Introduction to Deep Generative Modeling Spring School on Models and Data, University of South Carolina

Lars Ruthotto lruthotto@emory.edu

Departments of Mathematics and Computer Science Emory University

Motivation: Deep Generative Modeling

Goal: Given samples $\mathbf{x}_1, \mathbf{x}_2, \ldots \in \mathbb{R}^n$ learn a representation of their underlying distribution \mathcal{X} .

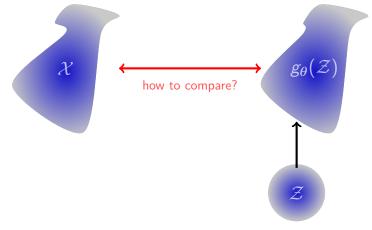
Challenges: *n* typically large, \mathcal{X} complicated (multimodal, disjoint support, etc.)

Idea: Train parameters θ of generator $g_{\theta} : \mathbb{R}^q \to \mathbb{R}^n$ so that it transforms a given *latent distribution* $\mathcal{Z} \subset \mathbb{R}^q$ to match \mathcal{X} .

Generator can be used for

- density estimation: $p_{\mathcal{X}}(\mathbf{x}) \approx p_{\theta}(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}) p_{\mathcal{Z}}(\mathbf{z}) d\mathbf{x}$
- ► sampling: $g_{\theta}(\mathbf{z})$ where $\mathbf{z} \sim \mathcal{Z}$ (main focus today)

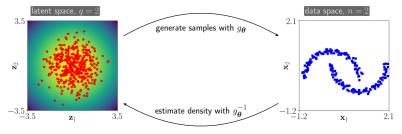
Illustration: Deep Generative Modeling



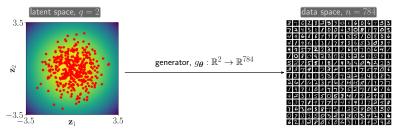
- \blacktriangleright $\mathcal X$ data distribution
- g_{θ} generator (today: deep neural network)
- \triangleright θ parameters/weights
- \mathcal{Z} latent distribution (today: $\mathcal{N}(0, \mathbf{I}_q)$)

Examples: Moons and MNIST Dataset

Moons toy example:



MNIST image generation example:



Workshop Overview: Intro to Deep Generative Modeling

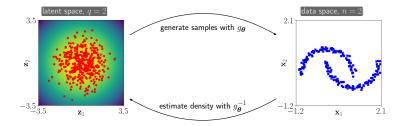
Objective: Discuss the three most popular classes of approaches in a common mathematical framework (main ref [13]).

- 1. (Continuous) Normalizing Flows (NF / CNF)
 - construct $g_{\theta} : \mathbb{R}^n \to \mathbb{R}^n$ to be diffeomorphic
 - train g_θ by maximizing likelihood of samples
- 2. Variational Autoencoders (VAE)
 - support non-invertible, non-smooth $g_{\theta} : \mathbb{R}^q \to \mathbb{R}^n$
 - replace inverse of generator by approx. posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$
 - train generator using lower bound of samples' likelihood
- 3. Generative Adversarial Networks (GAN)
 - support non-invertible, non-smooth $g_{\theta} : \mathbb{R}^q \to \mathbb{R}^n$
 - likelihood-free training using classifier or transport-distance

each part: 20 min lecture + time for coding, discussion, break.

(Continuous) Normalizing Flows

(Continuous) Normalizing Flows (CNF)



Assumption: g_{θ} is diffeomorphism (requires q = n)

Use change of variables formula to approximate likelihood

$$p_{\mathcal{X}}(\mathbf{x}) \approx p_{\theta}(\mathbf{x}) = p_{\mathcal{Z}} \left(g_{\theta}^{-1}(\mathbf{x}) \right) \cdot \det \nabla g_{\theta}^{-1}(\mathbf{x}) \\ = (2\pi)^{-\frac{n}{2}} \exp \left(-\frac{1}{2} \| g_{\theta}^{-1}(\mathbf{x}) \|^2 \right) \cdot \det \nabla g_{\theta}^{-1}(\mathbf{x})$$

