 1− 1 + 1 = 0

The sequence of partial sums looks like it will continue to oscillate between −1 and 0, meaning the limit
does not exist. This series diverges.

Q13

By our argument s2n > 1+ n
2 so if we set 20 = 1+ n

2 and solve, we get n = 38. That means s238 > 20.

Q15

A geometric series has a common ratio between terms. The ratios between these terms are 1
2 ,

2
3 ,

3
4 ,

which are not the same. This is not a geometric series.
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Q17

The common ratio r =
7.5

5
= 1.5. The next term is 7.5 ∗ 1.5 = 11.25.

Q19

a = 5 and r = 0.3. |r| < 1, so
∞∑
k=0

5(0.3)k =
5

1− 0.3
=

50

7
.

Q21

a =
15

125
=

3

25
. r = 1

5 . Since |r| < 1,

∞∑
j=3

15

5j
=

3
25

1− 1
5

=
3
25
4
5

=
3

20

Q23

Our first term (when k = 4) is a =
81

(16)(18)
=

9

64
. r = 3

2 . Since |r| > 1, this series diverges.

Q25

The common ratio is 3
z . For convergence we need ∣∣∣∣3z

∣∣∣∣ < 1

−1 <
3

z
< 1

z < −3 or z > 3
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Q27

sn = a1 + a2 + a3 + · · ·+ ak

≥ 1

100
+

1

100
+

1

100
+ · · ·+ 1

100

≥ n

100

Thus sn > n
100 .

Q29

lim
k→∞

1

k3
= 0, so the divergence test doesn’t tell us whether this diverges or converges.

Q31

lim
k→∞

ln k = ∞, so the divergence test tells us that this series diverges.

Q33

Yes. If L > 1 then the terms of the series are growing in magnitude. They either diverge or go to ±∞.
Assuming we can compute lim

n→∞
an at all, its value will not be 0.

Q35

First we compute the ratio, and then we take a limit.∣∣∣∣ak+1

ak

∣∣∣∣ =
∣∣∣∣∣
(k+1)!
4k+1

k!
4k

∣∣∣∣∣
=

∣∣∣∣ (k + 1)!4k

k!4k+1

∣∣∣∣
=

∣∣∣∣k + 1

4

∣∣∣∣ (cancel the matching factors)

=
k + 1

4
(since k + 1 > 0)

lim
k→∞

k + 1

4
= ∞

The limit of the ratios is infinite, so by the ratio test, the series diverges.
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Q37

∣∣∣∣ak+1

ak

∣∣∣∣ =
∣∣∣∣∣∣

(−1)k

(k+1)2

(−1)k−1

k2

∣∣∣∣∣∣
=

∣∣∣∣ (−1)k(k2 + 2k + 1)

(−1)k−1k2

∣∣∣∣
=

∣∣∣∣−(k2 + 2k + 1)

k2

∣∣∣∣ (cancel the factors of − 1)

=
(k2 + 2k + 1)

k2
(apply the absolute value)

lim
k→∞

(k2 + 2k + 1)

k2
= 1

The limit of the ratios is 1. The ratio test is indeterminate.

Q39

∣∣∣∣ak+1

ak

∣∣∣∣ =
∣∣∣∣∣
(k+1)2

4k+1

k2

4k

∣∣∣∣∣
=

∣∣∣∣ (k + 1)24k

k24k+1

∣∣∣∣
=

∣∣∣∣k2 + 2k + 1

4k2

∣∣∣∣ (cancel the factors of 4)

=
k2 + 2k + 1

4k2
(since the fraction is positive)

lim
k→∞

k2 + 2k + 1

4k2
=

1

4

The limit
1

4
is less than 1. By the ratio test, this series converges.

Q41

∣∣∣∣ak+1

ak

∣∣∣∣ =
∣∣∣∣∣∣

√
k+2

(k+1)2
√
k+1
k2

∣∣∣∣∣∣
=

∣∣∣∣ k2
√
k + 2

(k + 1)2
√
k + 1

∣∣∣∣
=

k2

k2 + 2k + 1

√
k + 2

k + 1

lim
k→∞

k2

k2 + 2k + 1

√
k + 2

k + 1
= 1

√
1 = 1

Since the limit is 1, the ratio test is inconclusive.
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Q43

Apply the divergence test. lim
k→∞

k + 1

k
= 1, which is not 0. Thus the series diverges.

Q45

We apply the divergence test first. By dominance, limk→∞
kek

4k+1 = ∞. Since this is not 0, we know the
series diverges.

Q47

In both cases, we cannot directly compute the value using normal methods. However, we can compute
any finite part of it. We evaluate both of these by taking a limit. In the integral case, we let the upper
bound go to ∞. In the series case, we let the length of the partial sums go to ∞.

Q49

a The left endpoints are 0, 1, 2, 3 and 4. The sum of the areas is 1(e0 + e−1 + e−2 + e−3 + e−4).

b We would need infinitely many.

c We could represent the sum of all the areas by
∞∑
k=0

e−k.

d This is a geometric series with initial term 1 and ratio 1
e . Its sum is

1

1− 1
e

=
e

e− 1
.

e f(x) = e−x is decreasing, which means any Ln will overestimate
∫ n

0
f(x) dx. This suggests that

the limit of the Ln will be at least as large as
∫∞
0

f(x) dx.
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Q51

a All the values of fX are non-negative. We need to check that they sum to 1. Since fX(x) is only

positive for positive integers, the sum of the values is the series
∞∑
k=1

1

2k
. This is a geometric series

with initial term 1
2 and common ratio 1

2 . It converges to
1
2

1− 1
2

= 1. Thus the values of fX(x)

sum to 1. We conclude that fX(x) is a valid probability distribution function.

b We add up the probabilities for all outcomes greater than 4. We obtain a geometric series.

P (X > 4) = fX(5) + fX(6) + fX(7) + · · ·

=

∞∑
k=5

1

2k
a =

1

32
r =

1

2

=
1
32

1− 1
2

=
1

16

c The expected value formula breaks down into a sum of infintely many geometric series.

E[X] =

∞∑
k=1

k

2k

=
1

2
+

2

4
+

3

8
+

4

16
+

5

32
+ · · ·

=
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ · · ·

+
1

4
+

1

8
+

1

16
+

1

32
+ · · ·

+
1

8
+

1

16
+

1

32
+ · · ·

+
1

16
+

1

32
+ · · ·

+
1

32
+ · · ·

...

Applying the geometric series formula to each of these sums gives

E[X] = 1 +
1

2
+

1

4
+

1

8
+

1

16
+ · · ·

=
1

1− 1
2

by the geometric series formula

= 2
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Q1

A power series is a limit of partial sums which are polynomials. It is denoted like a polynomial of infinite
degree, while a polynomial has finite many terms.

Q3

We can integrate a power series term-by-term.

Q5

a It would be convenient to use the exponents as an index variable. The coefficients are counting

up by 5 from an initial value of 10.

10 + 15x+ 20x2 + 25x3 + 30x4 + · · · =
∞∑
k=0

(10 + 5k)xk

b In this case the exponents are only even numbers, so we can use twice the index variable as our

exponents. The coefficients form a geometric sequence with initial term 1
2 and common ratio − 1

2

1

2
− 1

4
x2 +

1

8
x4 − 1

16
x6 +

1

32
x8 − · · · =

∞∑
k=0

1

2

(
−1

2

)k

x2k
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Q7

a r = 4x2

b The series has intial term 1 and common ratio r = 4x2.

p(x) = 1 + 4x2 + 16x4 + 64x6 + · · ·

=

∞∑
k=0

4kx2k

c The doimain of p(x) is the set of x for which it converges. According to the sum of a geometric

series, p(x) converges when

|r| < 1

4x2 < 1

x2 <
1

4

−1

2
< x <

1

2

Q9

No. The ratio between terms is
ak+1

ak
=

4(k + 1)3(x+ 7)

k3
, which is different for different values of k.

This is not a geometric series, so the sum of a geometric series formula does not apply.
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Q11

We know the ratio test will be an invalid at x = 3. The power series is 0 at x = 3. For all other x, we
compute the ratios.

ak+1

ak
=

2k+1(x− 3)k+1

2k(x− 3)k

= 2(x− 3)

There is no k in the expression so this series has a constant ratio. It is a geometric series, so it only
converges when |r| < 1. We solve

|2(x− 3)| < 1

|x− 3| < 1

2

−1

2
< x− 3 <

1

2
5

2
< x <

7

2

Beacuse this series is geometric, there is no uncertainly about the endpoints. Geometric series diverge
when r = ±1. Thus the domain of the power series is

(
5
2 ,

7
2

)

Q13

The ratio between terms will be undefinted at the center x = 6, but we know the series converges there.
Everywhere else we can compute

ak+1

ak
=

(
1
4

)k+1
(x− 6)k+1(

1
4

)k
(x− 6)k

=
x− 6

3

This is a geometric series, so it only converges when |r| < 1. We solve∣∣∣∣x− 6

4

∣∣∣∣ < 1

|x− 6| < 4

−4 < x− 6 < 4

2 < x < 10

The domain is (2, 10).
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Q15

The ratio between terms will be undefinted at the center x = −3, but we know the series converges
there. Everywhere else we can compute

ak+1

ak
=

(k + 1)(x+ 3)k+1

k(x+ 3)k

=
(k + 1)(x+ 3)

k

This is not constant. Since this is not a geometric series, we apply the ratio test.

lim
k→∞

∣∣∣∣ (k + 1)(x+ 3)

k

∣∣∣∣ < 1

|x+ 3| < 1 radius = 1

−1 < x+ 3 < 1

2 < x < 4

The series converges on (2, 4). This test does not tell us whether it converges at the endpoints.

Q17

The ratio between terms will be undefinted at the center x = 5, but we know the series converges there.
Everywhere else we can compute

ak+1

ak
=

3k4(k + 1)(x− 5)k+1

3k+14k(x− 5)k

=
(k + 1)(x− 5)

3k

This is not constant. Since this is not a geometric series, we apply the ratio test.

lim
k→∞

∣∣∣∣ (k + 1)(x− 5)

3k

∣∣∣∣ < 1∣∣∣∣x− 5

3

∣∣∣∣ < 1

|x− 5| < 3 radius = 3

−3 < x− 5 < 3

2 < x < 8

The series converges on (2, 8). This test does not tell us whether it converges at the endpoints.

Q19∫ ∞∑
k=0

2k(x− 3)k dx =

∞∑
k=0

2k

k + 1
(x− 3)k+1 + c
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Q21

d

dx

∞∑
k=0

1

4k
(x − 6)k =

∞∑
k=1

k

4k
(x − 6)k−1. It has the same radius of convergence we computed in an

earlier exercise. It converges on (2, 10), though we don’t know the whether the endpoints are included.

Q23

The fifth derivative has the same radius of convergence as the original series. In an earlier exercise we
computed this radius to be 1. Thus the fifth derivative converges on (2, 4), though we don’t know the
whether the endpoints are included.

Q25

a We’ll apply the ratio test.

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = lim
k→∞

∣∣∣∣∣
(k+1)2+(k+1)

5k+1 (x+ 3)k+1

k2+k
5k

(x+ 3)k

∣∣∣∣∣
= lim

k→∞

∣∣∣∣ ((k + 1)2 + (k + 1))(x+ 3)

5(k2 + k)

∣∣∣∣
= lim

k→∞

∣∣∣∣ (k2 + 3k + 2)(x+ 3)

5(k2 + k)

∣∣∣∣
=

∣∣∣∣x+ 3

5

∣∣∣∣
The ratio test says the series converges when this limit is less than 1 so∣∣∣∣x+ 3

5

∣∣∣∣ < 1

−1 <
x+ 3

5
< 1

−5 < x+ 3 < 5

−8 < x < 2

The domain is the interval (−8, 2). The endpoints may be part of the domain or they may not.

b We apply the theorem that allows us to integrate a power series term by term.

∫
p(x) dx = C +

∞∑
k=0

k2 + k

5k(k + 1)
(x+ 3)k+1

= C +

∞∑
k=0

k

5k
(x+ 3)k+1
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Q27

f ′(x) = 1
1+x2 . This is a geometric series of initial term 1 and common ratio −x2. We express it as

f ′(x) =

∞∑
k=0

(−x2)k =

∞∑
k=0

(−1)kx2k

∫
f ′(x) dx =

∞∑
k=0

(−1)k

2k + 1
x2k+1 + c

The domain is where | − x2| < 1, which is the interval (−1, 1). On this interval tan−1 x is one of the
antiderivatives of f ′(x). To get the correct one we solve for c. We plug in a value (x = 0 is easiest)
and solve.

tan−1 0 = 0 =

∞∑
k=0

(−1)k

2k + 1
02k+1 + c

0 = c

Thus tan−1 x =

∞∑
k=0

(−1)k

2k + 1
x2k+1 on (−1, 1).
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Q1

We can show that the error bound given by Taylor’s inequality converges to 0 as the degree goes to ∞.

Q3

As long as the center is 0, we can mutliply the Taylor series for f(x) by xn or compose it with g(x) = xn,
and the result will still be a Taylor series.

Q5

We can’t compute the sum of an infinite series by hand. We can only approximate T (1.25) by its partial
sums, Tn(1.25). These are the Taylor polynomials. The series adds no information to the computation
that we could not obtain with the Taylor polynomials.

Q7

The coefiicients would be multiplied by e and the xk would be replaced with (x− 1)k.

Q9

We will compute the first few derivatives and look for a pattern.

f(x) =
1

x

f ′(x) = − 1

x2

f ′′(x) =
2

x3

f ′′′(x) = − 6

x4

f (4)(x) = −24

x5

From this we infer f (k)(x) = (−1)k
k!

xk+1
. We can now write the Taylor series

T (x) =

∞∑
k=0

f (k)(4)

k!
(x− 4)k

=

∞∑
k=0

(−1)k
k!

4k+1

k!
(x− 4)k

=

∞∑
k=0

(−1)k

4k+1
(x− 4)k
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Q11

We will compute the first eight derivatives of f(x).

f(x) = cosx f(0) = 1

f ′(x) = − sinx f ′(0) = 0

f ′′(x) = − cosx f ′′(0) = −1

f ′′′(x) = sinx f ′′′(0) = 0

f (4)(x) = cosx f (4)(0) = 1

f (5)(x) = − sinx f (5)(0) = 0

f (6)(x) = − cosx f (6)(0) = −1

f (7)(x) = sinx f (7)(0) = 0

f (8)(x) = cosx f (8)(0) = 1

Since we only need the even terms, we can use 2k as the exponents of x. The derivatives alternate
between 1 and −1 so (−1)k will model these.

T (x) =

∞∑
k=0

(−1)k

(2k)!
x2k

Q13

We begin by applying Taylor’s inequality to obtain a bound on |Rn(x)|. Every derivative of f(x) is ex,
a positive, increasing function. We conclude

If x > 0, then f (n+1) is bounded by ex on [0, x]

If x < 0, then f (n+1) is bounded by e0 = 1 on [x, 0]

Taylor’s inequality states

|Rn(x)| ≤
∣∣∣∣ ex

(n+ 1)!
xn+1

∣∣∣∣ or |Rn(x)| ≤
∣∣∣∣ 1

(n+ 1)!
xn+1

∣∣∣∣
Both of these limit to 0 as n → ∞. Thus T (x) = f(x) for all x.
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Q15

We will apply Taylor’s inequality to obtain a bound on |Rn(x)|. Begin with the computation, shown in

a previous exercise, that f (k)(x) = (−1)k
k!

xk+1
. |f (k)(x)| is a decreasing function on (2, 6).

If we are approximating at x < 4 we can use M =
(n+ 1)!

xn+2
as a bound on |f (n+1)(x)|

If we are approximating at x ≥ 4 we can use M =
(n+ 1)!

