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Course Overview

I Part 1: Linear Models

1. Introduction and Applications
2. Linear Models: Least-Squares and Logistic Regression

I Part 2: Neural Networks

1. Introduction to Nonlinear Models
2. Parametric Models, Convolutions
3. Single Layer Neural Networks
4. Training Algorithms for Single Layer Neural Networks
5. Neural Networks and Residual Neural Networks

(ResNets)

I Part 3: Neural Networks as Differential Equations

1. ResNets as ODEs
2. Residual CNNs and their relation to PDEs
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Intro: Machine Learning
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Machine Learning in 3 slides

Machine learning (ML) is the scientific study of algorithms and
statistical models that computer systems use to perform a
specific task without using explicit instructions, relying on
patterns and inference instead. (wiki)

Two common tasks in machine learning:

I given data, cluster it and detect patterns in it
(unsupervised learning)

I given data and labels, find a functional relation between
them (supervised learning)
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Machine Learning in 3 slides

unsupervised semi-supervised

Unsupervised learning - given the data set Y = [y1, . . . , yn]
cluster the data into ”similar” groups (labels).

I helps find hidden patterns

I often explorative and open-ended

Semisupervised - label the data based on a few examples
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Machine Learning in 3 slides
training data trained model

Supervised learning - given the data set Y = [y1, . . . , yn] ∈ Y
and their labels C = [c1, . . . , cn] ∈ C, find the relation
f : Y → C

I models range in complexity
I older models based on support vector machines (SVM)

and kernel methods
I recently, deep neural networks (DNNs) dominate
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Learning From Data: The Core of Science
Given inputs and outputs, how to choose f ?

Option 1 (Fundamental(?) understanding): For example,
Newton’s formula

x(t) =
1

2
gt2,

with unknown parameter g .
To estimate g observe falling object

t x
0 0
1 4.9
2 20.1
3 44.1

Goal: Derive model from theory, calibrate it using data.
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Learning From Data: The Core of Science

Given inputs and outputs, how to choose f ?

Option 2 (Phenomenological models): For example, Archie’s
law - what is the electrical resistivity of a rock and how it
relates to its porosity, φ and saturation, Sw?

ρ(φ, Sw ) = aφn/2Sp
w

a, n, p unknown parameters

Obtaining parameters from observed data and lab experiments
on rocks.

Goal: Find model that consistent with fundamental theory,
without directly deriving it from theory.
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Phenomenological vs. Fundamental

Fundamental laws come from understanding(?) the
underlying process. They are assumed invariant and can
therefore be predictive(?).

Phenomenological models are data-driven. They “work” on
some given data. Hard to know what their limitations are.

But ...

I models based on understanding can do poorly - weather,
economics ...

I models based on data can sometimes do better

I how do we quantify understanding?
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Intro: Deep Learning
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Deep Neural Networks: History
I Neural Networks with a particular (deep) architecture

I Exist for a long time (70’s and even earlier) [17, 18, 14]

I Recent revolution - computational power and lots of
data [2, 16, 13]

I Can perform very well when trained with lots of data

I Applications
I Image recognition [10, 12, 13], segmentation, natural

language processing [3, 5, 11]

I A few recent news articles:
I Apple Is Bringing the AI Revolution to Your iPhone,

WIRED 2016
I Why Deep Learning Is Suddenly Changing Your Life,

FORTUNE 2016
I Data Scientist: Sexiest Job of the 21st Century, Harvard

Business Rev ’17
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Learning Objective: Demystify Deep Learning

Learning objectives of this minicourse:

I look under the hood of some deep learning examples

I describe deep learning mathematically (see also [9])

I expose numerical challenges / approaches to improve DL
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DNN - A Quick Overview - 1


yl+1 = σ(Klyl + bl)
yl+1 = yl + σ(Klyl + bl)
yl+1 = yl + σ (Llσ(Klyj + bl))

...

Here:

I l = 0, 1, 2, . . . ,N is the layer

I σ : R→ R is the activation function

I y0 = y ∈ Rnf is the input data (e.g., an image)

I c ∈ Rnc is the output (e.g. class of the image)

I Ll ,Kl ,bl are parameters of the model f
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DNN - A Quick Overview - 2

Neural networks are data interpolator/classifier when the
underlying model is unknown.

A generic way to write it is

c = f (y,θ).

I the function f is the computational model

I y ∈ Rnf is the input data (e.g., an image)

I c ∈ Rnc is the output (e.g. class of the image)

I θ ∈ Rnp are parameters of the model f

In supervised learning we have examples
{(yj , cj) : j = 1, . . . , n} and the goal is to estimate or “learn”
the parameters θ.
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Example: Classification of Hand-written Digits

I Let yj ∈ Rnf and let cj ∈ Rnc .