Maximum Likelihood Training

$$\begin{split} J_{\mathrm{ML}}(\boldsymbol{\theta}) &= \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[-\log p_{\boldsymbol{\theta}}(\mathbf{x}) \right] \\ &\approx \frac{1}{s} \sum_{i=1}^{s} \left(\frac{1}{2} \left\| \boldsymbol{g}_{\boldsymbol{\theta}}^{-1} \left(\mathbf{x}^{(i)} \right) \right\|^{2} - \log \det \nabla \boldsymbol{g}_{\boldsymbol{\theta}}^{-1} \left(\mathbf{x}^{(i)} \right) + \mathrm{const} \right) \end{split}$$

with i.i.d. samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(s)} \sim \mathcal{X}$.

Remark: min_{θ} $J_{\rm ML}(\theta)$ is equivalent to minimizing the Kullback-Leibler divergence between p_{χ} and p_{θ}

$$\mathrm{KL}(p_{\mathcal{X}}||p_{\theta}) = \int p_{\mathcal{X}}(\mathbf{x}) \log \frac{p_{\mathcal{X}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} d\mathbf{x} = \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[\log \left(\frac{p_{\mathcal{X}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right]$$

since $p_{\mathcal{X}}(\mathbf{x})$ does not depend on $\boldsymbol{\theta}$.

Note: Training needs g_{θ}^{-1} , generation needs g_{θ} .

Finite Normalizing Flows

Idea: For a fixed $\boldsymbol{x}\sim\mathcal{Z},$ write generator as

$$g_{\boldsymbol{ heta}}(\mathbf{z}) = f_{\mathcal{K}} \circ f_{\mathcal{K}-1} \circ \cdots \circ f_1(\mathbf{z})$$

and $\mathbf{y}^{(K)}, \mathbf{y}^{(K-1)}, \dots, \mathbf{y}^{(1)}$ be the hidden features.

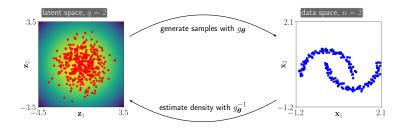
Then the inverse and log-determinant of the flow are

$$g_{\boldsymbol{\theta}}^{-1}(\mathbf{x}) = f_1^{-1} \circ f_2^{-1} \circ \cdots \circ f_K^{-1}(\mathbf{x}),$$
$$\log \det \nabla g_{\boldsymbol{\theta}}^{-1}(\mathbf{x}) = \sum_{j=K}^1 \log \det \nabla f_j^{-1} \left(\mathbf{y}^{(j)} \right).$$

Trade off when choosing layer functions f_i :

- expressiveness: able to approximate complicated transformation
- tractability: easy-to-evaluate inverse and log-determinant

Normalizing Flows: Some References



- Efficient g_{θ} and g_{θ}^{-1}
 - NICE: Non-linear independent components estimation [4]
 - real NVP: real non-volume preserving flows [5] (next slide)
- Efficient g_{θ} but not g_{θ}^{-1}
 - planar and radial flows [12]
 - inverse autoregressive flows [9]
- ▶ Not efficient g_{θ} but efficient g_{θ}^{-1}
 - masked auto-regressive flow [11]

Example: Real Non-Volume Preserving Flow [5]

Let n = q = 2. The *j*th layer splits its input $\mathbf{y}^{(j)} \in \mathbb{R}^2$ into its components $\mathbf{y}_1^{(j)}$ and $\mathbf{y}_2^{(j)}$

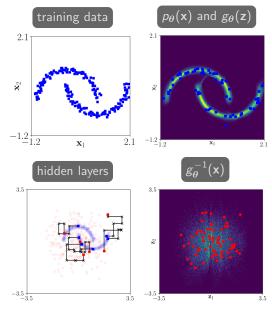
$$f_{j}\left(\mathbf{y}^{(j)}\right) = \left[\begin{array}{c} \mathbf{y}_{1}^{(j)} \\ \mathbf{y}_{2}^{(j)} \cdot \exp\left(s_{j}\left(\mathbf{y}_{1}^{(j)}\right)\right) + t_{j}\left(\mathbf{y}_{1}^{(j)}\right) \end{array}\right],$$

where $s_j, t_j : \mathbb{R} \to \mathbb{R}$ are neural networks that model scaling and translation, respectively.