4n+2
as a bound on |f (n+1)(x)|

|Rn(x)| ≤

∣∣∣∣∣
(n+1)!
xn+2

(n+ 1)!
(x− 4)n+1

∣∣∣∣∣ or |Rn(x)| ≤

∣∣∣∣∣∣∣
(n+ 1)!

4n+2

(n+ 1)!
(x− 4)n+1

∣∣∣∣∣∣∣
≤
∣∣∣∣ 1

xn+2
(x− 4)n+1

∣∣∣∣ or ≤
∣∣∣∣ 1

4n+2
(x− 4)n+1

∣∣∣∣
≤ 1

x

(
4− x

x

)n+1

or ≤ 1

4

(
x− 4

4

)n+1

Since 4−x
x < 1 for x between 2 and 4 and x−4

4 < 1 for x between 4 and 6 (actually 4 and 8), we
conclude that both of these limit to 0 as n → ∞. Thus lim

n→∞
|Rn(x)| = 0, meaning T (x) = f(x) on

(2, 6).

Q17

In our computation of Taylor’s inequality for |Rn(x)|, we noted that for x > 1, we can use M = n! for
our bound on f (n+1) over [1, x]. We apply Taylor’s iequality to x = 2.

|Rn(2)| ≤
∣∣∣∣ n!

(n+ 1)!
(2− 1)n+1

∣∣∣∣
≤ 1

n+ 1

Thus lim
n⃗→∞

|Rn(2)| = 0. The error in the Taylor polynomials at x = 2 goes to 0 as the degree goes to

infinity. In other words, T (2) = ln 2, meaning T (2) converges.

Q19

By previous work we have a Taylor series for cosx. We multiply this by x5.

T (x) = x5
∞∑
k=0

(−1)k

k!
x2k

=

∞∑
k=0

(−1)k

k!
x2k+5
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Q21

Not easily. Distributing the x2 across the Taylor series would give us a series of the form

T (x) =

∞∑
k=0

ckx
2(x− 1)k

This does not fit the definition of a power series, as ckx
2 is not a constant.

Q23

Let f(x) = ex
3

. We obtain the following series for f(x) by substituing x3 into our Taylor series T (x)
for ex.

ex
3

= T (x3) =

∞∑
k=0

1

k!
x3k

The antiderivative is

g(x) =

∫ ∞∑
k=0

1

k!
x3k dx

=

∞∑
k=0

1

(3k + 1)k!
x3k+1 + c

Q25

We can differentiate term by term

T ′(x) =

∞∑
k=0

2k(−1)k

(2k)!
x2k−1

T ′′(x) =

∞∑
k=1

2k(2k − 1)(−1)k

(2k)!
x2k−2 (the k = 0termdifferentiatesto0)

T ′′(x) =

∞∑
k=1

(−1)k

(2k − 2)!
x2k−2 (cancel from the factorial)

Why does this make sense? Both 2ks became (2k − 2)s, so a substitution could simplify things. Set
j = k − 1 and rewrite the summation:

T ′′(x) =

∞∑
j=0

(−1)j+1

(2j)!
x2j

Notice that this is the same as our expression for T (x) except that we’ve changed the name of the index
variable (which doesn’t change the value) and we’ve added an extra power of −1. We conclude that

T ′′(x) = −T (x), which makes sense because d2

dx2 cosx = − cosx.
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Q27

We had cos(2x) = cos2 x− sin2 x. The pythagorean identity lets us substitue 1− cos2 x for sin2 x. We
combine like terms to obtain

cos(2x) = 2 cos2 x− 1

Q29

e2πi = cos 2π + i sin 2π = 1 + 0i = 1

Q31

a First we compute the derivatives

f(x) =
1

x2
f(4) =

1

16

f ′(x) = − 2

x3
f ′(4) = − 1

32

f ′′(x) =
6

x4
f ′(4) =

3

128

f ′′′(x) = −24

x5
f ′(4) = − 3

128

From this we obtain

T3(x) =
1

16
− 1

32
(x− 4) +

3

256
(x− 4)2 − 1

256
(x− 4)3

b We would need a bound on |f (4)(x)| = | 120x6 |. This positive and decreasing on [2.5, 4] so it’s

largest value occurs at 2.5. We can use M = 120
2.56 . Taylor’s inequality states

|R3(2.5)| ≤
∣∣∣∣ 120

2.564!
(2.5− 4)4

∣∣∣∣
c The general derivative of f appears to be f (5)(x) = (−1)k(k+1)!

xk+2 . This means

T (x) =

∞∑
k=0

(−1)k(k + 1)!

4k+2k!
(x− 4)k

=

∞∑
k=0

(−1)k(k + 1)

4k+2
(x− 4)k

The ratio test gives us a ratio between terms of∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣∣
(−1)n+1(n+2)

4n+3 (x− 4)n+1

(−1)n(n+1)
4n+2 (x− 4)n

∣∣∣∣∣
=

∣∣∣∣ (n+ 2)(x− 4)

4(n+ 1)

∣∣∣∣
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We apply the ratio test

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

lim
n→∞

∣∣∣∣ (n+ 2)(x− 4)

4(n+ 1)

∣∣∣∣ < 1∣∣∣∣x− 4

4

∣∣∣∣ < 1

|x− 4| < 4

−4 < x− 4 < 4

0 < x < 8

The series converges on (0, 8). We do not know about the endpoints from the ratio test, though
the divergence test will show that T (x) diverges at both endpoints.

Q33

a Yes. A Taylor series is a type of power series, and the domain of a power series centered at 10 is

an interval centered at 10. If 5 is in the domain, then so is every point between 5 and 10 (in fact,
5 and 15).

b If the error approaches 0, this means the Taylor polynomials approach f(x), but the Taylor poly-

nomials are the partial sums of the Taylor series. Thus, the Taylor series converges to f(x). On
the other hand, just because the Taylor series converges, does not mean that it converges to f(x).

c We should just use the Taylor polynomials. The Taylor series is of no use to compute f(7), because

we do not know how to evaluate it. We could approximate it using partial sums, but the partial
sums are the Taylor polynomials.
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Q1

a in the x-direction, b in the y-direction and c in the z-direction

Q3

The y-axis is the points that can be reached from the origin by a displacement in the y-direction. A
general point is (0, b, 0).

Q5

We can sketch the graph in the plane without that variable, then we can extend that graph in the
direction of the free variable.

Q7

Points on the y axis, could not be expressed this way, since the line through P and the origin would be
vertical. Also, coordinates would not uniquely identify a point. Given any distance d and any slope m,
there are two points that lie on both x2 + y2 = d2 and y = mx. We would not be able to tell which
one the coordinates were referring to.

Q9

a , b are the usual orientation. The others are not.

Q11
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Q13

D =
√

(7− 3)2 + (3− 6)2 + (−10− 2)2

=
√
16 + 9 + 144

=
√
169

= 13

Q15

D =
√
(11− 10)2 + (9− 12)2 + (105− 109)2

=
√
1 + 9 + 16

=
√
26

Q17

No. If we plug the coordinates into the equation we get 8 = 42 − 2. This is false, so (4, 3, 8) does not
lie on the graph of z = x2 − 2.

Q19

This is an empty graph. It contains no points. Since the square of any real numer is non-negative, there
are no coordinates y and z that will make y2 + z2 = −1 a true equation.

Q21

Any point that has an x-coordinate of 2 or a y-coordinate of 3 lies on this graph. Thus the graph
consists of the vertical line x = 2 and the horizontal line y = 3.

Q23

No. The graphs are parallel planes, extending in the x and y directions. They do not intersect. Also, if
they did intersect then they would contain a point (x, y, z), but z would have to be both 4 and 6 to lie
on both graphs.
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Q25

a x = −4 is a plane parallel to the yz plane through (0, 0,−4).

b x2 + y2 = 9 is a circle of radius 3 in the xy plane, projected in the z direction to make a cylinder.

c We will complete the square to handle the 4x and −2z terms.

x2 + 4x+ y2 + z2 − 2z = 4

x2 + 4x+ 4 + y2 + z2 − 2z + 1 = 9

(x+ 2)2 + y2 + (z − 1)2 = 9

This is a sphere of radius 3, centered at (−2, 0, 1).

Figure: A plane, a cylinder, and a sphere
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Q27

Q29

In general, an equation seems to reduce dimension by 1 from the ambient space. We expect this to be
a 5-dimensional graph.

Q31

Maybe not. y = x2 is a curve in the xy-plane but a surface in three-space. Without more information,
we don’t know which graph is “correct”.

Q33

If y does not appear in the equation of the plane, then my must be 0.

Q35

It is easiest to compute mx, if we have two points with the same y-coordinate. Given the points we
have, a y-coordinate of 5 or 2 would be best.
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Q37

a z + 1 = 3(x− 2)− (y − 5)

b Set x = y = 0.

z + 1 = 3(0− 2)− (0− 5)

z + 1 = −6 + 5

z = 10

Q39

We use (3, 0, 0) and (0, 0,−1) to get mx = −1−0
0−3 = 1

3 . We use (0, 7, 0) and (0, 0,−1) to get mx =
−1−0
0−7 = 1

7 . (0, 0,−1) is the z-intercept. The equation is

z =
1

3
x+

1

7
y − 1

Q41

We use (6, 7,−2), and (8, 7, 1) to get mx = 1−(−2)
8−6 = 3

2 . We use (6, 4, 1) and (6, 7,−2) to get

my = 7−4
−2−1 = −1. We don’t have an intercept, but we can call it b and solve for it. We will plug in

(6, 4, 1), but any point will work.

z =
3

2
x− y + b

1 =
3

2
6− 4 + b

−4 = b

z =
3

2
x− y − 4
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Q43

Between the points (3, 4, 2) and (7, 4, 6), the only change is z is attributable to the change in x, since
y doesn’t change. We can get mx = 7−3

6−2 = 1. From (3, 4, 2) o (5, 5, 6), we can first increase x by 2.

With a slope of 1, this gets us to (5, 4, 4). With this we can compute my = 6−4
5−4 = 2. Finally, we can

plug (3, 4, 2) into the equation we have so far and solve for b.

z = x+ 2y + b

2 = 3 + (2)(4) + b

−9 = b

z = x+ 2y − 9

Q45

We could draw a sphere of radius 5 in x1x3x4-space. Since x2 is a free variable, we could extend this
sphere in the x2-direction.

Q47

A point on the x2x4-plane is displaced in only the x2- and x4-directions. Its x1- and x3-coodinates are
0. The equations to describe this are x1 = x3 = 0.

Q49

S contains two points that are D =
√
02 + 32 + 42 = 5 units apart. There is no upper bound to how

large the sphere can be. Even very large spheres have points that are close together. However, if the
sphere is too small, it will not have any points 5 units apart. The farthest apart two points can be is
the endpoints of a diameter. If the diameter, is less than 5, there will not be two points 5 units apart.
Thus the radius must be equal to or larger than 5

2 .

Q51

No. There are many ways to demonstrate this. For instance, if x and y made a 60 degree angle, then
(0, 0), (1, 0) and (0, 1) would make an equilateral triangle, suggesting that the distance from (0, 1) to
(1, 0) is 1. The distance formula disagrees. It computes a distance of

√
2.
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Q1

The value of the function f at (x, y).

Q3

Level curves and level surfaces.

Q5

f(2,−8) = 13(2) + −8
2 = 26− 4 = 22

Q7

No. The plus or minus means there are two possible outputs for some inputs. For instance, if x = 2
and y = −1, then is f(2,−1) = 3 or −3?

Q9

The only obstacle to evaluating this function is that we cannot divide by 0. The domain is all of R2

except the line y = −x.

Q11

The only obstacle to evaluating this function is that we cannot take the square root of a negative. The
domain is all of R2 where y2 ≥ 25. This solves to y ≥ 5 or y ≤ −5, so the domain is all of R2 above
y = 5 or below y = −5.

Q13

There are two obstacles to evaluating this function. We cannot have a negative square root so x ≥ −3.
We cannot divide by zero so y2 ̸= x. The domain is the region of R2 to the right of x = −3 except for
the parabola x = y2.

Q15

(−84.38, 35.75) is two unit in the y direction (north) from (−84.38, 33.75). According to the map, the
temperatures there around 50 degrees, which is less than 59.

Q17

Observe South Dakota on the map (after looking up which state is South Dakota if necessary). The
colors range from dark purple (10 degrees) in the northeast corner to green (40 degrees) in the southwest
corner.
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Q19

The integer points in the rectangle defined by 0 ≤ x ≤ 687 and 0 ≤ y ≤ 1024.

Q21

No. If f is a function, then each ordered pair can have at most one output. If these points are on the
graph, that implies that f(1, 3) = 5 and f(1, 3) = 7.

Q23

The z-axis is where x = y = 0. If the graph passes through (0, 0, c), then f(0, 0) = c.

Q25

The level curves have equations of the form (x− 2)2 + (y + 1)2 = c. These are circles of various radii,
centered at (2,−1).

Q27

The level curves have the form x2

y = c or y = 1
cx

2. These are parabolas openning upward or dowanward

with a vertex at (0, 0).

Q29

The level curve has equation of the form x3 + y3 = c. Plug in (4, 2) to solve for c: 43 + 23 = c. The
equation is

x3 + y3 = 72

Q31

Zero or one. If more than one passed through (3, 7) we would have f(3, 7) = c1 and f(3, 7) = c2. This
would violate the property that a function can have only a single output for a given input.

Q33

In Kansas, the temperature is increasing more quickly as you travel south than if you’re travelling south
through, for example, Indiana, Kentucky, Tenessee and Georgia.

Q35

The farm fields are relatively flat. The ground does not rise or fall significantly enough to cross a level
curve anywhere on the fields.
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Q37

If we set y = 2 we obtain the equation z = x3 + 8. The graph of this equation in the xz-plane is the
y = 2 cross-section.

Q39

It tells us that f(x, y) does not depend on y, so y is a free variable.

Q41

Solving for z gives z =
√
y − x2 and z = −

√
y − x2.

Q43

This equation has a z2, a z and terms with no z’s at all, so it is a quadratic in z

z2 + xyz + (x2 + y2 − 20) = 0

z =
−xy ±

√
x2y2 − 4(1)(x2 + y2 − 20)

2

Q45

a R6

b R5

Q47

a R2

b In R. A typical level set is a set of points (or numbers) on the real line.

Q49

y is a free variable, so for each point on the graph, we can travel in the y direction and remain on the
graph. On other words, the graph is the curve z = x2 in the xz-plane, extended in the y direction.
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Q51

a We can sketch this by drawing a sine wave veritically in the xz-plane, and then extending it in the

y-direction.

b In the xz-plane x = 1
2 meets x = sin z at

(
1
2 ,

π
6

)
,
(
1
2 ,

5π
6

)
,
(
1
2 ,

13π
6

)
, etc. These intersections

extend in the y direction to create an infinite set of parallel horizontal lines.
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Q1

One variable is changing, the other(s) is treated as a constant.

Q3

Many examples are possible. Any situation in which changing one variable would cause other variables
to change as well would be a valid example.

Q5

This line is tangent to the graph in the y-direction, since x is fixed at 2. Thus its slope is fy(2, 0).

fy(x, y) = 3x2e3xy

fy(2, 0) = 12

In point-slope, the equation is
z − 4 = 12(y − 0)

.

Q7

fx(x, y) = 14x − 5y sinx. The y in 5y cosx is treated as a constant multiple. The ey term is treated
as a constant (derivative 0).

Q9

As we travel in the x-direction, we pass from higher values to lower values of f . Thus fx(3, 0) < 0.