I The vector c is the probability of y belonging to a certain
class. Clearly, 0 ≤ cj ≤ 1 and

∑nc
j=1 cj = 1.

Examples (MNIST):

y1 y2

c1 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 0]> c2 = [0, 0.3, 0, 0, 0, 0, 0, 0.7, 0, 0]>
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Example: Classification of Natural Images
Image classification of natural images

Examples (CIFAR-10):
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Example: Semantic Segmentation

I let yj ∈ Rn be an RGB or grey valued image.

I let the pixels in cj ∈ {1, 2, 3, . . .}k denote the labels.

y, input image c, segmentation (labeled image)

Goal: Find map c = f (y,θ)
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Example: Semantic Segmentation

Problem: Given image y and label c, find a map f (·,θ) such
that c ≈ f (y,θ)

First step: Reduce the dimensionality of problem.

I extract features from the image

I classify in the feature space

Reduce the problem of learning from the image to feature
detection and classification

Possible features: Color, neighbors, edges ...
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Generalization

Suppose that we have examples {yj , cj}, j = 1, . . . , n, a
model f (y,θ) and some optimal parameter θ∗.
Let {(ytj , ctj ) : j = 1, . . . , s} be some test set, that was not
used to compute θ∗.

Loosely speaking, if

‖f (ytj ,θ
∗)− ctj ‖p is small

then the model is predictive - it generalizes well

For phenomenological models, there is no reason why the
model should generalize, but in practice it often does.
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Generalization

Why would a model generalize poorly?

1� ‖f (ytj ,θ
∗)− ctj ‖p

Two common reasons:

1. Our “optimal” θ∗ was optimal for the training but is less
so for other data

2. The chosen computational model f is poor (e.g.
quadratic model for a nonlinear function).
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Linear Models
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Supervised Learning Problem

Given examples (inputs)

Y = [y1, y2, · · · , yn] ∈ Rnf×n

and labels (outputs)

C = [c1, c2, · · · , cn] ∈ Rnc×n,

find a classification/prediction function f (·,θ), i.e.,

f (yj ,θ) ≈ cj , j = 1, . . . , n.
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Regression and Least-Squares
Simplest option, a linear model with θ = (W,b) and

f (Y,W,b) = WY + be>n ≈ C

I W ∈ Rnc×nf are weights
I b ∈ Rnc are biases
I en ∈ Rn is a vector of ones

Equivalent notation:

f (Y,W,b) =
(
W b

)(Y
e>n

)
≈ C

Problem may not have a solution, or may have infinite
solutions (when?). Solve through optimization

min
W

1

2
‖WY − C‖2

F

(Frobenius norm: ‖A‖2
F = trace(A>A) =

∑
i ,j A

2
i ,j .)
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Remark: Relation to Least-Squares
Consider the regression problem

min
W

1

2
‖WY − C‖2

F .

It is easy to see that this is equivalent to

min
W

1

2
‖Y>W> − C>‖2

F ,

which can be solved separately for each row in W

W(j , :)> = arg min
w

1

2
‖Y>w − C(j , :)>‖2

F .

Notation: Let A = Y> and X = W> (easy to add bias here),
we solve

min
X

1

2
‖AX− C>‖2

F
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Iterative Regularization

Consider
min
x
‖Ax− b‖2

I Assume that A has non-trivial null space

I The matrix A>A is not invertible

I Can we still use iterative methods (CG, CGLS, . . . )?

What are the properties of the iterates?

Excellent introduction to computational inverse
problems [7, 19, 8]
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Iterative Regularization: L-Curve
The CGLS algorithm has the following properties
I For each iteration ‖Axk − c‖2 ≤ ‖Axk−1 − c‖2

I If starting from x = 0 then ‖xk‖2 ≥ ‖xk−1‖2

I x1, x2, . . . converges to the minimum norm solution of the
problem

I Plotting ‖xk‖2 vs ‖Axk − c‖2 typically has the shape of
an L-curve
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Cross Validation

Finding good least-squares solution requires good parameter
selection.

I λ when using Tikhonov regularization (weight decay)

I number of iteration (for SD and CGLS)

Suppose that we have two different “solutions”

x1 → ‖x1‖2 = η1 ‖Ax1 − c‖2 = ρ1.

x2 → ‖x2‖2 = η2 ‖Ax2 − c‖2 = ρ2.

How to decide which one is better?
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Cross Validation

Goal: Gauge how well the model can predict new examples.

