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I surveys on deep learning: [5, 36]

I mathematical introduction to deep learning [29]

I some important works in deep learning:
[46, 47, 37, 32, 44, 35, 33, 27, 28, 50, 38],

I applications of deep learning: natural language
processing [14, 8, 34], image processing [37, 35], speech
processing [30]

I approximation theory: [15, 31]

I PDE-inspired approaches to deep learning: [16, 23]

I optimization: [45, 20, 19, 42, 10, 6, 11]

I numerical methods: overview [3], optimization [41, 12, 4],
linear algebra [49, 26], differential equations [2, 1],
optimal control [9]

I classical work on adjoints (≈ backpropagation) [7]
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I inverse problems: [24, 51, 25]

I differential equations and neural
networks [16, 23, 40, 43, 18, 13]

I optimal control approaches [39, 21, 52, 38]

I partial differential equations approaches [48, 22]

I lean CNNs [17]
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