Q11

Since we’re approximating fx, we should choose a point with the same y-value. The point is approxi-
mately (−2.25, 1.25). We can compute the rate of change in z with respect to x:

fx(4,−1.25) ≈ 50− 40

−2.25− 4
= − 10

1.75
= −40

7
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Q13

a fx = 2x

fy = −2y

b We can rewrite this as f(x, y) = y1/2x−1/2. In each partial derivative, the other factor is a

constant multiple.

fx = y1/2
(
− 1

2x
−3/2

)
fy = 1

2y
−1/2x−1/2

c For fx we use the chain rule.

The outer function is yex. Its derivative is yex.

The inner function is xy. Its derivative is y.

By the chain rule
∂

∂x
yex = yexyy = y2exy

For fy we cannot treat the initial y as a constant multiple. We need the product rule. We still
use the chain rule on the second factor exy.

The outer function is ex. Its derivative is ex.

The inner function is xy. Its derivative is x.

We are now ready to apply the product rule.

∂

∂y
yexy =

(
∂

∂y
y

)
exy + y

(
∂

∂y
exy
)

= (1)exy + yexyx

= (1 + xy)exy

Q15

fx(x, y, z) = lim
h→0⃗

f(x+ h, y, z)− f(x, y, z)

h
. The two points where we evaluate the function have the

same y and z coordinates. Thus y and z are treated as constant in this rate of change.

Q17

∂g
∂v = ueuv+w2

.
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Q19

P = nrT
V suggests that more volume leads to smaller P . A partial derivative, which suggests that V is

constant will overstate the actual growth rate of P , in which V is increasing.

Q21

g = ft =
∂

∂t
f

h = (ft)s =
∂

∂s

∂

∂t
f

= fts =
∂2f

∂s∂t

Q23

First we compute fy. The chain rule gives us fy = cos(3x+ x2y)(x2).
Computing (fy)x will require the product rule and the chain rule.

∂

∂x
cos(3x+ x2y)(x2) =

∂

∂x

(
cos(3x+ x2y)

)
(x2) + cos(3x+ x2y)

∂

∂x

(
x2
)

= − sin(3x+ x2y)(3 + 2xy)(x2) + cos(3x+ x2y)(2x)

Q25

a Using the product rule, we obtain ∂g
∂y = exy

2

+ 2xy2exy
2

.

b

∂g

∂x
= 6x2z + y3exy

2

∂2g

∂x2
= 12xz + y5exy

2

Q27

ii and iii
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Q29

The roles of x and y are identical in this function. We can change each x into a y and vice versa,
without changing the function. This means that ∂f

∂y can be obtained from ∂f
∂x by changing each x into

y and vice versa.

Q31

The only way that fx(x, y) would not be a function would be if fx(x, y) = limh→0
f(x+h,y)−f(x,y)

h can
have more than one possible value. However a function cannot have more than one limit at a single
point. It cannot be getting arbitratily close to two different values, eventually to converge to one, it
must stay away from the other.
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Q1

The partial derviatives of fx(x0, y0) and fy(x0, y0).

Q3

They are equivalent. To produce the linearization from the tangent plane, solve for z and then substitute
L(x, y) for z.

Q5

a z = p(x, y) is a plane. 3 is the slope in the x-direction. 5 is the slope in the y-direction. −2 is

the z-intercept.

b px = 3 and py = 5 so the tangent plane has equation

z − 21 = 3(x− 1) + 5(y − 4)

c If we distribute and combine terms of the tangent plane equation, we obtain z = 3x + 5y − 2,

which is equivalent to z = p(x, y). This makes sense, because the tangent plane of a plane should
be the plane iteself.

Q7

No. It means that fy(x0, y0) = 0. Having a zero derivative at one point does not mean the function
never changes as y changes.
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Q9

Writing the formula requires us to fill in 5 values.

1 x0 = 2 is given.

2 y0 = 2 is given.

3 z0 = 4 is given.

4 fx(x0, y0) requires the chain rule

fx(x, y) =
1

2
√

36− 4x2 − y2
(−8x)

fx(4, 0) =
1

2
√

36− (4)(2)2 − 22
(−8)(2) = −2

5 fy(x0, y0) also requires the chain rule

fy(x, y) =
1

2
√

36− 4x2 − y2
(−2y)

fy(4, 0) =
1

2
√

36− (4)(2)2 − 22
(−2)(2) = −1

2

We plug these values into the tangent plane formula.

z − 4 = −2(x− 2)− 1

2
(y − 2)

Q11

We can write f(x, y) = y1/2x−1/2 for easier differentiation.

fx(x, y) = y1/2
(
−1

2
x−3/2

)
fx(4, 36) = −3

8

fy(x, y) =
1

2
y−1/2x−1/2 fy(4, 36) =

1

24

The equation of the plane is

z − 3 = −3

8
(x− 4) +

1

24
(y − 36).
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Q13

f(x, y) = yexy f(3, 2) = 2e6

fx(x, y) = y2exy fx(3, 2) = 4e6

fy(x, y) = (1 + xy)exy fy(3, 2) = 7e6

The equation is
L(x, y) = 2e6 + 4e6(x− 3) + 7e6(y − 2)

Q15

The linearization at (5, 0) will have a constant term of
√
5 and a coefficient of 1

2
√
5
. Unless we already

know this value, this will not be an effective strategy for evaluating by hand. Using the linearization at
(4, 0) is a better choice.

Q17

(4, 1) is a neaby point where we can compute the value and derivatives by hand. Here are the values
we need to compute.

f(x, y) =
x2

y
f(4, 1) = 16

fx(x, y) =
2x

y
fx(4, 1) = 8

fy(x, y) = −x2

y2
fy(4, 1) = −16

We can now write the linearization and evaluate it at (3.97, 1.05) to approximate 3.972

1.05 .

L(x, y) = f(4, 1) + fx(4, 1)(x− 4) + fy(4, 1)(y − 1)

= 16 + 8(x− 4)− 16(y − 1)

3.972

1.05
= f(3.97, 1.05) ≈ L(3.97, 1.05) = 16 + 8(3.97− 4)− 16(1.05− 1)

= 16− 0.24− 0.8

= 14.96

We conclude that 3.972

1.05 ≈ 14.96.
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Q19

Compute the partial derivatives of f using the quotient rule.

fx(x, y) =
0− 2xy

(x2 + y2)2
fy(x, y) =

1(x2 + y2)− 2y2

(x2 + y2)2

fx(4, 3) = − 24

625
fy(4, 3) =

7

625

The differential is

df =
∂f

∂x
dx+

∂f

∂y
dy

= − 24

625
dx+

7

625
dy

Q21

Our area function is A(l, w) = lw

dA =
∂A

∂l
dl +

∂A

∂w
dw

= wdl + ldw

= 30dl + 50dwmax dA = 30(0.2) + 50(0.2)

= 16m2

Q23

dz = 2dx− 12dy. Since dx and dy can be any numbers, there is no maximum value for dz.

Q25

If fyy(x, y) < 0, then f is concave down in the y-direction. This means that L(x, y) will be above
f(x, y) if we travel in the y-direction. We can conclude that L(x, y) < f(x, y) as long as x = 3
and y ̸= 2. We are not able to compare f(x, y) and L(x, y) at any point that requires travel in the
x-direction from (3, 2), since we don’t know how the function changes in the x-direction.
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Q1

A vector and a point can both be represented in terms of coordinates. The formula for length of a
vector is similar to the formula for distance between points. A vector and a number can both be added,
subtracted or multiplied.

Q3

Two vectors point in the same direction, if they are scalar multiples of each other, and the scalar is
positive. They point in opposite directions, if the scalar is negative.

Q5

iii. and v. are vectors. The others are not.

Q7

B and C must be the same point. We reach both of them by starting an A and travelling along the
same displacment vector.

Q9

The x-displacement is 2−8 = −6. The y-displacement is 3−7 = −4. The z-displacement is 15−11 = 4.

a
−−→
AB = ⟨−6,−4, 4⟩

b
−−→
AB = −6⃗i− 4⃗j + 4k⃗

Q11

The slope is 10
−4 = − 5

2 .

Q13

They are parallel.

Q15

They have the same direction, but 2u⃗ has twice the magnitude of u⃗.
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Q17

−v⃗ has the same magnitude as v⃗ but points in the opposite direction. We can place u⃗ and −v⃗ head to
tail and connect the ends to create u⃗− v⃗.

Suppose instead that we place u⃗ and v⃗ to have the same initial point (tail to tail). Notice that u⃗ − v⃗
is also the vector from the terminal point of v⃗ to the terminal point of u⃗. In terms of displacements,
we can think of this as traveling backward along v⃗ and then forward along u⃗. This is useful if we are
already thinking of u⃗ and v⃗ as position vectors.

Q19

D is the center of a parallelogram with vectices A, B and C. A simpler and more interesting conclusion
is that D is the midpoint of the segment from B to C.

Q21

u⃗+ v⃗ = 9⃗i+ j⃗

Q23

The vector from Sam’s house to lindsey’s house is ⟨3,−5⟩. The vector from Lindsey’s house to Russel’s
house is ⟨0,−2⟩. These vectors are head to tail, so to get from Sam’s house to Russel’s house, we add
them. The result is ⟨3,−7⟩, which means 3mi east and 7mi south.
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Q25

a
−−→
EB = v⃗

b
−−→
CG = 1

2 u⃗

c
−−→
BC = v⃗ − u⃗

d
−→
AF = 1

2 u⃗+ 1
2 v⃗

e
−−→
GB = 1

2 u⃗− v⃗

Q27

5⃗i+ 2⃗j

Q29

|u⃗| =
√
52 + 122 = 13.

Q31

The length of this vector is
√
32 + 12 =

√
10. If we multiply the vector by 1√

10
we will obtain a vector

in the same direction whose length is 1. Our unit vector is

u⃗ =
3√
10

i⃗− 1√
10

j⃗

Q33

If we place both u⃗ and v⃗ at the origin, they extend into the first quadrant. Their angle is largest when
one is close to the positive x-axis and one is close to the positive y-axis. The angle between them can
be made arbitrarily close to π

2 .

Q35

At the crossing there are two different angles depending on which way we travel. They sum to π. One
of them is equal to the angle between the vectors.
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Q37

3u⃗− 4v⃗ = 3 ⟨2, 0, 3⟩ − 4 ⟨5, 6, 0⟩
= ⟨6, 0, 9⟩ − ⟨20, 24, 0⟩
= ⟨−14,−24, 9⟩

Q39

|v⃗| =
√
22 + 72 + 62 =

√
89.

Q41

a There are two unit vectors orthogonal to a given vector in R2, pointing in opposite directions.

b There are infinitely many unit vectors orthogonal to a given vector in R3. Their terminal points

trace out a circle.

Q43

We will place v⃗ so that its initial point is in p, then check whether the terminal point is also in p. A
convenient intitial point is the z-intercept, (0, 0,−7). The terminal point would be (0+2, 0+3,−7+8) =
(2, 3, 1). We plug this into the equation for p

1 = 2 + 2(3)− 7

This is true, so (2, 3, 1) lies in p. Thus v⃗ must be parallel to p.

Q45

tu⃗ + (1 − t)v⃗ = v⃗ + t(u⃗ − v⃗). Since v⃗ =
−→
AC and u⃗ − v⃗ =

−−→
CB, this means that when v⃗ and t(u⃗ − v⃗)

are placed head to tail, we end up somewhere on the line from C to B.
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Q47

a This length would be infinite.

b This length would be
√
1 + 1

4 + 1
16 + 1

64 + 1
256 + · · ·. The series under the sqaure root is geo-

metric with intial term 1 and common ratio 1
4 . Its sum is

a

1− r
=

1

1− 1
4

=
4

3

Thus the length of the vector is
√

4
3 or 2√

3
.
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Q1

The dot product is commutative. It distributes across vector addition and is associative with scalar
multiplication.

Q3

The formula u⃗ · v⃗ = |u⃗||v⃗| cos θ relates the angle to the dot product.

Q5

v⃗ · i⃗ is equal to the x-component of v⃗. v⃗ · j⃗ is equal to the y-component of v⃗.

Q7

a (4)(−1) + (5)(−2) = −4− 10 = −14

b (5)(1) + (6)(−2) = 5− 12 = −7

c (2)(0) + (4)(−1) + (−10)(−2) = −4 + 20 = −16
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Q9

a u⃗ · u⃗ = 13 and u⃗ · v⃗ = 5 and u⃗ · v⃗ = −4.

b v⃗ · u⃗ = 5 which is equal to u⃗ ˙⃗v.

c |u⃗| =
√
13, u⃗ · u⃗ = (|u⃗|)2

d (3u⃗) · (3v⃗) = 45. This is u⃗ · v⃗ times 3 times 3.

e v⃗ + w⃗ = ⟨−1, 1⟩. u⃗ · (v⃗ + w⃗) = 1. This is u⃗ · v⃗ + u⃗ · w⃗

f The dot product follows the rules of a numerical product: it is commutative and associative and

has a distributive property. If it were a sum, we’d expect (3u⃗) · (3v⃗) to equal 3(u⃗ · v⃗).

g Assign variables to the components of each vector, for instance

u⃗ = ⟨a, b⟩ v⃗ = ⟨c, d⟩ w⃗ = ⟨e, f⟩

Then perform these computations and see that we get identical expressions in terms of the vari-
ables.

Q11

(⃗a− 3⃗b) · (5c⃗+ 2d⃗) = 5a⃗ · c⃗− 15⃗b · c⃗+ 2a⃗ · d⃗− 6⃗b · d⃗.

Q13

a Since u⃗ and v⃗ are parallel, we have

u⃗ · v⃗ = ±|u⃗||v⃗|
−28 = ±|u⃗|(4)± 7 = |u⃗|

Since the length of a vector is positive |u⃗| = 7.

b Since u⃗ and v⃗ are parallel, they either point in the same direction or opposite directions. Since

the dot product is negative, they must point in opposite directions.
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Q15

Substituing the given information into the cosine formula gives

u⃗ · v⃗ = |u⃗||v⃗| cos θ
15 = 5|v⃗| cos θ
3

cos θ
= |v⃗|

Since cos θ can be no larger than 1, |v⃗| ≥ 3. There is no limit to how large |v⃗| can be, since cos θ can
be arbitrarily close to 0.

Q17

u⃗ · v⃗ = |u⃗||v⃗| cos θ = |v⃗| cos θ

Since |v⃗| =
√
72 + 22 + 12 =

√
54 = 3

√
6 is fixed, the only unknown that determines u⃗ · v⃗ is θ. cos θ is

maximized when θ = 0. This means u⃗ and v⃗ have the same direction. To obtain a unit vector in the
direction of v we use the formula:

u⃗ =
1

|v⃗|
v⃗

=
1

3
√
6
(7⃗i− 2⃗j + k⃗)

=
7

3
√
6
i⃗− 2

3
√
6
j⃗ +

1

3
√
6
k⃗

Q19

Apply the cosine formula

u⃗ · v⃗ = |u⃗||v⃗| cos θ

(6)(7) + (1)(0) + (4)(2) =
√

62 + 12 + 42
√
72 + 02 + 22 cos θ

50 =
√
53

√
53 cos θ

50

53
= cos θ

cos−1 50

53
= θ
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Q21

For convenience, let A = (0, 0, 0), B = (1, 0, 0) and C = (1, 1, 1). We can apply the cosine formula.

AB ·AC = |AB||AC| cos θ

(1)(1) + (0)(1) + (0)(1) =
√

12 + 02 + 02
√
12 + 12 + 12 cos θ

1 =
√
3(1) cos θ

1√
3
= cos θ

cos−1 1√
3
= θ

Q23

We could use

cos θ =
u⃗ · v⃗
|u⃗||v⃗|

.

If the expression on the right is ±1 then the vectors are parallel. This is much more work than just
checking whether u⃗ and v⃗ are scalar multiples of each other.