Checklist:

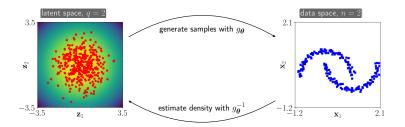
- switch the roles of $\mathbf{y}_1^{(j)}$ and $\mathbf{y}_2^{(j)}$ at other layers
- log-determinant and inverse trivial to compute (try it!)
- expressiveness may require many layers (think n large)

Example: Real NVP for Moons Dataset



see RealNVP.ipynb

Continuous Normalizing Flows [8]

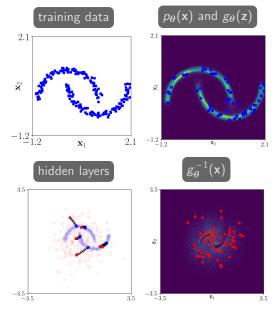


For T > 0, let $g_{\theta}(\mathbf{z}) = \mathbf{y}(T)$ where $\mathbf{y} : [0, T] \to \mathbb{R}^n$ satisfies

 $\mathbf{y}'(t) = v_{\boldsymbol{\theta}}(\mathbf{y}(t), t), \quad \text{where} \quad \mathbf{y}(0) = \mathbf{z}.$

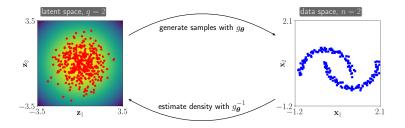
Here, $v_{\theta} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is a neural network \rightsquigarrow Neural ODE [3]

Example: OT-Flow for Moons Dataset



see OTFlow.ipynb

Discussion: Normalizing Flows



- train g_{θ} by maximizing likelihood of samples
- can be used for sampling and density estimation
- Imitation: g_θ : ℝⁿ → ℝⁿ is diffeomorphic ⇒ intrinsic dimension of X must be n and support cannot be disjoint
- NF: need to trade-off expressiveness and efficiency
- CNF: scalable to high dimensions, that is, $n = O(10^2)$.

Variational Autoencoders

Variational Autoencoders (VAE) [10]

Let now $q \neq n$, for example, $q \ll n$ (very common).

Cannot use (C)NF since

- ► g_{θ}^{-1} may not exist
- ► $KL(p_{\mathcal{X}}(\mathbf{x})||p_{\theta}(\mathbf{x}))$ may be unbounded

Need alternative way to define a loss function!

Apply Bayes' rule and note that

$$p_{ heta}(\mathbf{x}) = rac{p_{ heta}(\mathbf{x},\mathbf{z})}{p_{ heta}(\mathbf{z}|\mathbf{x})} = rac{p_{ heta}(\mathbf{x}|\mathbf{z})p_{\mathcal{Z}}(\mathbf{z})}{p_{ heta}(\mathbf{z}|\mathbf{x})}, \quad ext{ for } \quad \mathbf{z} \sim \mathcal{Z}.$$

Cannot maximize right hand side directly $(p_{\theta}(\mathbf{z}|\mathbf{x}) \text{ is intractable})$

Key idea in VAE: Approximate the Posterior

For an arbitrary generator g_{θ} , it is intractable to compute the posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$.

