Continuous Models Numerical Methods for Deep Learning

Lars Ruthotto

Departments of Mathematics and Computer Science, Emory University

Course Overview

Course Overview

- ▶ Part 1: Linear Models
 - 1. Introduction and Applications
 - 2. Linear Models: Least-Squares and Logistic Regression
- Part 2: Neural Networks
 - 1. Introduction to Nonlinear Models
 - 2. Parametric Models, Convolutions
 - 3. Single Layer Neural Networks
 - 4. Training Algorithms for Single Layer Neural Networks
 - Neural Networks and Residual Neural Networks (ResNets)
- ▶ Part 3: Neural Networks as Differential Equations
 - 1. ResNets as ODEs
 - 2. Residual CNNs and their relation to PDEs

Minicourse Summary: Numerical Methods for DL

Learning objective: a look under the hood.

- ▶ Part 1 (linear models): foundations for deep networks
- ► Part 2 (nonlinear models): feature extraction, challenges in optimization
- Part 3 (deep continuous models): hard to optimize/analyze. new insights from ODEs/PDEs

We have only (or not even) scratched the surface. Find more challenges in:

- ► recurrent neural networks (time sequence data ~> ODEs)
- generative models and (variational) auto-encoder
- reinforcement learning