Q25

a No. For instance, if the dot product is 0, then v⃗ could be any vector orthogonal to the chosen

vector.

b You would need dot products equal to the dimension of the vector. The simplest method would

be to use the standard basis vectors. The dot product of a vector with a standard basis vector is
just the corresponding coordinate. If we asked for the dot product with all standard basis vectors,
we would know all the components of v⃗.
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Q1

We need a point on the plane and a vector normal to the plane to write the normal equation.

Q3

The coefficients of the variables are the components of a normal vector.

Q5

v⃗ · ⟨6, 6, 3⟩ = 48− 18− 30 = 0. That means that v⃗ is orthogonal to the normal vector of the plane, so
v⃗ is parallel to the plane.

Q7

There are infinitely many normal vectors for each, but the easiest to choose are

a ⟨3,−8, 10⟩

b ⟨4,−5,−1⟩

Q9

A parallel plane has the same normal vectors, so we can use the same a, b and c. We plug in the origin
and solve for d.

7(0)− 11(0) + 8(0) + d = 0

d = 0

So one equation of this plane is 7x− 11y + 8z = 0.

Q11

All we know is that (0, 0, 0) lies on the plane. We plug it in and see what we can solve for.

a(0) + b(0) + c(0) + d = 0

d = 0

We know that d = 0. We don’t know anything about a, b or c.

Q13

The normal vectors are ⟨4, 6, 8⟩ and ⟨10, 15, 20⟩, the second vector is 5
2 times the first. This means the

normal vectors are parallel, so we can conclude that the planes are parallel.
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Q15

Every x y and z that satisfies the first equation must satisfy the second. We might notice that this can
hold if the second equation is −2 times the first equation, which suggets that k = (−2)(10) = −20.
Another approach would be to find a point that satisfies the first equation and plug it into the second
equation. The y-intercept is an easy choice. It is (0, 10, 0).

solve for y − intercept 3(0)− y + 4(0) + 10 = 0

10 = y

plug in (0, 10, 0) −6(0) + 2(10)− 8(0) + k = 0

k = −20

Q17

We will plug thee points into the normal equation and solve for a, b, c and d.

a(10) + b(0) + c(0) + d = 0 a = − d

10

a(0) + b(−5) + c(0) + d = 0 b =
d

5

a(0) + b(0) + c(2) + d = 0 c = −d

2

Any value of d will work. A natural choice is d = 10. Plugging this back in gives the equation

−x+ 2y − 5z + 10 = 0
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Q19

We’ll plug in the points and solve the system of equations.

a(4) + b(3) + c(0) + d = 0

a(5) + b(1) + c(1) + d = 0 ⇐= (−10a− 2b− 2c− 2d = 0)

a(−2) + b(5) + c(2) + d = 0 ⇐= +(−2a+ 5b+ 2c+ d = 0)

−12a+ 3b− d = 0

4a+ 3b+ d = 0 ⇐= +(−4a− 3b− d = 0)

−16a− 2d = 0

−d

8
= a

−4
d

8
+ 3b+ d = 0

3b+
d

2
= 0

b = −d

6
5a+ b+ c+ d = 0

−5
d

8
− d

6
+ c+ d = 0

c = −5d

24

Any value of d will work. A natural choice is d = 24. Plugging this back in gives the equation

−3x− 4y − 5z + 24 = 0.

Q21

(6, 3) is 3 units away from one point on the line, but that may not be the closest point. Looking at the
graph, we expect that there is a point on the line closer to (6, 3) somewhere in the first quadrant.

Q23

d =
3(5) + 2(2)− 5(1) + 10√

32 + 22 + 52
=

24√
38
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Q25

We compute the signed distances. We know |n⃗| is always positive. Because we only care about which
side we are on, we can leave |n⃗| uncomputed.

3(6)− 10(7) + 9(1) + 46

|n⃗|
=

3

|n⃗|
> 0

3(5)− 10(−3) + 9(−4) + 46

|n⃗|
=

−5

|n⃗|
< 0

Since one signed distance is positive and the other is negative, these points lie on opposite sides of the
plane.

Q27

a We plug the coordinates of each point into L(x1, x2, x3, x4) = 2x1 + 5x2 − 4x3 + 10x4 + k

Type Measurements L(x1, x2, x3, x4)
Cat (5, 1, 3, 6) 63 + k
Dog (7, 3, 7, 2) 21 + k
Dog (7, 2, 6, 4) 40 + k
Dog (9, 1, 8, 5) 41 + k
Cat (6, 4, 5, 5) 62 + k
Cat (9, 2, 7, 6) 60 + k

The smallest Cat value is 60 + k, the largest dog value is 41 + k. If −60 < k < −41, then the
cats will all have positive values and the dogs will all have negative values.

b We dont know excactly where other cats and dogs will fall. It makes sense to keep our dividing

hyperplane as far as possible from our existing cats an dogs to allow as much variation as possible
without crossing the hyperplane. The midpoint, k = 50.5 would be a natural choice. There may
be other reasonable approaches as well.
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Q29

The plane crosses halfway between A and B and perpendicular to the segment between them. THe
midpoint is

M =

(
1 + 7

2
,
−2 + 0

2
,
7 + 5

2

)
= (4,−1, 6)

The vector
−−→
AB is perpendicular to the plane, so we can use it as a normal vector

n⃗ = ⟨7− 1, 0− (−2), 5− 7⟩ = ⟨6, 2,−2⟩

The equation of the plane is
6(x− 4) + 2(y + 1)− 2(z − 6) = 0

Another apporach is to notice that the plane consists of the points (x, y, z) such that the following
distances are equal:√

(x− 1)2 + (y + 2)2 + (z − 7)2 =
√

(x− 7)2 + y2 + (z − 5)2

This will simplify to an equivalent equation to the one we found via the first method.

Q31

We will pick three convenient points and solve for the coefficients in the plane. An easy choice is (0, 0, 0),
(1, 0, 0) and (0, 0, 1).

a(0) + b(0) + c(0) + d = 0 d = 0

a(1) + b(0) + c(0) + d = 0 a = −d

a(0) + b(0) + c(1) + d = 0 c = −d

Thus a, c and d are all 0. The plane has equation by = 0 for any b. If we choose b = 1, this gives us
the equation for the xz-plane.
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Q1

The direction in which the function increases most quickly.

Q3

Du⃗f = ∇f · u⃗.

Q5

a
√
42 + 32 = 5

b

rise

run
=

10− 12

5
= −2

5

Q7

∇f(x, y) =
〈
2x sin(xey) + x2ey cos(xey), x3ey cos(xey)

〉

Q9

The level curve of f through (x0, y0) and the level curve of g through (x0, y0) meet at a right angle.

Q11

a We used the fact that u⃗ is a unit vector to replace our denominator (run) with 1.

b ∇f · u⃗ would still be equal to the numerator, or the rise. It would represent how much the

linearization rises as (x, y) are displaced by u⃗.

Q13

Du⃗f(x, y) = |∇f(x, y)| cos θ. This is smallest when θ = π, meaning u⃗ and ∇f(x, y) are opposite
vectors. u⃗ is a unit vector in the direction of −∇f(x, y), which can be computed:

u⃗ =
1

| − ∇f(x, y)|
(−∇f(x, y)) = − 1

|∇f(x, y)|
(∇f(x, y))
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Q15

This tells us that both components of the gradient vector are equal. If they are positive, then the
greatest increase happens in the direction of ⟨1, 1⟩. If they are negative, then the greatest increase
happens in the direction of ⟨−1,−1⟩. The correspoding unit vectors are

u⃗ =

〈
1√
2
,
1√
2

〉

Q17

The maximum is in the direction of the gradient vector.

∇f(x, y, z) = ⟨3y, 3x, 2z⟩
∇f(2, 1,−4) = ⟨3, 6,−8⟩

|∇f(2, 1,−4)| =
√
109

u⃗ =
1√
109

⟨3, 6,−8⟩

=

〈
3√
109

,
6√
109

,− 8

sqrt109

〉
Du⃗f(2, 1,−4) = ⟨3, 6,−8⟩ ·

〈
3√
109

,
6√
109

,− 8√
109

〉
=

9√
109

+
36√
109

+
64√
109

=
√
109

Q19

∇f(x, y, z) = ⟨eyz, xzeyz, xyeyz⟩
∇f(3, 0, 4) =

〈
e0, 12e0, 0e0

〉
= ⟨1, 12, 0⟩

Du⃗f(3, 0, 4) = ⟨1, 12, 0⟩ ·
〈
2

3
,−1

3
,−2

3

〉
=

2

3
− 4 + 0

= −10

3
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Q21

First we solve for u⃗. Since | ⟨2, 3⟩ | =
√
13,

u⃗ =

〈
2√
13

,
3√
13

〉
Now we use the gradient vector to solve for the directional derivative.

∇f(x, y) = ⟨2x+ 3y, 3x⟩
∇f(−1, 4) = ⟨10,−3⟩

Du⃗f(−1, 4) = ⟨10,−3⟩ ·
〈

2√
13

,
3√
13

〉
=

20√
13

− 9√
13

=
11√
13

Q23

Q25

The gradient has a negative y-component, meaning B increases as we travel downward. If we travel
above (x0, y0), we expect B to decrease, so the pixels will be dimmer.
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Q27

Let f(x, y) = x3 + 8y3 − 12xy. ∇f(3, 1.5) is a normal vector to level curve.

∇f(x, y) =
〈
3x2 − 12y, 24y2 − 12x

〉
∇f(3, 1.5) = ⟨9, 18⟩

A normal equation of the plane is

9(x− 3) + 18(y − 1.5) = 0.

Q29

We can use the gradient vector of f(x, y, z) = z3 − xz2 − yx2 as a normal vector to the plane.

∇f(x, y, z) =
〈
−z2 − 2xy,−x2, 3z2 − 2xz

〉
∇f(4,−2, 2) = ⟨12,−16,−4⟩

A normal equation of the plane is

12(x− 4)− 16(y + 2)− 4(z − 2) = 0

If you prefer, you could intead use a shorter normal vector like n⃗ = ⟨3,−4,−1⟩.

Q31

We can write the components of ∇f(5,−1) as variables and solve for them. Let ∇f(5,−1) = ⟨a, b⟩.
The dot products give us a system of two equations.

⟨a, b⟩ · ⟨−0.6, 0.8⟩ = 4 ⟨a, b⟩ · ⟨0,−1⟩ = −2

−0.6a+ 0.8b = 4 −b = −2

b = 2

−0.6a+ 0.8(2) = 4

−0.6a+ 1.6 = 4

−0.6a = 2.4

a = −4

We conclude that ∇f(5,−1) = ⟨−4, 2⟩
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Q33

The usual equation is

L(x, y) = f(x0, y0 + fx(x0, y0))(x− x0) + fy(x0, y0)(y − y0)

The partial derivatives are the components of the gradient. We can rewrite this as a dot product.

L(x, y) = f(x0, y0 +∇f(x0, y0)) · ⟨x− x0, y − y0⟩

Q35

u⃗ must be orthogonal to ∇f(a, b, c). There are infintely many unit vectors orthogonal to a given
nonzero vector in R3. Their terminal points lie in the plane normal to ∇f(a, b, c). If we place them
with a common initial point, their terminal points make a circle.
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Q37

a We compute the gradient of h:

∇h(x, y) = ⟨2x+ 2, 6
√
y⟩

∇h(2, 3) =
〈
6, 6

√
3
〉

Let u⃗ = ⟨a, b⟩. Since u⃗ is a unit vector, b =
√
1− a2. We will set up the given directional

derivative and solve.

Du⃗h(2, 3) = 6〈
6, 6

√
3
〉
·
〈
a,
√

1− a2
〉
= 6

6a+ 6
√
3
√
1− a2 = 6

√
3
√
1− a2 = 1− a

3− 3a2 = a2 − 2a+ 1

0 = 4a2 − 2a− 2

0 = 2(2a+ 1)(a− 1)

a = −1

2
and a = 1

If a = − 1
2 , then b =

√
1− 1

4 = ±
√
3
2 . If a = 1 then b = 0. However, since we squared both sides

we need to check for extraneous solutions. We plug them back into the original equation.

〈
6, 6

√
3
〉
·

〈
−1

2
,

√
3

2

〉
= 6 (valid)

〈
6, 6

√
3
〉
·

〈
−1

2
,−

√
3

2

〉
= −12 (not valid)〈

6, 6
√
3
〉
· ⟨1, 0⟩ = 6 (valid)

So u⃗ =
〈
− 1

2 ,
√
3
2

〉
or ⟨1, 0⟩

b We know that ∇h(2, 3) is normal to the tangent line. We can use the cosine formula to find the

angle between u⃗ and ∇h(2, 3).

∇h(2, 3) · u⃗ = |∇h(2, 3)||u⃗| cos θ
6 = (

√
36 + 108)(1) cos θ

1

2
= cos θ

π

3
= θ

Since ∇h(2, 3) is normal to the tangent line, the angle between u⃗ and the tangent line is

π

2
− π

3
=

π

6
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Q1

x(t) and y(t) give the coordinates of a point moving through the xy-plane at time t. The points trace
out a curve. z = f(x, y) is the height of the function above each point.

Q3

∂z
∂x assumes that other variables are held constant. dz

dx allows for them to change as x changes. We
compute it using the chain rule.

Q5

The curve is a line through (3,−2) with a slope of 4
5 . The slope is the ratio of the t coefficient in y(t

to the t coefficient in x(t).

Q7

We solve for the tangent vector and the compute its length.

⟨x′(t), y′(t)⟩ = ⟨−2 sin t, 3 cos t⟩〈
x′
(π
3

)
, y′
(π
3

)〉
=

〈
−
√
3,

3

2

〉
∣∣∣〈x′

(π
3

)
, y′
(π
3

)〉∣∣∣ =
√
(
√
3)2 +

(
3

2

)2

=

√
21

2

Q9

No. Since t2 = (−t)2 there will be two points on this curve for each positive value of x. This graph will
fail the vertical line test.

Q11

df
dt = ∇f · ⟨x′(t), y′(t)⟩. If ⟨x′(t), y′(t)⟩ is a unit vector, then this is the same as a directional derivative.
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Q13

We are looking for the value of dω
dt . We will need the partial derivatives of ω

∂ω

∂v
=

1

r

∂ω

∂r
= − v

r2

∂ω

∂v
=

1

8400000

∂ω

∂r
= − 6900

84000002

Now we evaluate the chain rule

dω

dt
=

∂ω

∂v

dv

dt
+

∂ω

∂r

dr

dt

= − 1

8400000
60− 6900

84000002
100

= − 16823

2352000000

Q15

∂h

∂t
=

∂h

∂x1

∂x1

∂t
+

∂h

∂x2

∂x2

∂t
+

∂h

∂x3

∂x3

∂t
+

∂h

∂x4

∂x4

∂t

Q17

We are looking for the value of dL
dt . First we solve for the partial derivatives of L

∂L

∂r
= mv

∂L

∂m
= rv

∂L

∂v
= rm

∂L

∂r
= (6000)(3100)

∂L

∂m
= (42000000)(3100)

∂L

∂v
= (42000000)(6000)

= 186× 105 = 1302× 108
∂L

∂v
= 252× 109

Now we apply the chain rule.

dL

dt
=

∂L

∂r

dr

dt
+

∂L

∂m

dm

dt
+

∂L

∂v

dv

dt

= (186× 105)(8× 104) + (1302× 108)(0) + (252× 109)(20)

= 6528× 109
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Q19

We need the partial derviatvies of f .

∂f

∂x
= 2xye(x

2y) ∂f

∂y
= e(x

2y) + yx2e(x
2y)

∂f

∂x
= 2(3)(−5)e−45 ∂f

∂y
= e−45 + (−5)(3)2e−45

= −30e−45 = −44e−45

Now we apply the chain rule

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

= (−30e−45)(2) + (−44e−45)(10)

= −500e−45

Q21

We use implicit differentiation on F (x, y) = y3 − xy + x2 − 4.