Idea: Learn an approximate posterior

 $e_{\psi}(\mathsf{z}|\mathsf{x}) pprox
ho_{ heta}(\mathsf{z}|\mathsf{x})$

Today we consider a simple but common model

$$e_{\psi}(\mathsf{z}|\mathsf{x}) = \mathcal{N}\left(oldsymbol{\mu}_{oldsymbol{\psi}}(\mathsf{x}), \exp(oldsymbol{\Sigma}_{oldsymbol{\psi}}(\mathsf{x}))
ight).$$

where

- ψ are the weights (in general $\psi
 eq heta)$
- $\blacktriangleright \Sigma_{\psi}(\mathbf{x})$ is diagonal
- approximate posterior is similar to an encoder

Evidence Lower Bound Training

Idea: Replace
$$\min_{\theta} - \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{p_{\theta}(\mathbf{z} | \mathbf{x})} \right)$$
 by $\min_{\psi, \theta} \log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{e_{\psi}(\mathbf{z} | \mathbf{x})} \right)$

Why would this be meaningful?

$$\begin{split} \log p_{\theta}(\mathbf{x}) &= \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \right) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{e_{\psi}(\mathbf{z}|\mathbf{x})} \cdot \frac{e_{\psi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \right) \right] \\ &= \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} \left[\log \left(\frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{e_{\psi}(\mathbf{z}|\mathbf{x})} + \log \left(\frac{e_{\psi}(\mathbf{z}|\mathbf{x})}{p_{\theta}(\mathbf{z}|\mathbf{x})} \right) \right] \end{split}$$

Drop second term (i.e., KL $(e_{\psi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})) \ge 0$ to obtain lower bound (called empirical lower bound or ELBO).

VAE Training Problem

$$J_{\text{VAE}}(\psi, \theta) = -\mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} [\log p_{\theta}(\mathbf{x}, \mathbf{z}) - \log e_{\psi}(\mathbf{z}|\mathbf{x})]$$

$$= \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} [-\log p_{\theta}(\mathbf{x}|\mathbf{z}) - \log p_{\mathcal{Z}}(\mathbf{z}) + \log e_{\psi}(\mathbf{z}|\mathbf{x})]$$

$$\approx \frac{1}{s} \sum_{i=1}^{s} \left[-\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i)}) - \log p_{\mathcal{Z}}(\mathbf{z}^{(i)}) + \log e_{\psi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)}) \right]$$

with

- ▶ i.i.d. samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(s)}$ from \mathcal{X}
- one sample z⁽ⁱ⁾ per approximate posterior e_{\u03c0}(z|x⁽ⁱ⁾) (you can use more, of course)

Remarks:

above estimate of objective is unbiased, but can be noisy
 min_ψ J_{VAE}(ψ, θ

 for given θ
 improves tightness of ELBO.

Interpret VAE as Regularized Autoencoder

Note that we can re-write the objective in VAE as

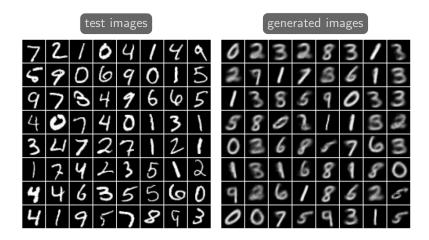
$$\begin{aligned} J_{\text{ELBO}}(\psi, \theta) &= \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} \left[-\log p_{\theta}(\mathbf{x}|\mathbf{z}) + \log e_{\psi}(\mathbf{z}|\mathbf{x}) - \log p_{\mathcal{Z}}(\mathbf{z}) \right] \\ &= \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[-\mathbb{E}_{\mathbf{z} \sim e_{\psi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) + \text{KL} \left(e_{\psi}(\mathbf{z}|\mathbf{x}) || p_{\mathcal{Z}}(\mathbf{z}) \right) \right] \right] \end{aligned}$$

- first term: minimize approximation error
- second term: bias approximate posteriors toward Z
- need to carefully balance both terms (Bayesian vs. frequentist)

Example: Autoencoders are trained with no regularization

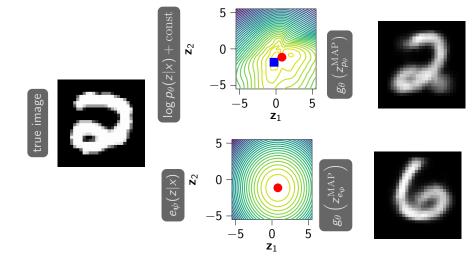
- minimize approximation error
- \blacktriangleright latent space can be irregular and different from ${\cal Z}$
- cannot expect $g_{\theta}(z)$ to be similar to \mathcal{X} when $z \sim \mathcal{Z}$

