Notation

Numerical Methods for Deep Learning

General Conventions

- B - matrix (bold font, upper-case)
- b - vector (bold font, lower-case)
- β - scalar (Greek letter)
- \mathcal{R} - functional or operator (calligraphic, upper-case)
- R - discrete function or operator
- j - counts examples
- i - counts iterations
- I-counts layers

Data

- n-number of examples
- n_{f} - dimension of feature vector
- n_{c}-dimension of prediction (e.g., number of classes)
$-\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{n_{f}}$ - input features
- $\mathbf{Y}=\left[\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{n}\right] \in \mathbb{R}^{n_{f} \times n}$ - feature matrix
$-\mathbf{c}_{1}, \mathbf{c}, \ldots, \mathbf{c}_{n} \in \mathbb{R}^{n_{c}}$ - output observations
- $\mathbf{C}=\left[\mathbf{c}_{1}, \mathbf{c}_{2}, \ldots, \mathbf{c}_{n}\right] \in \mathbb{R}^{n_{c} \times n}$ - observation matrix

Neural Networks

- $f(\mathbf{y}, \boldsymbol{\theta})=\mathbf{c}$ - model represented by neural net
- $\boldsymbol{\theta} \in \mathbb{R}^{n_{p}}$ - parameters of model
- $\boldsymbol{\theta}^{(1)}, \boldsymbol{\theta}^{(2)}, \ldots$ - parts of weights. Division clear from context. Examples

1. $\boldsymbol{\theta}^{(j)}$ are weights of j th layer.
2. $\boldsymbol{\theta}^{(1)}$ are weights for convolution kernel, $\boldsymbol{\theta}^{(2)}$ are weights for bias

- N - number of layers
- K - linear operator applied to features
- b-bias
- $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ - activation function

Optimization and Loss

- $E(\mathbf{Y}, \mathbf{C}, \mathbf{W})$ - loss function parameterized by weights \mathbf{W}
- $R(\boldsymbol{\theta}, \mathbf{W}), R(\boldsymbol{\theta}), R(\mathbf{W})$ - regularizers
- $\phi: \mathbb{R}^{k} \rightarrow \mathbb{R}$ - generic objective function
- $\boldsymbol{\theta}^{*}$ - minimizer of a function, i.e.,

$$
\boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\arg \min } \phi(\boldsymbol{\theta})
$$

- $\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots$ - iterates
- d, D - search directions
- α - step size
- λ - regularization parameter
- $\nabla_{\mathrm{x}} F$ - gradient, if $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{\prime}$, then $\nabla F(\mathbf{x}) \in \mathbb{R}^{k \times 1}$
- $\mathbf{J}_{\mathbf{x}} F$ - Jacobian of F with respect to $\mathbf{x}, \mathbf{J}_{\mathrm{x}} F=\left(\nabla_{\mathrm{x}} F\right)^{\top}$

Linear Algebra - 1

- $\mathbf{e}_{k} \in \mathbb{R}^{k}$ - vector of all ones
- $\mathbf{I}_{k}-k \times k$ identity matrix
- $\kappa(\mathbf{A})$ - condition number of \mathbf{A}
- $\sigma_{1}(\mathbf{A}) \geq \ldots \geq \sigma_{k}(\mathbf{A}) \geq 0$ - singular values of \mathbf{A}
- $\lambda_{1}(\mathbf{A}), \ldots$ - eigenvalues of \mathbf{A}
- $\operatorname{tr}(\mathbf{A})$ - trace of square matrix, i.e., sum of diagonal elements

Linear Algebra - 2

- \odot - Hadamard product

$$
\mathbf{C}_{i j}=\mathbf{A}_{i j} \cdot \mathbf{B}_{i j}, \quad \text { for } \quad \mathbf{B}, \mathbf{A} \in \mathbb{R}^{k \times 1}
$$

MATLAB: $\mathrm{C}=\mathrm{A} . * \mathrm{~B}$
$-\otimes$ - Kronecker product

$$
\mathbf{A} \otimes \mathbf{B}=\left(\begin{array}{rrrr}
\mathbf{A}_{11} \mathbf{B} & \mathbf{A}_{12} \mathbf{B} & \ldots & \mathbf{A}_{1 /} \mathbf{B} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{A}_{k 1} \mathbf{B} & \mathbf{A}_{k 2} \mathbf{B} & \ldots & \mathbf{A}_{k \mid} \mathbf{B}
\end{array}\right)
$$

MATLAB: $\mathrm{C}=\operatorname{kron}(\mathrm{A}, \mathrm{B})$

- $\operatorname{vec}(\mathbf{A})$ - reshape matrix \mathbf{A} into vector (column-wise).

$$
\text { Example: } \quad \operatorname{vec}\left(\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)\right)=\left(\begin{array}{c}
\mathbf{A}_{11} \\
\mathbf{A}_{21} \\
\mathbf{A}_{12} \\
\mathbf{A}_{22}
\end{array}\right)
$$

MATLAB: $\mathrm{a}=\mathrm{A}(:)$

Linear Algebra - 3

$-\operatorname{mat}(\mathbf{v}, k, l)$ - reshape vector $\mathbf{v} \in \mathbb{R}^{k l}$ into matrix. k, l omitted when dimension clear from context. Note

$$
\operatorname{mat}(\operatorname{vec}(\mathbf{A}))=\mathbf{A}
$$

MATLAB: $V=$ reshape (v, k, l).

- $\operatorname{diag}(\mathbf{v})$ - diagonal matrix with elements of $\mathbf{v} \in \mathbb{R}^{k}$ on diagonal MATLAB: V = diag (v(:))
$-\operatorname{diag}(\mathbf{A})$ - diagonal matrix obtained by vectorizing \mathbf{A}
- Warning: $\operatorname{diag}(\operatorname{diag}(\mathbf{v}))=\mathbf{v}$ but $\operatorname{diag}(\operatorname{diag}(\mathbf{A})) \neq \mathbf{A}$ (try it!)

Linear Algebra - 4

For brevity, we sometimes use MATLAB notations

- mat + vec: define $\mathbf{Y}+\mathbf{b}=\mathbf{Y}+\mathbf{b e}_{n}^{\top}$ for $\mathbf{Y} \in \mathbb{R}^{n_{f} \times n}$ and $\mathbf{b} \in \mathbb{R}^{n_{f}}$
- mat + scalar: define $\mathbf{Y}+\beta=\mathbf{Y}+\beta \mathbf{e}_{n_{f}} \mathbf{e}_{n}^{\top}$ for $\mathbf{Y} \in \mathbb{R}^{n_{f} \times n}$ and $\beta \in \mathbb{R}$

Acronyms

- CG - Conjugate Gradient Method
- VarPro - Variable Projection
- SD - Steepest Descent
- SGD - Stochastic Gradient Descent
- SA - Stochastic Approximation
- SAA - Stochastic Average Approximation
- SPD - symmetric positive definite
- SPSD - symmetric positive semi-definite
- CV - Cross Validation