Fx(x, y) = −y + 2x Fy(x, y) = 3y2 − x

Fx(4, 2) = 6 Fy(4, 2) = 8

By the implicit differentiation formula we have

dy

dx
= −Fx(4, 2)

Fy(4, 2)
= −6

8
= −3

4

Q23

We use implicit differentiation on F (x, y) = x− y2.

Fx(x, y) = 1 Fy(x, y) = −2y

Fx(18,−3) = 1 Fy(18,−3) = 6

By the implicit differentiation formula we have

dy

dx
= −Fx(18,−3)

Fy(18,−3)
= −1

6
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Q25

We’ll need the partial derivatives of L

∂L

∂r
= mv

∂L

∂m
= rv

∂L

∂v
= rm

Now we use the chain rule on the equation L = c. Since we want dv
dr , we differentiate witrh respect to

r.

L = c

∂L

∂r

dr

dr
+

∂L

∂m

dm

dr
+

∂L

∂v

dv

dr
= 0

(mv)(1) + (rv)(0) + (rm)

(
dv

dr

)
= 0

(rm)

(
dv

dr

)
= −mv

dv

dr
= −v

r

There is no m in the answer. The relationship between radius and linear speed is independent of mass.

Q27

a

∂f

∂t
(x, t) =

1

2
√
x+ t

∂f

∂t
(7, 9) =

1

2
√
7 + 9

=
1

8

b By the chain rule

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂t

dt

dt

=
1

2
√
x+ t

dx

dt
+

1

2
√
x+ t

=

(
1

8

)
(−3) +

1

8

= −1

4

c ∂f
∂t is the change in f as t increases but x is held constant. df

dt is the change in f as t increases

and x changes accounding to the function x(t).
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Q29

a Let f(x, y) = x2 + 2x− y2. Then

∇f(x, y) = ⟨2x+ 2,−2y⟩
∇f(5,−3) = ⟨12, 6⟩

The slope of this vector is 6
12 = 1

2 . The tangent to the level curve is perpendicular to gradient, so
its slope is the negative of the reciprocal, which is −2.

b

dy

dx
= −fx

fy

= −2x+ 2

−2y

= −12

6
= −2
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Q31

a At (2, 1) the positive y-direction points toward higehr-values level curves, so hy(2, 1) > 0.

b Here is the diagram

c

dh

dt
=

∂h

∂x

dx

dt
+

∂h

∂y

dy

dt

= −5
∂h

∂x
+ 6

∂h

∂y

From the direction of the gradient at (2, 1) we can tell that ∂h
∂x > 0 and ∂h

∂y ≤ 0. Thus dh
dt is the

sum of two negative numbers. It must be negative as well.
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Q1

Local maximums occur only at critical points where the gradient is 0⃗ or undefined. IF the gradient had
any other value, then the function would have a positive directional dertivative in some direction.

Q3

The function must be continuous and the domain must be closed and bounded. It tells us that the
function has a maximum and minimu on the domain.

Q5

−x2 and −y2 will always be negtaive, but −10xy could be positive. Try a large positive value of x and
a large negative value of y.

f(10, 10) = −100− 100 + 1000 = 800

Since this is larger than f(0, 0), we conclude (0, 0) is not a maximum.

Q7

Larger values of x produce larger values of ex. If (a, b) produces the smallest values of f(x, y) in its
neighborhood, then is also produces the smallest values of ef(x,y) in that neighborhood.

Q9

Any direction that makes an acute angle with ⟨−5, 11⟩ will work. Travelling the in positive y-direction
is one simple way to guarantee a positive directional derivative.

Q11

No. Just because |∇f(x, y)| is minimized does not mean it is 0. A function could have |∇f(x, y)| > 0
for all (x, y) and thus have no critical points at all. An example is f(x, y) = x+ y3.

Q13

f is a polynomial, so the gradient exists at all (x, y). We will set both partial derivatives equal to 0 and
solve.

4x3 + 4y = 0 4x+ 4y3 = 0

y = −x3

4x+ 4(−x3)3 = 0

4(x− x9) = 0

4x(1− x)(1 + x)(1 + x2)(1 + x4) = 0

x = 0 or x = −1 or x = 1

y = 0 or y = 1 or y = −1

The critical points are (0, 0), (1,−1) and (−1, 1).
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Q15

Yes. We must have fxy(x0, y0) = 0, then D = 0f(yy)(x0, y0)− 02 = 0 and the second derivatives test
is inconclusive. (x0, y0) could be a maximum.

Q17

h is a polynomial, so the gradient exists at all (x, y). We will set both partial derivatives equal to 0 and
solve.

2xy − 2x = 0 x2 − 4y = 0

2x(y − 1) = 0

if x = 0 02 − 4y = 0

y = 0

if y = 1 x2 − 4(1) = 0

(x− 2)(x+ 2) = 0

x = 2 or x = −2

The critical points are (0, 0), (2, 1) and (−2, 1). For the second derivatives test we compute

D = hxxhyy − (hxy)
2

= (2y − 2)(−4)− (2x)2

= 8− 8y − 4x2

at (0, 0) D = 8 > 0 and hxx = −2 < 0 local max

at (±2, 1) D = −16 < 0 saddle point
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Q19

f is a polynomial, so the gradient exists at all (x, y). We will set both partial derivatives equal to 0 and
solve.

6x2 − 12y = 0 −12x+ 6y = 0

y = 2x

6x2 − 12(2x) = 0

6x(x− 4) = 0

if x = 0 −12(0) + 6y = 0

y = 0

if x = 4 −12(4) + 6y = 0

y = 8

The critical points are (0, 0), and (4, 8). For the second derivatives test we compute

D = fxxfyy − (fxy)
2

D = (12x)(6)− (−12)2

D = 72x− 144

at (0, 0) D = −144 < 0 saddle point

at (4, 8) D = 144 > 0 and hxx = 48 > 0 local min
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Q21

f is a polynomial, so the gradient exists at all (x, y). We will set both partial derivatives equal to 0 and
solve.

3x2 − 30x− 9 + 12y = 0 12x− 6y − 18 = 0

12x− 18 = 6y

2x− 3 = y

3x2 − 30x− 9 + 12(2x− 3) = 0

3x2 − 6x− 45 = 0

3(x− 5)(x+ 3) = 0

if x = 5 2(5)− 3 = y

7 = y

if x = −3 2(−3)− 3 = 0

−9 = y

The critical points are (5, 7), and (−3,−9). For the second derivatives test we compute

D = fxxfyy − (fxy)
2

D = (6x− 30)(−6)− (12)2

D = 36− 36x

at (5, 7) D = −144 < 0 saddle point

at (−3,−9) D = 144 > 0 and hxx = −48 < 0 local max

Q23

Since larger values of z give larger values of ez, it sufficies to find the local minimums and maximums
of f(x, y) = x3 + y2 − 12x + 10y. f is a polynomial, so the gradient exists at all (x, y). We will set
both partial derivatives equal to 0 and solve.

3x2 − 12 = 0 2y + 10 = 0

3(x− 2)(x+ 2) = 0 2(y + 5) = 0

x = ±2 y = −5

The critical points are (±2,−5). For the second derivatives test we compute

D = fxxfyy − (fxy)
2

D = (6x)(2)− 02

at (2, 1) D = 12 > 0 and hxx = 6 > 0 local min

at (−2, 1) D = −12 < 0 saddle point
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Q25

D contains its boundary points, so it is closed. D extends forever, so it is unbounded.

Q27

D does not contain the boundary line x = 0, so it is not closed. D extends forever, so it is unbounded.

Q29

D is the region above the parabola y = x2. This is unbounded. The Extreme Value Theorem does not
apply.
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Q31

We solve for where y = x2 intersects x2 + y2 = 20

x2 + y2 = 20

x2 + (x2)2 = 20

x4 + x2 − 20 = 0

(x2 + 5)(x− 2)(x+ 2) = 0

x = 2 or x = −2

y = ±22 = 4

The places we need to check are

The interior of the region

On the circle x2 + y2 = 20

On the parabola

At the points (±2, 4)
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Q33

f is continuous, and a triangle is closed and bounded, so the Extreme Value Theorem applies. We look
for the maximum and minimum in the folowing places:

In the interior. ∇f =
〈
ex+3y, 3ex+3y

〉
. This is never 0⃗, so there are no interior critical points.

On the segment from (0, 0) to (6, 0), y = 0.

f(x, 0) = ex+0

= ex

f ′(x) = ex

This is never 0. There are no critical points on this segment.

On the segment from (0, 0) to (0, 3), x = 0.

f(0, y) = e0+3y

= e3y

f ′(y) = 3e3y

This is never 0. There are no critical points on this segment.

On the segment from (6, 0) to (0, 3), y = 3− 1
2x.

f

(
x, 3− 1

2
x

)
= ex+3(3− 1

2x)

f(x) = e9−
1
2x

f ′(x) = −1

2
e9−

1
2x

This is never 0. There are no critical points on this segment.

The endpoints (0, 0), (6, 0) and (0, 3) cannot be ruled out.

To find the maximum and minimum, we evaluate the function on the points we found.

f(0, 0) = 1 minimum

f(6, 0) = e6

f(0, 3) = e9 maximum

Q35

Here is the domain. It is closed and bounded, and f is continuous.
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Now we look for critical points

On interior

∇f(x, y) = ⟨3x2 − 12, 3y2 − 3⟩
Set 3x2 − 12 = 0 and 3y2 − 3 = 0

3(x− 2)(x+ 2) = 0 3(y − 1)(y + 1) = 0

x = ±2 y = ±1

We obtain four critical points (±2,±1) but only two of them (2,±1) are in the domain.

On y = 2

f(x, 2) = x3 − 12x+ 8− 6

f ′(x) = 3x2 − 12

Set 0 = 3x2 − 12

0 = 3(x− 2)(x+ 2)

±2 = x

We obtain two critical points (±2, 2) but only (2, 2) is in the domain.

On y = −2

f(x, 2) = x3 − 12x− 8 + 6

f ′(x) = 3x2 − 12

Set 0 = 3x2 − 12

0 = 3(x− 2)(x+ 2)

±2 = x

We obtain two critical points (±2,−2) but only (2,−2) is in the domain.

On x = 0

f(0, y) = y3 − 3y

f ′(y) = 3y2 − 3

Set 0 = 3y3 − 3

0 = 3(y − 1)(y + 1)

±1 = y

We obtain two critical points (0,±1).
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On x = 4

f(0, y) = 64− 48 + y3 − 3y

f ′(y) = 3y2 − 3

Set 0 = 3y3 − 3

0 = 3(y − 1)(y + 1)

±1 = y

We obtain two critical points (4,±1).

We cannot rule out the endpoints (0,±2) and (4,±2).

We plug in all of our potential points and evaluate.

f(0, 2) = 2

f(0, 1) = −2

f(0,−1) = 2

f(0,−2) = −2

f(2, 2) = −14

f(2, 1) = −18 minimum

f(2,−1) = −14

f(2,−2) = −18 minimum

f(4, 2) = 14 maximum

f(4, 1) = 10

f(4,−1) = 14 maximum

f(4,−2) = 10

Q37

a ∇f = ⟨2x− 4y,−4x+ 8y⟩. We set this equal to 0⃗ and solve.

2x− 4y = 0 −4x+ 8y = 0

x = 2y

−4(2y) + 8y = 0

0 = 0

Thus every point on x = 2y is a critical point.

b D = (2)(8)− (−4)2 = 0, so the second derivatives test is inconclusive at every critical point.

c f(x, y) can be factored into (x− 2y)2. A square cannot be less than 0, and f is equal to 0 when

x = 2y. This tells us that the critical points are all minimums.
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Q1

A constraint is an equation that we require our inputs to satisfy in a maximization or minimization
problem.

Q3

It is always closed. It may or may not be bounded.

Q5

13x+ 22y + 11z = 230

Q7

If we let g(x, y, z) = x2 + y2 + z2, the sphere is a level set of g. ∇g(P ) is normal to the tangent plane
of the sphere. Since ∇f = λ∇g, ∇f(P ) is either 0⃗ or is also normal to the tangent plane.

Q9

a Yes. Since (a, b) is a local maximum, (a, b) has a greater value than all nearby points (both on

the constraint and not). Thus it has a greater value than all nearby points on the constraint.

b Since f is smooth and (a, b) is a local maximum, ∇f(a, b) = 0⃗. Unless g(a, b) = 0⃗, the method

of Lagrange multipliers demands that 0⃗ = ∇f(a, b) = λ∇g(a, b). In this case, λ = 0.
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Q11

f(x, y) = y − x2 is our objective function g(x, y) = x2 + y2 = 4 is our constraint.

∇f(x, y) = ⟨−2x, 1⟩
∇g(x, y) = ⟨2x, 2y⟩

∇g(x, y) = 0⃗ only at the origin, which is not on the constraint. Thus the maximum must satisfy
∇f = λ∇g and g(x, y) = 4.

−2x = λ2x 1 = λ2y x2 + y2 = 4

−λ2x− 2x = 0

−2x(λ+ 1) = 0

if x = 0 02 + y2 = 4

y = ±2

if λ = −1 1 = (−1)(2y)

−1

2
= y

x2 +

(
−1

2

)2

= 4

x2 =
15

4

x = ±
√
15

2

One of these is the maximum. To find it we evalaute f at each point.

f(0, 2) = 2 maximum

f(0,−2) = −2

f

(
±
√
15

2
,−1

2

)
= −17

4
minimum
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Q13

Let g(x, y, z) = x2 + y2 + z2.

∇f(x, y, z) = ⟨yz, xz, xy⟩
∇g(x, y, z) = ⟨2x, 2y, 2z⟩

∇g(x, y, z) = 0⃗ only at the origin, which is not on the constraint. The maximum must satisfy
∇f(x, y, z) = λ∇g(x, y, z). We can exploit the symmetry to make three of the equations have the
same left side.

yz = λ2x xz = λ2y xy = λ2z x2 + y2 + z2 = 36
xyz

2λ
= x2 xyz

2λ
= y2

xyz

2λ
= z2

y2 = x2 z2 = y2

y = ±x z = ±y

x2 + (±x)2 ++(±x)2 = 36

3x2 = 36

x = ±
√
12

Since we multiplied both sides by x, y and z, the other possibility is that one of these variables is 0.

f(anything with a 0) = 0

f(±
√
12,±

√
12,±

√
12) = ±123/2

The maximum value is 123/2, the minimum is −123/2.
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Q15

Let g(x, y, z) = 25x2 + y2 + 4z2.

∇f(x, y, z) = ⟨0, 3, 2⟩
∇g(x, y, z) = ⟨50x, 2y, 8z⟩

∇g(x, y, z) = 0⃗ only at the origin, which is not on the constraint. The maximum must satisfy
∇f(x, y, z) = λ∇g(x, y, z). Two of the equations show us that λ ̸= 0, y ̸= 0 and z ̸= 0.

0 = λ50x 3 = λ2y 2 = λ8z 25x2 + y2 + 4z2 = 100

0 = x

3

2y
= λ

2 =
3

2y
(8z)

y = 6z

25(0) + (6z)2 + 4z2 = 100

40z2 = 100

z = ±
√

5

2

y = ±3
√
10

We evaluate f on these points

f

(
0, 3

√
10,

√
5

2

)
= 10

√
10 maximum

f

(
0,−3

√
10,−

√
5

2

)
= −10

√
10 minimum

Q17

f is continuous and D is closed and bounded, so a maximum exists. Furthermore, the maximum cannot
lie in the interior of D, because f has no critical points. Thus it must be on the boundary circle.
g(x, y) = x2 + y2 has a nonzero gradient on this circle, so ∇f = λ∇g must hold at the maximum.

Q19

Here is the domain. It is closed and bounded and f is continuous, so a maximum and minimum exist.
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Now we look for critical points.