Example: VAE for MNIST



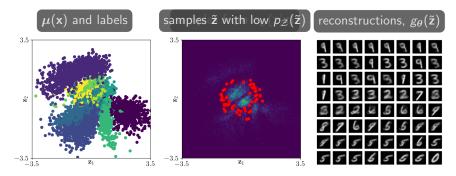
see VAE.ipynb

Example: Quality of Posterior Approximation MNIST



see VAE.ipynb

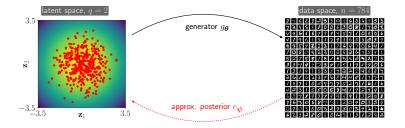
Example: Structure of Latent Space



g_θ⁻¹(X) ≠ Z ⇒ generator not trained using samples from Z
 in general, expect poor performance of generator for ž

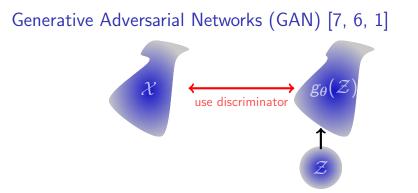
see VAE.ipynb

Σ : Variational Auto Encoder



- ▶ support non-invertible, non-smooth $g_{\theta} : \mathbb{R}^q \to \mathbb{R}^n$
- use true posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$ by $e_{\psi}(\mathbf{z}|\mathbf{x})$
- ▶ train g_{θ} and $e_{\psi}(\mathbf{z}|\mathbf{x})$ using lower bound of samples' likelihood
- interpret as regularized autoencoder to get more flexibility
- g_{θ} trained using samples from approx. posteriors ($\neq Z$).

Generative Adversarial Networks



Idea: Train by minimizing the distance between \mathcal{X} and $g_{\theta}(\mathcal{Z})$. Some properties of GAN training

- likelihood free: no density estimate / lower bound needed
- avoids the correspondence problem
- sample from latent distribution in training (unlike CNF, VAE)

Key component: (trained) discriminator to measure the distance. Today: Binary classification / Transport costs

Discriminator based on Binary Classification [7]

Idea: Consider two sample test problem. Find a discriminator

$$d_{\phi}: \mathbb{R}^n o [0,1]$$
 such that $d_{\phi}(\mathbf{x}) pprox egin{cases} 1, & \mathbf{x} \sim \mathcal{X} \ 0, & \mathbf{x} \sim g_{ heta}(\mathcal{Z}). \end{cases}$

Note: d_{ϕ} will be a DNN with weights ϕ .

GAN training seeks to find a Nash equilibrium of

$$J_{ ext{GAN}}(oldsymbol{ heta},\phi) = \mathbb{E}_{\mathbf{x}\sim\mathcal{X}}\left[\log(d_{\phi}(\mathbf{x}))
ight] + \mathbb{E}_{\mathbf{z}\sim\mathcal{Z}}\left[\log\left(1-d_{\phi}(g_{oldsymbol{ heta}}(\mathbf{z}))
ight)
ight].$$

In other words, find $({m heta}^*, {m \phi}^*)$ such that

$$\phi^* \in rg\max_{\phi} J_{ ext{GAN}}(oldsymbol{ heta}^*, \phi) \quad ext{ and } \quad oldsymbol{ heta}^* \in rg\min_{oldsymbol{ heta}} J_{ ext{GAN}}(oldsymbol{ heta}, \phi^*).$$

In practice: Use stochastic approximation and alternate between updating ϕ and θ (need to balance learning rates, batch sizes, ...)

Reminder: Solving Saddle-Point Problems ain't easy!

Let θ^* be the weights of an optimal generator with $g_{\theta^*}(\mathcal{Z}) = \mathcal{X}$.

What would that mean for the optimal discriminator d_{ϕ^*} ?