Let {ACV, cCV} be data that is not used for the training

Idea: If ‖ACVx1 − cCV‖2 ≤ ‖ACVx2 − cCV‖2, then x1 is a
better solution that x2.

When the solution depends on some hyper-parameter(s) λ, we
can phrase this as bi-level optimization problem

λ∗ = arg min
λ
‖ACVx(λ)− cCV‖2,

where x(λ) = arg minx ‖Ax− x‖2 + λ‖x‖2.
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Cross Validation

To assess the final quality of the solution cross validation is
not sufficient (why?).

Need a final testing set.

Procedure

I Divide the data into 3 groups {Atrain,ACV,Atest}.
I Use Atrain to estimate x(λ)

I Use ACV to estimate λ

I Use Atest to assess the quality of the solution

Important - we are not allowed to use Atest to tune
parameters!
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Classification
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Logistic Regression
Assume our data falls into two classes. Denote by cobs(y) the
probability that example y ∈ Rnf belongs to first category.

Since output of our classifier f (y,θ) is supposed to be
probability, use logistic sigmoid

c(y,θ) =
1

1 + exp (−f (y,θ))
.

Example (Linear Classification): If f (y,θ) is a linear function
(adding bias is easy), θ = w ∈ Rnf and

c(y,w) =
1

1 + exp(−w>y)
.

for now: consider linear models for simplicity



Intro – 33

Multinomial Logistic Regression

Suppose data falls into nc ≥ 2 categories and the components
of cobs(y) ∈ [0, 1]nc contain probabilities for each class.

Applying the logistic sigmoid to each component of f (y,W)
not enough (probabilities must sum to one). Use

c(y,W) =

(
1

e>nc exp(Wy)

)
exp(Wy).

Note: Division and exp are applied element-wise!
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Logistic Regression - Loss Function
How similar are c(·,W) and cobs(·)?

Naive idea: Let Y ∈ Rnf×n be examples
with class probabilities Cobs ∈ [0, 1]nc×n, use

φ(W) =
1

2n

n∑
j=1

‖c(yj ,W)− cj ,obs‖2
F

Problems

I ignores that c(·,W) and cobs(·) are
distributions.

I leads to non-convex objective function

Frobenius

Cross Entropy
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Cross Entropy for Multinomial Logistic Regression

Similarly, for general case (nc ≥ 2 classes, n examples).
Recall:

C(Y,W) = exp(WY) diag

(
1

e>nc exp(WY)

)

Get cross entropy by summing over all examples

E (Cobs,C(Y,W)) = −1

n
tr(C>obs log(C(Y,W))).

We will also call this the softmax (cross-entropy) function.
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Simplifying the Softmax Function
Let S = WY, then

E (Cobs,S) = −1

n
tr

(
C>obs log

(
exp(S)diag

(
1

e>nc exp(S)

)))
.

Verify that this is equal to

E (Cobs,S) =− 1

n
e>nc (Cobs � S) en

+
1

n
e>ncCobs log

(
e>nc exp(S)

)>
(� is Hadamard product, exp and log component-wise)

If Cobs has a unit row sum (why?) then e>ncC
>
obs = e>n and

E (Cobs,S) = −1

n
e>nc (Cobs � S) en +

1

n
log(e>nc exp(S))en
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Numerical Considerations

Scale to prevent overflow. Note that for an arbitrary s ∈ R we
have

E (Cobs,WY − s) = E (Cobs,WY)

This prevents overflow, but may lead to underflow (and
divisions by zero).

Note that s does not need to be the same in each row
(example). Hence, we can choose s = max(WY, [], 1) ∈ R1×n

to avoid underflow and overflow.

For stability use E (Cobs,S) where S = WY − encs.
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Linear Classification
If W can separate the classes then the goal is to minimize the
cross entropy (with some potential regularization)

W∗ = arg min
W

−1

n
e>nc (Cobs � S) en +

1

n
log(e>nc exp(S))en

subject to S = WY − encs

This is a smooth convex optimization problem
⇒ many existing optimization techniques will work

For large-scale problems, use derivative-based optimization
algorithm. (Examples: Steepest Descent, Newton-like
methods, Stochastic Gradient Descent, ADMM, . . . )

Excellent references: [15, 4, 1, 6]
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Part 1 Summary: Linear Models

I Intro to Deep Learning ( Machine Learning
I risks and promises of phenomenological models
I importance of generalization

I (Review) Linear Regression
I iterative and direct regularization
I (generalized) cross validation

I Multinomial Logistic Regression
I cross entropies
I leads to convex optimization problem

I Linear models
I well-understood, easy to use, not very powerful
I next: add nonlinearity (through neural networks)
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