On the interior:

∇f(x, y) = ⟨2x,−1⟩

This is never ⟨0, 0⟩, so there are no ceritical points in the interior.

On x = 0, we substitute

f(0, y) = 02 − y = −y

f ′(y) = −1

This is never 0, so there are no critical points on x = 0.

On y = 0, we substitute

f(x, 0) = x2 − 0 = x2

f ′(x) = 2x

Set 0 = 2x

0 = x

The point (0, 0) is a critical point.

On x2 + y2 = 1, we can substitute x2 = 1− y2

f(x, y) = 1− y2 − y

f ′(y) = −2y − 1

Set 0 = −2y − 1

−1

2
= y

x2 = 1−
(
1

2

)2

x = ±
√

3

4

We obtain critical points
(
±
√

3
4 ,−

1
2

)
but only the positive value of x is in the domain.

We also cannot rule out the endpoints of the curves which are (0, 0), (1, 0) and (0,−1).
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We plug in all of our potential points and evaluate.

f(0, 0) = 0 minimum

f(1, 0) = 1

f(0,−1) = 1

f

(√
3

4
,−1

2

)
=

5

4
maximum

The maximum value is 5
4 . The minimum is 0.

Q21

We solve for the intersection of y = −x with x2 + y2 = 20 by substitution:

x2 + (−x)2 = 20

2x2 = 20

x2 = 10

x = ±
√
10

y = ∓
√
10

D is closed and bounded and f is continuous so the EVT applies; one of our critical points is the
maximum and one is the minimum. We look for critical points in the following places.

In the interior

∇f(x, y) =
〈
4x3y, x4

〉
(never undefined)

Set 4x3y = 0 x4 = 0

x = 0

There are infinitely many critical points, of the form (0, y).

On y = −x. We use substitution

f(x) = x4(−x) = −x5

f ′(x) = −5x4 (never undefined)

Set − 5x4 = 0

x = 0

y = 0

This gives us the critical point (0, 0), which we already had.
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On x2 + y2 = 20 we use Lagrange. Set g(x, y) = x2 + y2. ∇g(x, y) = ⟨2x, 2y⟩, which is never
⟨0, 0⟩ on the constraint. All that remains is to solve ∇f = λ∇g

4x3y = λ2x x4 = λ2y x2 + y2 = 20

4x3y2 = x(λ2y)

4x3y2 = x(x4)

0 = x5 − 4x3y2

0 = x3(x− 2y)(x+ 2y)

if 0 = x

02 + y2 = 20

y = ±
√
20

if ± 2y = x (±2y)2 + y2 = 20

5y2 = 20

y = ±2 x = ±4

This gives us the critical points (0,±
√
20), which we already had and (±4,±2), of which only

(4, 2) and (4,−2) lie in the domain.

We also cannot rule out the intersections (−
√
10,

√
10) and (

√
10,−

√
10).

Now we plug in all the points we found

f(0, y) = 0

f(4, 2) = 512 (maximum)

f(4−, 2) = −512 (minimum)

f(−
√
10,

√
10) = 100

√
10 ≈ 300

f(
√
10,−

√
10) = −100

√
10 ≈ −300

Q23

We solve for the intersection of y = −x with x2 + y2 = 20 by substitution:

x2 + (−x)2 = 20

2x2 = 20

x2 = 10

x = ±
√
10

y = ∓
√
10

D is closed and bounded and f is continuous so the EVT applies; one of our critical points is the
maximum and one is the minimum. We look for critical points in the following places.

150



Solutions to Odd-Numbered Problems

In the interior

∇f(x, y) =
〈
4x3y, x4

〉
(never undefined)

Set 4x3y = 0 x4 = 0

x = 0

There are infinitely many critical points, of the form (0, y).

On y = −x. We use substitution

f(x) = x4(−x) = −x5

f ′(x) = −5x4 (never undefined)

Set − 5x4 = 0

x = 0

y = 0

This gives us the critical point (0, 0), which we already had.

On x2 + y2 = 20 we use Lagrange. Set g(x, y) = x2 + y2. ∇g(x, y) = ⟨2x, 2y⟩, which is never
⟨0, 0⟩ on the constraint. All that remains is to solve ∇f = λ∇g

4x3y = λ2x x4 = λ2y x2 + y2 = 20

4x3y2 = x(λ2y)

4x3y2 = x(x4)

0 = x5 − 4x3y2

0 = x3(x− 2y)(x+ 2y)

if 0 = x

02 + y2 = 20

y = ±
√
20

if ± 2y = x (±2y)2 + y2 = 20

5y2 = 20

y = ±2 x = ±4

This gives us the critical points (0,±
√
20), which we already had and (±4,±2), of which only

(4, 2) and (4,−2) lie in the domain.

We also cannot rule out the intersections (−
√
10,

√
10) and (

√
10,−

√
10).

Now we plug in all the points we found

f(0, y) = 0

f(4, 2) = 512 (maximum)

f(4−, 2) = −512 (minimum)

f(−
√
10,

√
10) = 100

√
10 ≈ 300

f(
√
10,−

√
10) = −100

√
10 ≈ −300
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Q25

Since our constraint is g(x, y) ≤ c, that means values of g smaller than c are in D, so ∇g(P ) must
point out of D. Since ∇f(P ) also points out of D, λ must be positive.

Q27

The constraints have gradients ∇g = ⟨1, 1⟩ and ∇h = ⟨1,−1⟩. We get four equations that nicely pair
off to add and solve.

fx(x, y) = λ+ µ x+ y = 1

+fy(x, y) = λ− µ +x− y = 0

fx(x, y) + fy(x, y) = 2λ 2x = 1

1

2
(fx(x, y) + fy(x, y)) = λ x =

1

2

fx(x, y) =
1

2
(fx(x, y) + fy(x, y)) + µ

1

2
+ y = 1

1

2
(fx(x, y)− fy(x, y)) = µ y =

1

2

This suggets that no matter what the derivatvies of f are, there is a solution at (x, y) =
(
1
2 ,

1
2

)
. This

is the only point that satisfies both constraints, so it will automatically be the maximum and minimum
of the constrained optimziation.
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Q29

a The distance to the origin is
√
x2 + y2 + z2. It is easier to minimize f(x, y, z) = x2 + y2 + z2

instead, since larger numbers have larger sqaure roots. Our constraint is g(x, y, z) = 7x + 6y −
3z − 42.

∇f(x, y, z) = ⟨2x, 2y, 2z⟩
∇g(x, y, z) = ⟨7, 6,−3⟩

∇g(x, y, z) is never 0⃗, so the minimum must satisfy ∇f(P ) = λ∇g(P ).

2x = λ7 2y = λ6 2z = λ(−3) 7x+ 6y − 3z − 42 = 0

2x

7
= λ

2y

6
= λ −2z

3
= λ

2x

7
=

2y

6

2y

6
= −2z

3

x =
7y

6
−y

2
= z

7
7y

6
+ 6y + 3

y

2
− 42 = 0

94

6
y = 42

y =
126

47

x =
147

47
z = −63

47

Since we can be reasonably sure that a closest point exists, this must be it. Our minimum is at
A =

(
147
47 , 126

47 ,− 63
47

)
.

b If
−→
OA is not normal to the plane, then there is some B in the plane such that the angle between

−→
AO and

−−→
AB is acute. Travelling toward B from A will decrease the distance to O, which suggests

that A was not the closest point at all.

c Since
−→
OA and ⟨7, 6,−3⟩ are both normal to the plane, they are scalar multiples of each other.

Since
−→
OA = ⟨7m, 6m,−3m⟩, the coordinates of A are (7m, 6m,−3m). Since A lies on the plane

it should satisfy the equation of the plane.

7(7m) + 6(6m)− 3(−3m)− 42 = 0

94m = 42

m =
21

47

From this, we determine A =
(
147
47 , 126

47 ,− 63
47

)
.
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Q31

Let p be the price per square meter glass. 5p is the cost per square meter of slate. The cost function is
our objective function. f(ℓ, w, h) = 5pℓw + 2pℓh+ 2pwh. Our constraint is g(ℓ, w, h) = ℓwh = 20.

∇f(ℓ, w, h) = ⟨p(5w + 2h), p(5ℓ+ 2h), 2p(ℓ+ w)⟩
∇g(ℓ, w, h) = ⟨wh, ℓh, ℓw⟩

∇g(ℓ, w, h) = 0⃗ only if two or three of the dimensions are 0, which does not satisfy our constraint. In
fact none of the dimensions can be 0, so we can divide by them when solving ∇f = λ∇g.

p(5w + 2h) = λwh p(5ℓ+ 2h) = λℓh 2p(ℓ+ w) = λℓw ℓwh = 20(
5

h
+

2

w

)
=

λ

p

(
5

h
+

2

ℓ

)
=

λ

p

(
2

w
+

2

ℓ

)
=

λ

p(
5

h
+

2

w

)
=

(
5

h
+

2

ℓ

) (
5

h
+

2

ℓ

)
=

(
2

w
+

2

ℓ

)
2

w
=

2

ℓ

5

h
=

2

w

w = ℓ
5

2
w = h

(w)w

(
5

2
w

)
= 20

5

2
w3 = 20

w = 2

2 = ℓ 5 = h

Assuming a minimum cost exists, (ℓ, w, h) = (2, 2, 5) must be the minimum. The aquarium should have
a 2m by 2m square base and a height of 5m.
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Q1

The use prisms of any shape base. The height is given by the height of the surface.

Q3

Fubini’s Theorem tells us that we can compute a double integral (dA) as an iterated integral (dydx).

Q5

As the side lengths shrink to 0, the areas of the triangles will shrink to 0 as well, even if we add them
all together. Thus the prisms above them will contribute an arbitrarily small amount of volume to our
approximation. Therefore it doesn’t matter whether we include them or not, when taking a limit.

Q7

A = (3)(3) = 9. Our test points are (3, 3), (6, 3), (3, 6),
(6, 6), (3, 9), and (6, 9).∫∫

D

f(x, y) dA ≈
∑
i

f(x∗
i , y

∗
i )A

≈ (3)(3)(9) + (6)(3)(9) + (3)(6)(9)

+ (6)(6)(9) + (3)(9)(9) + (6)(9)(9)

≈ 9(9 + 18 + 18 + 36 + 27 + 54)

≈ 9(162)

≈ 1458
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Q9

a

A = 2× 2 = 4. The test points are marked in the diagram.∫ 6

0

∫ 9

5

x

y
dydx ≈

∑
i

f(x∗
i , y

∗
i )A

≈
(
2

5
+

4

5
+

6

5
+

2

7
+

4

7
+

6

7

)
4

≈ 48

5
+

48

7

≈ 576

35

b In the first quadrant, the function x
y increases as x increases and decreases as y increases. Thus

the lower right corner, which has the greatest x and least y in each square, has the greatest
value of f in each square. This suggests that using the lower right corners as test points will
overestimate the true value of the integral.

Q11

The area of the y = 2 cross-section is obtained by setting y equal to 2 and integrating f(x, y) with
respect to x.

Area =

∫ 5

0

f(x, 2) dx

=

∫ 5

0

4 sinπx+ 9 dx

= − 4

π
cos(πx) + 9x

∣∣∣∣5
0

= − 4

π
(−1) + 36 +

4

π
(1)− 0

= 36 +
8

π
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Q13

∫∫
R

y2 sinπx+ 9 dA =

∫ 4

0

∫ 3

0

y2 sinπx+ 9 dA

=

∫ 5

0

y3

3
sinπx+ 9y

∣∣∣∣3
0

dx

=

∫ 5

0

9 sinπx+ 27 dx

= − 9

π
cosπx+ 27x

∣∣∣∣5
0

= − 9

π
(−1) + (27)(4) +

9

π
(1)− (27)(0)

= 108 +
18

π

Q15

∫ 5

4

∫ 3

0

yex dydx =

∫ 5

4

y2ex

2

∣∣∣∣3
0

dx

=

∫ 5

4

9

2
ex − 0ex dx

=
9

2
ex
∣∣∣∣5
4

=
9

2
e5 − 9

2
e4

Q17

A(x) =
∫ d

c
f(x)g(y) dy. Since x is not a variable of integration, f(x) is a constant multiple, so we can

rewrite A(x) = f(x)
∫ d

c
g(y) dy.

Q19

There are infinitely many ways to break up the integrand. The most straightforward way is

∫∫
R

y2 sinπx dA =(∫ 5

0

sin(πx) dx

)(∫ 3

0

y2 dy

)
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Q21

mass =

∫∫
R

3 + sin 2x dA

=

∫ 4

0

∫ 10

0

3 + sin 2x dydx

=

∫ 4

0

3y + y sin 2x
∣∣∣10
0

dx

=

∫ 4

0

30 + 10 sin 2x− 0− 0 dx

= 30x− 5 cos 2x
∣∣∣4
0

= (30)(4)− 5 cos 8− (0)(4) + 5 cos 0

= 125− 5 cos 8

Q23

We could approximate this region by prisms over R whose height is the vertical distance between f(x, y)
and g(x, y). The approximation can be written carefully to fit the definition of a double integral.

Volume = lim
|A|→0

n∑
i=1

(g(x∗
1, y

∗
1)− f(x∗

1, y
∗
i ))Ai =

∫∫
R

(g(x, y)− f(x, y)) dA
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Q1

Choose an inner and outer variable

Identify the upper and lower bounds of the inner vairable, which may be functions of the outer
variable. If necessary, break the region into pieces.

Set the bounds of the outer variable to the highest and lowest values of that variable in the region.

Q3

Anti-symmetry is when a function has opposite values on the other side of some line of symmetry. If a
region is symmetric across this line, then the integral of the anti-symmetric function on that region is 0.

Q5

The upper y-bound is the line from (4, 0) to (0, 8). This has equation y = −2x+8. The lower y-bound
is the line from (4, 0) to (0,−2). This has equation y = 1

2x− 2.∫∫
D

x2y dA =

∫ 4

0

∫ −2x+8

1
2x−2

x2y dydx

=

∫ 4

0

x2y2

2

∣∣∣∣−2x+8

1
2x−2

dx

=

∫ 4

0

x2

2

(
4x2 − 32x+ 64− 1

4
x2 + 2x− 4

)
dx

=

∫ 4

0

1

8
(15x4 − 120x3 + 240x2) dx

=
1

8
(3x5 − 30x4 + 80x3)

∣∣∣∣4
0

=
1

8
(3072− 7680 + 5120− 0 + 0− 0)

=
512

8
= 64
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Q7

The x bounds of D are 3 ≤ x ≤ 6. At each value of x, the cross sections have a y-lower bound on
the segment from (3, 1) to (6, 4) and a y upper bound on the segment from (3, 6) to (6, 5). We write
equations for each.

m =
4− 1

6− 3
m =

5− 6

6− 3
(rise/run)

= 1 = −1

3

y − 1 = 1(x− 3) y − 6 = −1

3
(x− 3) (point-slope form)

y = x− 2 y = −1

3
x+ 7 (solve for y)

Now we can set up the iterated integral∫ 6

3

∫ − 1
3x+7

x−2

f(x, y) dydx
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Q9

First we compute the intersections

6− x2 = x

0 = x2 + x− 6

0 = (x+ 3)(x− 2)

−3 or 2 = x

We can use 0 as a test point to see 6− x2 is the upper bound and x is the lower bound.∫∫
D

xey dA =

∫ 2

−3

∫ 6−x2

x

xey dydx

=

∫ 2

−3

xey
∣∣∣6−x2

x
dx

=

∫ 2

−3

xe6−x2

− xex dx

= −1

2
e6−x2

− xex + ex
∣∣∣∣2
−3

u-sub and by parts

=

(
−1

2
e2 − 2e2 + e2

)
−
(
−1

2
e−3 + 3e−3 + e−3

)
= −3

2
e2 − 7

2
e−3
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Q11

The line from (0, 3) to (9, 0) has equation y = − 1
3x+3 and is the lower bound of y for all values

of x.