Remarks:

- 1. $g_{{m heta}^*}$ and d_{ϕ^*} are parameterized by DNN
- 2. need expressiveness and ideal weights to find this equilibrium
- \Rightarrow GAN effectiveness is very hard to predict

This equilibrium will not be stable! Let $\tilde{\theta} = \theta^* + \delta \theta$ with $\|\delta \theta\|$ small and $g_{\tilde{\theta}}(\mathcal{Z}) \neq \mathcal{X}$. Then, the optimal discriminator would be able to distinguish between samples and data points.

Even worse: We could have $\nabla_{\boldsymbol{\theta}} J_{\text{GAN}}(\tilde{\boldsymbol{\theta}}, \boldsymbol{\phi}^*) \approx 0$.

For more detailed theory and other issues, see [1]

Mode Collapse in GAN Training

Example: g_{θ} maps almost all $\mathbf{z} \sim \mathcal{Z}$ to first data point, that is,

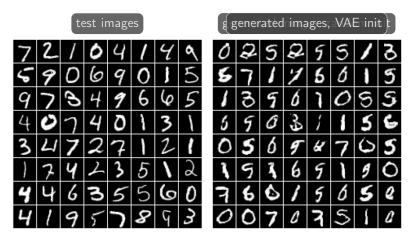
$$g_{oldsymbol{ heta}}(\mathsf{z}) = \mathsf{x}^{(1)}$$
 for almost all $\mathsf{z} \sim \mathcal{Z}$

What would that mean for the optimal discriminator d_{ϕ^*} ?

In this example, mode collapse is easy to detect! What would happen if g_{θ} mapped almost no $z \sim Z$ close to $x^{(1)}$?

Mode collapse is difficult to detect/avoid. For some heuristics (batch statistics, label smoothing, \dots) see [14].

Example: DCGAN for MNIST



see DCGAN.ipynb

Wasserstein GAN: Transport Costs as Discriminator [2]

Idea: Train g_{θ} to minimize Wasserstein-1 distance between \mathcal{X} and $g_{\theta}(\mathcal{Z})$.

$$W_1(g_{\boldsymbol{\theta}}(\mathcal{Z}), \mathcal{X}) = \inf_{\gamma \in \Pi} \mathbb{E}_{(\widehat{\mathbf{x}}, \mathbf{x}) \sim \gamma} \left[\|\widehat{\mathbf{x}} - \mathbf{x}\| \right]$$

Here:

Most practical implementations use equivalent definition

$$W_1(g_{\theta}(\mathcal{Z}), \mathcal{X}) = \max_{f \in \operatorname{Lip}(f) \leq 1} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}} \left[f\left(g_{\theta}(\mathbf{z})\right) \right] - \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[f(\mathbf{x}) \right].$$

Crux: Need to design and train another NN model $f_{\phi} : \mathbb{R}^n \to \mathbb{R}$

Properties of GAN Training [2]

$$\min_{\theta} \max_{f \in \operatorname{Lip}(f) \leq 1} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}} \left[f\left(g_{\theta}(\mathbf{z}) \right) \right] - \mathbb{E}_{\mathbf{x} \sim \mathcal{X}} \left[f(\mathbf{x}) \right]$$

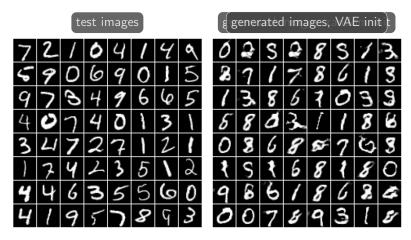
Theoretical advantages over discriminator-based GAN

- ▶ g_{θ} continuous $\Rightarrow (\theta) \mapsto W_1(g_{\theta}(\mathcal{Z}), \mathcal{X})$ continuous
- ▶ g_{θ} loc. Lipschitz \Rightarrow (θ) \mapsto $W_1(g_{\theta}(\mathcal{Z}), \mathcal{X})$ differentiable

Practical considerations

- Need to enforce f ∈ Lip(f) ≤ 1 (crop weights, gradient penalty, ...)
- ▶ Training *f* more accurately may not improve results [15]

Example: WGAN for MNIST



see WGAN.ipynb

Summary

Workshop Overview: Intro to Deep Generative Modeling

Objective: Discuss the three most popular classes of approaches in a common mathematical framework (main ref [13]).