The line from (0, 3) to (7, 10) has equation y = x+3 and is the upper bound of y for 0 ≤ x ≤ 7.

The line from (7, 10) to (9, 0) has equation y = −5x + 45 and is the upper bound of y for
7 ≤ x ≤ 9.

Since the upper bound changes at x = 7 we divide T into two regions to write the integral∫∫
T

f(x, y) dA =

∫ 7

0

∫ x+3

− 1
3x+3

f(x, y) dydx+

∫ 9

7

∫ −5x+45

− 1
3x+3

f(x, y) dydx
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Q13

First we compute the intersections

lnx = 4− lnx y = ln 1 y = 4− ln 1

2 lnx = 4 y = 0 y = 4

lnx = 2

x = e2

y = ln e2

y = 2

For y as the inner variable, we can use 1 as a test point to see 4 − lnx is the upper bound and
lnx is the lower bound. ∫∫

D

f(x, y) dA =

∫ e2

1

∫ 4−ln x

ln x

f(x, y) dydx

For x as the inner variable, we invert the functions x = ey and x = e4−y. x = 1 is the lower
bound. The upper bounds switch at the intersection y = 2.∫∫

D

f(x, y) dA =

∫ 2

0

∫ ey

1

f(x, y) dxdy +

∫ 4

2

∫ e4−y

1

f(x, y) dxdy
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Q15

First we need to solve for the intersections

√
x = 27

√
x

√
x = 90− x 27

√
x = 90− x

0 = 26
√
x x+

√
x− 90 = 0 x+ 27

√
x− 90 = 0

0 = x (
√
x+ 10)(

√
x− 9) = 0 (

√
x+ 30)(

√
x− 3) = 0

0 = y x = 81 x = 9

y = 9 y = 81

a

∫∫
D

f(x, y) dA =

∫ 9

0

∫ 27
√
x

√
x

f(x, y) dydx+

∫ 81

9

∫ 90−x

√
x

f(x, y) dydx

b We need to invert all of our boundary functions.

y = 90− x ⇒ x = 90− y

y =
√
x ⇒ x = y2

y = 27
√
x ⇒ x =

y2

729

We can now rewrite the integral∫∫
D

f(x, y) dA =

∫ 9

0

∫ y2

y2/729

f(x, y) dxdy +

∫ 81

9

∫ 90−y

y2/729

f(x, y) dxdy
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Q17

This region is bounded above and below by y = 10− 2x and y = 0. These intersect at x = 5, so that
explains one of the x-bounds. The other bound must be the vetical line x = 1.

From the diagram, we see that the upper bound of x is y = 10− 2x which inverts to x = 5− y
2 .∫ 5

1

∫ 10−2x

0

f(x, y) dydx =

∫ 8

0

∫ 5−y/2

1

f(x, y) dxdy

Q19

The domain of integration is a circle of radius 8 centered at the origin. This is symmetric across any
line through the origin. f(x, y) is antisymmetric across y = 0 since 3

√
cosx sin y = − 3

√
cosx sin(−y).

Thus the integral over top half of the domain (y > 0) cancels out the integral over the bottom half
(y < 0). The total integral is 0.

Q21

R is symmetric across the line y = x. A point and its reflection have their coordinates switched, so do
make an antisymmetry argument we would need f(x, y) = −f(y, x).
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Q23

The region from x = a to x = b that lies between y = −h(x) and y = h(x) is symmetric across
the x axis. Each point (x, y) has the mirror point (x,−y), In order to apply antisymmetry, we need
f(x, y) = −f(x,−y).

Q25

No. The integral would become∫ 2

0

∫ 1− 1
2y

0

ey
2

dxdy =

∫ 2

0

xey
2
∣∣∣1− 1

2y

0
dy

=

∫ 2

0

ey
2

− 1

2
yey

2

dy

This integrand cannot be integrated by substitution. There is no way to write the antiderivative that
can be evaluated exactly.

Q27

Taking the inner integral leaves

∫ 2

0

3e3x

x
− e3x

x2
dx. We don’t know an antiderivative for this. Instead

reverse the order of integration. Since the domain is a rectangle, we can just switch the bounds.∫ 2

0

∫ 3

0

yexy dydx =

∫ 3

0

∫ 2

0

yexy dxdy

=

∫ 3

0

exy
∣∣∣2
0
dy

=

∫ 3

0

e2y − 1 dy

=
1

2
e2y − y

∣∣∣∣3
0

=
1

2
e6 − 3− e0

2
+ 0

=
e6 − 7

2

Q29

Since the integrand is 1, this is the area of the region of integration. The region of integration is a

quarter circle of radius 10. Its area is A = π102

4 = 25π.

Q31

It is a function of y. It gives the area of a cross section of the solid under z = f(x, y) above the region
between x = f(y) and x = g(y). For each y, the cross-section is perpendicular to the y-axis at that
value of y.
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Q1

We integrate the density function over the region in R2 that consists of the ordered pairs (x, y) of the
outcomes in our set.

Q3

Independence means that the outcome of one variable does not depend on the outcome of the other.

Q5

It computes the probability that x is between 0 and 1 and y is between 0 and x.

Q7

Let the region above x+ y = 3 be denoted by D.

P (X + Y ≥ 3) =

∫∫
D

fX,Y (x, y) dA

=

∫ 2

0

∫ 3

3−x

y2

18
dydx+

∫∫
rest of D

0 dA

=

∫ 2

0

y3

54

∣∣∣∣3
3−x

dx

=

∫ 2

0

27− 27 + 27x− 9x2 + x3

54
dx

=

∫ 2

0

27x− 9x2 + x3

54
dx

=
x2

4
− x3

18
+

x4

216

∣∣∣∣2
0

=
4

4
− 8

18
+

16

216

= 1− 4

9
+

2

27

=
17

27
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Q9

a Only values (x, y) in the disk x2 + y2 ≤ 8 are possible.

b The probability density function is larger when x is small and y is large. Thus the most likely

outcome is in the upper left region of the disk and the least likely outcomes are in the lower right
region of the disk.

c The region of possible outcomes where Y > X does not have a single bottom curve so we divide

it in two. We solve for the points on the circle where x = 0 and where y = x.

P (Y > X) =

∫ 2

−2
√
2

∫ √
8−x2

−
√
8−x2

4− x+ y

32π
dydx+

∫ 2

−2

∫ √
8−x2

x

4− x+ y

32π
dydx

Q11

fX(x) =

∫ ∞

−∞
fX,Y (x, y) dy. This is only nonzero, if the vertical line at x meets the nonzero inputs of

the density function. This is the case for any x in [1, 4].
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Q13

Since the density function is only nonzero in the unit disk, we have for each x that

fX(x) =

∫ √
1−x2

−
√
1−x2

fX,Y (x, y) dydx

These cross sections are longer in the y-direction near x = 0 and shorter near x = 1 or x = −1. In
order to have a constant value, the height of the cross sections (which is the height of z = fX,Y (x, y))
must be larger, on average, near x = 1 and x = −1 and smaller near x = 0.

Q15

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

=

∫ ∞

−∞
0 dy if x < 0 or x > 1

=

∫ 1

0

x+ y dy if 0 ≤ x ≤ 1

= xy +
y2

2

∣∣∣∣1
0

= x+
1

2

fX(x) =

{
x+ 1

2 if 0 ≤ x ≤ 1

0 if x < 0 or x > 1

Q17

T is the region between y = 0 and y = 1− x from x = 0 to x = 1.

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy

=

∫ ∞

−∞
0dy if x < 0 or x > 1

=

∫ 1−x

0

6xdy if 0 ≤ x ≤ 1

= 6xy
∣∣∣1−x

0

= 6x− 6x2

fX(x) =

{
6x− 6x2 if 0 ≤ x ≤ 1

0 if x < 0 or x > 1
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Q19

Since X and Y are independent, we can write fX,Y (x, y) = g(x)h(y) The given information becomes

g(3)h(7) = 0.1 g(5)h(7) = 0.15 g(5)h(2) = 0.21

Dividing the first two equations gives g(3)
g(5) =

2
3 .

fX,Y (3, 2) = g(3)h(2)

= g(5)h(2)
g(3)

g(5)

= (0.21)

(
2

3

)
= 0.14

Q21

The range of possible Y values must be the same no matter what value X takes. Thus D has a straight
top and bottom. It must be a rectangle.

Q23

The region between the circle of radius 1 and the circle of radius 2 centered at the origin.

Q25

Let Z1 = g1(X,Y ) and Z2 = g2(X,Y ). Then

E[Z1 + Z2] =

∫ ∞

−∞

∫ ∞

−∞
(g1(x, y) + g2(x, y))fX,Y (x, y) dydx

=

∫ ∞

−∞

∫ ∞

−∞
g1(x, y)fX,Y (x, y) dydx+

∫ ∞

−∞

∫ ∞

−∞
g2(x, y)fX,Y (x, y) dydx

= E[Z1] + E[Z2]

by the sum rule of integals.
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Q27

E[Y ] =

∫∫
R2

yfX,Y (x, y) dA

=

∫ 1000

0

∫ x

0

yfX,Y (x, y) dydx+

∫∫
everywhere else

yfX,Y (x, y) dA

=

∫ 1000

0

∫ x

0

y
12− 0.012x

1000

(
y

x2
− y2

x3

)
dydx

=

∫ 1000

0

12− 0.012x

1000

∫ x

0

y2

x2
− y3

x3
dydx

=

∫ 1000

0

12− 0.012x

1000

(
y3

3x2
− y4

4x2

) ∣∣∣∣x
0

dx

=

∫ 1000

0

12− 0.012x

1000

(x
3
− x

4

)
dx

=

∫ 1000

0

12− 0.012x

1000

x

12
dx

=

∫ 1000

0

x− 0.001x2

1000
dx

=
x2

2000
− 0.001x3

3000

∣∣∣∣1000
0

= 500− 1000

3

=
500

3
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Q29

Darmok’s expected arrival is the expected value of X.

E[X] =

∫∫
R2

xfX,Y (x, y) dA

=

∫ 4

0

∫ 4

0

xfX,Y (x, y) dydx+

∫∫
everywhere else

xfX,Y (x, y) dA

=

∫ 4

0

∫ 4

0

x2

32
dydx+ 0

=

(∫ 4

0

x2

32
dx

)(∫ 4

0

dy

)
=

(
x3

96

∣∣∣∣4
0

)(
y
∣∣∣4
0

)
=

(
64

96
− 0

)
(4− 0)

=
8

3

Darmok’s expected arrival time is 8
3 hours after noon, or 2 : 40PM .

Q31

Let g(x, y) = xy. Then

E[XY ] = E[g(X,Y )]

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dydx

=

∫ 1

0

∫ 1

0

(xy)(x+ y) dydx+

∫∫
elsewhere

(xy)(0)dydx

=

∫ 1

0

∫ 1

0

x2y + xy2 dydx

=

∫ 1

0

x2y2

2
+

xy3

3

∣∣∣∣1
0

dx

=

∫ 1

0

x2

2
+

x

3
dx

=
x3

6
+

x2

6

∣∣∣∣1
0

=
1

6
+

1

6

=
1

3
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Q33

Let g(x, y) = x2y2. Then

E[X2Y 2] = E[g(X,Y )]

=

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dydx

=

∫ 1

0

∫ 1

0

(x2y2)(4xy − 2x− 2y + 2) dydx+

∫∫
elsewhere

(x2y2)(0)dydx

=

∫ 1

0

∫ 1

0

4x3y3 − 2x3y2 − 2x2y3 + 2x2y2 dydx

=

∫ 1

0

x3y4 − 2x3y3

3
− x2y4

2
+

2x2y3

3

∣∣∣∣1
0

dx

−
∫ 1

0

x3 − 2x3

3
− x2

2
+

2x2

3
dx

=

∫ 1

0

x3

3
+

x2

6
dx

=
x4

12
+

x3

18

∣∣∣∣1
0

=
1

12
+

1

18

=
5

36

Q35

The unit disc has area π. The average value is

fave =
1

π

∫∫
D

f(x, y) dA

=
1

π

∫ 1

−1

∫ √
1−x2

−
√
1−x2

2y dydx

=
1

π

∫ 1

−1

y2
∣∣∣√1−x2

−
√
1−x2

=
1

π

∫ 1

−1

(1− x2)− (1− x2) dx

= 0
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Q37

The area of the triangle T is 1
2bh = 1

2 (4)(8) = 16.

fave =
1

16

∫∫
D

f(x, y) dA

=
1

16

∫ 4

0

∫ 8−2x

0

xy dydx

=
1

16

∫ 4

0

xy2

2

∣∣∣∣8−2x

0

dx

=
1

16

∫ 4

0

x(8− 2x)2

2
− 0 dx

=
1

16

∫ 4

0

2x3 − 16x2 + 32x dx

=
x4

2
− 16x3

3
+ 16x2

∣∣∣∣4
0

=
256

2
− 1024

3
+ 256

=
128

3
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Q39

a The function is positive when both factors are positive or both factors are negative.

b Since X and Y are independent, they factor into marginal density functions fX(x) = x
8 and

fY (y) =
1
4 . We can decompose the expected value integral as a product.

E[g(X)] =

∫ 4

0

∫ 4

0

(x− E[X]) (y − E[Y ])fX(x)fY (y) dydx (1)

=

(∫ 4

0

(x− E[X]) fX(x) dx

)(∫ 4

0

(y − E[Y ])fY (y) dy

)
(2)

=

(∫ 4

0

xfX(x) dx−
∫ 4

0

E[X]fX(x) dx

)(∫ 4

0

yfY (y) dy −
∫ 4

0

E[Y ]fY (y) dy

)
(3)

=

(∫ 4

0

xfX(x) dx− E[X]

∫ 4

0

fX(x) dx

)(∫ 4

0

yfY (y) dy − E[Y ]

∫ 4

0

fY (y) dy

)
(4)

=

(
E[X]− E[X]

∫ 4

0

fX(x) dx

)(
E[Y ]− E[Y ]

∫ 4

0

fY (y) dy

)
(5)

= (E[X]− E[X](1)) (E[Y ]− E[Y ](1)) (6)

= (0)(0) (7)

= 0 (8)

(1) → (2) product decomposition

(2) → (3) sum rule

(3) → (4) constant multiple rule

(4) → (5) expected value formula

(5) → (6) PDFs integrate to 1
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Q41

a y = 6x − x2 intersects to x-axis at x = 0 and x = 6, so the x values present in D are [0, 6].

These are the possible outcomes of X.

b Let A be the area of D. Since fX(x) =
∫ 6x−x2

0
1
A dy, this is largest where 6x− x2 is largest. So

X is more likely to be near 3 and less likely to be near 0 or 6.

Q43

a No 12x−x2+10y−y2

4880 cannot be expressed as a product of functions g(x)h(y). We have a theo-

rem that states that who random variables are independent, if and only if their density function
decomposes this way.

b

P (X ≤ 5) =

∫ 5

−∞

∫ ∞

−∞
fX,Y (x, y) dydx

=

∫ 5

0

∫ 10

0

12x− x2 + 10y − y2

4880
dydx+

∫∫
everywhere else

0 dA

=
1

4880

∫ 5

0

12xy − x2y + 5y2 − y3

3

∣∣∣∣10
0

dx

=
1

4880

∫ 5

0

120x− 10x2 +
500

3
dx

=
1

4880

(
60x2 − 10

3
x3 +

500

3
x

) ∣∣∣∣5
0

=
1

4880

(
1500− 1250

3
+

2500

3

)
=

(
1

4800

)(
5750

3

)
=

5750

14400

c If X > Y you pay 25Y cents, since she brings your the snacks after Y minutes. If Y > X you

pay 25X cents, because you take her place after you get the tickets. If X = Y these functions
agree. Thus the payment function is

g(x, y) =

{
25y if y ≤ x

25x if y > x

The expected value of g is

E[g(x, y)] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dydx
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fX,Y is only positive in the rectangle 0 ≤ x ≤ 12, 0 ≤ y ≤ 10. g is piecewise, so we need to
divide this domain along y = x. The first integral is easier to write as dxdy, but can be split into
two pieces instead, if you prefer.

E[g(x, y)] =

∫ 10

0

∫ 12

y

25y

(
12x− x2 + 10y − y2

4880

)
dxdy

+

∫ 10

0

∫ 10

x

25x

(
12x− x2 + 10y − y2

4880

)
dydx

Q45

a Darmok arrives between 1PM and 4PM. Jalad arrives between noon and 4PM.

b Darmok arrives more than 2 hours after Jalad if X ≥ Y + 2.
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P (X ≥ Y + 2) =

∫∫
y≤x−2

fX,Y (x, y) dA

=

∫ 4

2

∫ x−2

0

y

6x2
dydx

=

∫ 4

2

y2

12x2

∣∣∣∣x−2

0

dx

=

∫ 4

2

x2 − 4x+ 4

12x2
dx

=

∫ 4

2

1

12
− 1

3x
+

1

3x2
dx(

x

12
− ln |x|

3
− 1

3x

) ∣∣∣∣4
2

=

(
4

12
− ln 4

3
− 1

12

)
−
(

2

12
− ln 2

3
− 1

6

)
=

4

12
− 1

12
− 2

12
+

2

12
− ln 4

3
+

ln 2

3

=
1

4
− ln 2

3

c If Darmok arrives after Jalad (X ≥ Y ) then they are together for 6 −X hours. If Jalad arrives

after Darmok, they are together for 6− Y hours. Thus our function is

g(x, y) =

{
6− x if y ≤ x

6− y if y > x

The expected value of g(X,Y ) is given by

E[g(X,Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y) dydx

But this is only nonzero where f is nonzero. On that rectangle, we need to break the domain into
two pieces, one for each branch of g.
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E[g(X,Y )] =

∫ 4

1

∫ x

0

(6− x)
y

6x2
dydx+

∫ 4

1

∫ 4

x

(6− y)
y

6x2
dydx

Q47

The actual value of the integral is x3

3

∣∣∣6
0
= 72. The two equal subintervals are [0, 3] and [3, 6]. let X be

the test point of [0, 3] and Y be the test point of [3, 6]. Since they are independent, we can multiply
their individual density functions to obtain a joint density function.

fX,Y (x, y) =

{
1
9 if 0 ≤ x ≤ 3 and 3 ≤ y ≤ 6

0 otherwise

The approximation of
∫ 6

0
x2 dx is 3X2 +3Y 2. We will compute the probability that this is greater than

72. To set up the bounds of integration, we draw the region where fX,Y (x, y) ̸= 0 and x2 + y2 > 24.

P (3X2 + 3Y 2 > 72) = P (X2 + Y 2 > 24)

=

∫ 3

0

∫ 6

√
24−x2

1

9
dydx
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Q1

We can break them into three iterated integrals with differentials dx, dy and dz (in any order)

Q3

The bounds of the inner integral are given by the functions that bound the region in the direction of
that variable.

Q5

The region has volume (3)(8)(4) = 96. Each prism will have volume V = 96
12 = 8.

Q7

No. The order of the bounds corresponds to the variables in the differential. In the first integral we
have 0 ≤ x ≤ 4. In the secind we have 0 ≤ x ≤ 7.

Q9

∫ 2

0

∫ 2

0

∫ 3

0

(x+ y)z dzdydx =

∫ 2

0

∫ 2

0

(x+ y)z2

2

∣∣∣∣3
0

dydx

=

∫ 2

0

∫ 2

0

9x

2
+

9y

2
dydx

=

∫ 2

0

9xy

2
+

9y2

4

∣∣∣∣2
0

dx

=

∫ 2

0

9x+ 9− 0− 0 dx

=
9x2

2
+ 9x

∣∣∣∣2
0

=
36

2
+ 18

= 36

Q11

a When applying the Fundamental Theorem of Calculus to the first integral, the zs are replaced by

z0 and z1. In the second function, the ys are additionally replaced with y0 and y1.

b

∫ z1

z0

f(x, y, z) dz is the area below w = f(x, y, z) above each (x, y) cross section.

∫ y1

y0

∫ z1

z0

f(x, y, z) dzdy

is the volume below w = f(x, y, z) above each x cross section.
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Q13

We integrate w over z from 0 to 3, substituting x = 4 and y = 1.

Area =

∫ 3

0

4 + ez dz

= 4z + ez
∣∣∣3
0

= 12 + e3 − 0− e0

= 11 + e3

Q15

We use the triple integral formula for volume.

Volume =

∫∫∫
P

1 dV

=

∫ ℓ

0

∫ w

0

∫ h

0

dzdydx

=

∫ ℓ

0

∫ w

0

z
∣∣∣h
0

dydx

=

∫ ℓ

0

∫ w

0

h dydx

=

∫ ℓ

0

hy
∣∣∣w
0

dx

=

∫ ℓ

0

hw dx

= hwx
∣∣∣ℓ
0

= ℓwh
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Q17

They all arrive by 12 : 15, if X, Y and Z are all between 0 and 1
4 .

P

(
0 ≤ X,Y, Z ≤ 1

4

)
=

∫ 1
4

0

∫ 1
4

0

∫ 1
4

0

12

11
(1− x2yz) dzdydx

=
12

11

∫ 1
4

0

∫ 1
4

0

z − x2yz2

2

∣∣∣∣ 14
0

dydx

=
12

11

∫ 1
4

0

∫ 1
4

0

1

4
− x2y

32
dydx

=
12

11

∫ 1
4

0

y

4
− x2y2

64

∣∣∣∣ 14
0

dx

=
12

11

∫ 1
4

0

1

16
− x2

1024
dx

=
12

11

x

16
− x3

3072

∣∣∣∣ 14
0

dx

=
12

11

(
1

64
− 1

196, 608

)
=

12

11

3071

196, 608

=
3071

180, 224
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Q19

a R is a ball of radius 5, centered at the origin.

b We use z for the inner variable. x2+ y2+ z2 ≤ 25 solves to z = ±
√

25− x2 − y2. These bounds

intersect at √
25− x2 − y2 = −

√
25− x2 − y2

0 = 25− x2 − y2

x2 + y2 = 25

The xy bounds are a circle of radius 5. The y bounds solve to y = ±
√
25− x2. The circle has x

values from −5 to 5.∫∫∫
R

f(x, y, z) dV =

∫ 5

−5

∫ √
25−x2

−
√
25−x2

∫ √
25−x2−y2

−
√

25−x2−y2

f(x, y, z) dzdyd

c The value of this integral is the volume of the sphere. You may recall

V =
4

3
πr3

=
4

3
π53

=
500π

3
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Solutions to Odd-Numbered Problems

Q21

a The z lower bound is z = 9 and the z upper bound is z = 25 − x2 − y2. To find the x and y

bounds we graph y ≤ −x and y ≥ 0 and also solve

9 = 25− x2 − y2

x2 + y2 = 16

Which is a circle of radius 4. Our x and y bounds are obtained from our diagram. We can solve
for the intersection points.

This region does not have a single top curve, so we change the order to dxdy. x2+y2 = 16 solves
to x = −

√
16− y2.

∫ 2
√
2

0

∫ −y

−
√

16−y2

∫ 25−x2−y2

9

x dzdxdy

b We can see from our diagram that the domain consists of negative values of x. Thus the integrand

x is negative over the entire domain, and the integral will be negative.
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Q23

The two given graphs will be the upper and lower bounds of z. We solve for xy bounds.

x2 + y2 = 2y

x2 + y2 − 2y = 0

x2 + y2 − 2y + 1 = 1 complete the square

x2 + (y − 1)2 = 1 factor

This is a circle of radius 1 centered at (0, 1). We use (0, 1) as a test point and see that z = x2 + y2 is
lower than z = 2y on R. To write the xy bounds, we solve for y.

x2 + (y − 1)2 = 1

(y − 1)2 = 1− x2

y − 1 = ±
√
1− x2

y = 1±
√
1− x2

We can set the upper and lower y bounds equal and solve for the x bounds, or just know that the circle
extends from x = −1 to x = 1.∫∫∫

R

(y − 1) dV =

∫ 1

−1

∫ 1+
√
1−x2

1−
√
1−x2

∫ 2y

x2+y2

(y − 1) dzdydx
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Q25

The bounds of z are x2 and 16. Setting these equal gives x = ±4. The xy bounds are a rectangle
−4 ≤ x ≤ 4 and 2 ≤ y ≤ 6. We can test the z bounds using (4, 2) and see 16 > x2 on R.∫∫∫

R

x+ z dV =

∫ 4

−4

∫ 6

2

∫ 16

x2

x+ z dzdydx

=

∫ 4

−4

∫ 6

2

xz +
z2

2

∣∣∣∣16
x2

dydx

=

∫ 4

−4

∫ 6

2

16x+ 128− x3 − x4

4
dydx

=

∫ 4

−4

(16x+ 128− x3 − x4

4
)y

∣∣∣∣6
2

dx

=

∫ 4

−4

(16x+ 128− x3 − x4

4
)(6)− (16x+ 128− x3 − x4

4
)(2) dx

=

∫ 4

−4

64x+ 512− 4x3 − x4 dx

= 32x2 + 512x− x4 − x5

5

∣∣∣∣4
−4

= 512 + 2048− 256− 1024

5
− 512 + 2048 + 256− 1024

5

=
52, 736

15
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Q27

a P looks like this:

There are two upper surfaces, so we would need to split this into two integrals if we use dz as the
inner integral.

b The upper planes have slope-intercept equations z = 4− 2x and z = 4− 2y. The other bounds

were x = 0, y = 0 and z = 0. We can use x or y as the inner integral. If we choose y, the bounds
are y = 0 and y = 4−z

2 . These intersect at z = 4. To write xz-bounds, we draw the remaining
bounds:

∫∫∫
P

f(x, y, z) dV =

∫ 2

0

∫ 4−2x

0

∫ 4−z
2

0

f(x, y, z) dydzdx
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Q29

a Setting the z bounds equal gives y = 4. The xy bounds are enclosed by x = 0, y = x2 and y = 4.

∫∫∫
R

f(x, y, z) dV =

∫ 2

0

∫ 4

x2

∫ 4−y

0

f(x, y, z) dzdydx

b Setting the y bounds equal gives z = 4 − x2. The xz bounds are enclosed by x = 0, z = 0 and

z = 4− x2. ∫∫∫
R

f(x, y, z) dV =

∫ 2

0

∫ 4−x2

0

∫ 4−z

x2

f(x, y, z) dydzdx

c Setting the x bounds equal gives y = 0. The yz bounds are enclosed by y = 0, z = 0 and

z = 4− y. ∫∫∫
R

f(x, y, z) dV =

∫ 4

0

∫ 4−y

0

∫ √
y

0

f(x, y, z) dxdzdy
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Q31

First we draw P

P is bounded by x = 0, x = 4, y = 0, z = 0, and z = 2
5y − 2, which can also solve to y = 5

2z + 5.

If x is the inner variable, the bounds are x = 4 and x = 0. The yz region is a triangle.∫∫∫
P

g(x, y, z) dV =

∫ 5

0

∫ 0

2
5y−2

∫ 4

0

g(x, y, z) dxdzdy

If y is the inner variable, the bounds are y = 0 and y = 5
2z + 5. These intersect at z = −2. The

xz bounds are a rectangle.∫∫∫
P

g(x, y, z) dV =

∫ 4

0

∫ 0

−2

∫ 5
2 z+5

0

g(x, y, z) dydzdx

If z is the inner variable, the bounds are z = 0 and z = 2
5y − 2. These intersect at y = 5. The

xy bounds are a rectangle.∫∫∫
P

g(x, y, z) dV =

∫ 4

0

∫ 5

0

∫ 0

2
5y−2

g(x, y, z) dzdydx

189



Solutions to Odd-Numbered Problems

Q33

If we travel through T in the x direction, we always enter and exit on the same face, so we can use these
faces as the inner bounds of a single integral for T . Similarly, if we travel through T in the z direction,
we always enter and exit on the same face. If we travel through T in the y direction, then depending
on our position, there are two faces that could be the lower y bound and two faces that could be the
upper y bound. We cannot write T as a single integral with y as the inner variable.

Q35

This is the region above z = 0 and below z = x − y. We also have x2 ≤ y ≤ x, though y ≤ z is
extraneous. It comes from the intersection of z = 0 and z = x − y. Similarly, the bounds of x are
extraneous, since 0 and 1 are the intersections of y = x and y = x2. In summary, the region is

R = {(x, y, z) : z ≥ 0, z ≤ x− y, y ≥ x2}

With x as the inner variable, the relevent bounds solve to x ≥ y+z and x ≤ √
y. These intersect where

z =
√
y − y. The other z-bound is z = 0. Setting these equal gives y = 0 or y = 1. The integral is∫ 1

0

∫ √
y−y

0

∫ √
y

y+z

f(x, y, z) dxdzdy

Q37

∫ 4

3

∫ 8

0

∫ 1

−1

y2 sinx− ey+z dzdydx

=

∫ 4

3

∫ 8

0

∫ 1

−1

y2 sinx dzdydx−
∫ 4

3

∫ 8

0

∫ 1

−1

eyez dzdydx

=

∫ 4

3

sinx dx

∫ 8

0

y2 dy

∫ 1

−1

dz −
∫ 4

3

dx

∫ 8

0

ey dy

∫ 1

−1

ez dz
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Q39

a Only two of these inequalities involve z so z is a good choice for inner integral. The upper and

lower bounds are x2 + y2 ≤ z ≤ x2 + x+ 4.

For xy bounds we have x − 16 ≤ y ≤ 2, we also have the intersection of the top and bottom
surface:

x2 + y2 ≤ x2 + x+ 4

y2 − 4 ≤ x

We graph these below. To solve for the intersections we substitute. The only interesting intersec-
tion is y = x− 16 with the parabola:

y2 − 4 = x y = x− 16

y + 16 = x

y2 − 4 = y + 16

y2 − y − 20 = 0

(y + 4)(y − 5) = 0

if y = −4 then x = 12

if y = 5 then x = 21

We can break this into three dydx integrals or write it as one dxdy integral:∫ 2

−4

∫ y+16

y2−4

∫ x2+x+4

x2+y2

xyz dzdxdy

b We would like to apply the extreme value theorem. There are three things to verify.

f(x, y, z) = xyz is continuous because it is a polynomial.

D is closed because its inequalities are not strict (≤,≥).

D is bounded in the xy-plane, according to our picture. The z val-
ues are also bounded, because x2+y2 and x2+x+4 are continuous
functions over a closed and bounded 2-dimensional domain. Thus
D is bounded.
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The extreme value theorem therefore applies, and f is guaranteed to have a maximum on D.

Q41

We will use the volume formula. For this we need the bounds of integration for R. Rotating y = f(x)
around the x-axis gives a circle parallel to the yz-plane of radius f(x). The equation of this surface is
y2 + z2 = (f(x))2. To set up an integral, solve for z:

y2 + z2 = (f(x))2

z2 = (f(x))2 − y2

z = ±
√
(f(x))2 − y2

For xy bounds, we have x = a and x = b. We also have the intersections of the z-bounds, which are√
(f(x))2 − y2 = −

√
(f(x))2 − y2

(f(x))2 − y2 = 0

(f(x))2 = y2

±f(x) = y

We can now apply the volume formula.

Volume =

∫∫∫
R

dV

=

∫ b

a

∫ f(x)

−f(x)

∫ √
(f(x))2−y2

−
√

(f(x))2−y2

dzdydx
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