- 1. (Continuous) Normalizing Flows (NF / CNF)
 - construct $g_{\theta} : \mathbb{R}^n \to \mathbb{R}^n$ to be diffeomorphic
 - train g_θ by maximizing likelihood of samples
- 2. Variational Autoencoders (VAE)
 - ▶ support non-invertible, non-smooth $g_{\theta} : \mathbb{R}^q \to \mathbb{R}^n$
 - replace inverse of generator by approx. posterior $p_{\theta}(\mathbf{z}|\mathbf{x})$
 - train generator using lower bound of samples' likelihood
- 3. Generative Adversarial Networks (GAN)
 - ▶ support non-invertible, non-smooth $g_{\theta} : \mathbb{R}^q \to \mathbb{R}^n$
 - likelihood-free training using classifier or transport-distance

Comparison of Approaches

- (Continuous) Normalizing Flows
 - + compute and optimize likelihood
 - + minimize distance between $g_{\theta}^{-1}(\mathcal{X})$ and \mathcal{Z}
 - assume smoothness of generator
 - in most cases q unknown or known that q < n
- Variational Autoencoders
 - $+ ~g_{\boldsymbol{\theta}}$ can be non-invertible, non-smooth and $q \neq n$
 - + loss is related to likelihood, no saddle point problem
 - computing likelihood is intractable
 - not clear that latent space is sampled well during training
- Generative Adversarial Networks
 - + $g_{m{ heta}}$ can be non-invertible, non-smooth and q
 eq n
 - $+ \,$ optimize quality of samples \sim often performs best
 - danger of mode collapse (not for WGAN)
 - need to compare high-dimensional and complex distributions
 - difficult saddle point problems (hyperparameters,...)

Σ : Deep Generative Modeling

DGM likely to remain an active research topic

Some mathematical challenges:

- how to compare high-dimensional, complicated distributions? core problem in statistics for decades
- DGM is ill-posed ~ need to better understand role of hyperparameters (NN design, objective function, regularization, optimization,..)
- no real guidelines for choosing the latent distribution (or even determine the intrinsic dimensionality of the data)
- improve efficiency of training algorithms

Thanks to the organizers and all participants!

 $Questions/suggestions/remarks? \rightarrow \texttt{lruthotto@emory.edu}$

References

- M. Arjovsky and L. Bottou. Towards Principled Methods for Training Generative Adversarial Networks. arXiv:1701.04862, Jan. 2017.
- [2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv:1701.07875, Jan. 2017.
- [3] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential Equations. In *NeurIPS*, June 2018.
- [4] L. Dinh, D. Krueger, and Y. Bengio. NICE: Non-linear Independent Components Estimation. arXiv:1410.8516, Oct. 2014.
- [5] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. arXiv:1605.08803, May 2016.
- [6] I. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160, Dec. 2016.
- [7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. volume 27, pages 2672–2680, 2014.
- [8] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud. Ffjord: Free-form continuous dynamics for scalable reversible generative models. In *International Conference on Learning Representations*, 2018.
- [9] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improving Variational Inference with Inverse Autoregressive Flow. arXiv:1606.04934, June 2016.

References (cont.)

- [10] D. P. Kingma, M. Welling, et al. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.
- [11] G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density estimation. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.
- [12] D. Rezende and S. Mohamed. Variational inference with normalizing flows. In International Conference on Machine Learning, pages 1530–1538, 2015.
- [13] L. Ruthotto and E. Haber. An introduction to deep generative modeling, 2021.
- [14] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques for training gans. pages 2234–2242, 2016.
- [15] J. Stanczuk, C. Etmann, L. M. Kreusser, and C.-B. Schönlieb. Wasserstein gans work because they fail (to approximate the wasserstein distance), 2021.