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Abstract. Echo Planar Imaging (EPI) is a MRI acquisition technique
that is the backbone of widely used investigation techniques in neuro-
science like, e.g., Diffusion Tensor Imaging (DTI). While EPI offers con-
siderable reduction of the acquisition time one major drawback is its
high sensitivity to susceptibility artifacts. Susceptibility differences be-
tween soft tissue, bone and air cause geometrical distortions and intensity
modulations of the EPI data. These susceptibility artifacts severely com-
plicate the fusion of micro-structural information acquired with EPI and
conventionally acquired structural information.
In this paper we introduce a new tool for hyperelastic susceptibility cor-
rection of DTI data termed HySCO that is integrated into the Statistical
Parametric Mapping (SPM) software as a toolbox. Our new correction
pipeline is based on two datasets acquired with reversed phase encoding
gradients. For the correction, we integrated the variational image regis-
tration approach by Ruthotto et al. [1] into the SPM batch mode. We
briefly review the model, discuss involved parameter settings and exem-
plarily demonstrate HySCO’s effectiveness on a human brain DTI dataset.

1 Introduction

Echo Planar Imaging (EPI) is a commonly available ultrafast MRI acquisition
technique [2]. It is routinely used for key investigation techniques in modern
neuroscience like, e.g., Diffusion Tensor Imaging (DTI) [3] or functional MRI.

While offering a considerable reduction of acquisition time, a drawback of
EPI is the low bandwidth in phase-encoding direction. Therefore, EPI is highly
sensitive to inhomogeneities in the magnetic field. In practice, the MRI scan-
ner’s almost perfectly homogeneous magnetic field is perturbed by the different
magnetic susceptibilities of soft tissue, bone and air associated with the subject.
Field inhomogeneities cause geometrical distortions and intensity modulations,
the so-called susceptibility artifacts in EPI. Susceptibility artifacts considerably
complicate the fusion of functional and micro-structural information acquired
using EPI with conventionally acquired anatomical image data, for which sus-
ceptibility artifacts are almost negligible [1].



2 Ruthotto et al.

A number of approaches have been proposed to reduce susceptibility arti-
facts in EPI. For instance, fieldmap methods measure the inhomogeneities by a
reference scan and subsequently correct the data [4]. An alternative is the re-
versed gradient method presented by [5]. It requires the acquisition of an image
pair, acquired using phase encoding gradients of positive and negative polar-
ity, which results in oppositely distorted data. Subsequently, the data are cor-
rected for susceptibility artifacts using modified image registration approaches
like, e.g., [5,6,7,1].

In this work, we present a novel hyperelastic susceptibility correction pipeline
termed HySCO , which is integrated as a batch tool into the Statistical Parametric
Mapping (SPM) toolbox (http://www.fil.ion.ucl.ac.uk/spm/). The backbone of
HySCO is a reversed gradient method and the freely available toolbox FAIR [8]
that features also the code underlying [1]. The key feature of the scheme [1]
is a tailored regularization functional inspired by hyperelasticity that ensures
invertibility of the geometric transformations. We integrated the new pipeline
into SPM to allow convenient susceptibility artifact correction of large datasets.
We exemplify the effectiveness of the method on a human brain DTI dataset.
HySCO will be made freely available after publication.

2 Materials and Methods

2.1 Data Acquisition

One healthy, male volunteer was scanned on a TIM Trio 3T scanner (Siemens
Healthcare, Erlangen, Germany) with written informed consent. The acquisition
protocol provides two DTI datasets: 66 images with positive phase encoding Ik1
and 66 images with negative phase encoding Ik2 , where k = 1, . . . , 66. Each DTI
dataset was acquired using the following parameters: 6 non-diffusion-weighted
(DW) images (image number: k = 1, . . . , 6), 60 DW images with spherically
distributed diffusion-gradient directions (image number: k = 7, . . . , 66), matrix
96×96, 60 slices, 2.3mm isotropic resolution, 5/8 Partial Fourier in PE direction
using zero filling reconstruction, TE=86ms, volume TR=10.5ms. Note that for
each pair of images, Ik1 and Ik2 , the diffusion direction and diffusion-weighting
was the same in both datasets. We thus assumed that differences in Ik1 and Ik2
were mostly due to field inhomogeneities.

2.2 Hyperelastic Susceptibility Correction of Echo-Planar MRI

We briefly summarize the numerical implementation of the reversed gradient
method in [1]. Given are two oppositely distorted images I1 and I2. Based on
the physical distortion model derived in [5], the goal is to estimate the field
inhomogeneity B : Ω → R by minimizing the distance functional

D[B] =
1

2

∫
Ω

(I1(x+B(x)v) (1 + ∂vB(x))− I2(x−B(x)v) (1− ∂vB(x)))
2
dx,

(1)
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where v denotes the phase-encoding direction, typically v = (0, 1, 0)T ∈ R3 is the
second unit vector. The transformations applied to the images have two com-
ponents: A displacement that is restricted along v and an intensity modulation
given by the Jacobian determinant of the geometrical transformation [5]. Note
the opposite signs of the displacement and intensity modulations for I1 and I2.
Following [1], the field inhomogeneity is estimated numerically by solving

min
B
J [B] := D[B] + αSdiff [B] + βS jac[B], (2)

where Sdiff is a diffusion-, and S jac is a nonlinear regularization term that en-
sures −1 < ∂vB < 1, which translates to invertible geometrical transformations
and positive intensity modulations. The parameters α, β > 0 balance between
minimization of the distance and the regularization functionals.

Problem (2) is solved using the publicly available registration framework
FAIR [8] in Matlab. More precisely, a regularized cubic B-spline interpolation is
used as image model, where a regularization parameter θ ≥ 0 can be used to
improve robustness against noise; see [8] for details. Problem (2) is discretized
on a coarse to fine hierarchy of discretization levels and solved on each level
using a Gauss Newton optimization scheme. The coarse grid solution is used as
a starting guess for the optimization on the fine grid; see [8] for details.

2.3 Susceptibility Artifact Correction Pipeline for DTI in the SPM
Batch Mode

Before tensor estimation two pre-processing steps were applied. First, the non-
DW and DW images were corrected for motion and eddy current effects using
the ECMOCO toolbox; see [9] for details on preprocessing. Second, each image
was corrected for susceptibility artifacts using three different methods: (a) none,
(b) the fieldmap toolbox ([4] following the pipeline described in [9]), and (c) the
HySCO toolbox. The diffusion tensors and the root-mean square of the tensor-
fit error (rms(ε)) were estimated for the DTI datasets I1 and I2 using ordinary
least squares as in [9].

In the first step of the HySCO method we solved Problem (2) for the non-
diffusion weighted images I1

1 and I1
2 ; see Fig. 1. To this end, we used the

above outlined multilevel strategy with three discretization levels 24× 24× 15,
48 × 48 × 30, and 96 × 96 × 60. Thereby, we obtained an estimate of the field
inhomogeneity denoted by B1. Subsequently, we solved (2) for Ik1 and Ik2 on
the finest discretization level with the starting guess B1 and obtained Bk for
k = 2, . . . , 66. These correction steps account for small variations in the field
inhomogeneity arising from other effects like residual eddy currents [10]. Finally,
the corrected images are obtained by applying the transformations in (1) for Bk

on Ik1 and Ik2 .
For convenient access to the correction scheme, we designed a graphical user

interface in the batch mode of SPM. The user can control the regularization
parameters (default: α = 50, β = 10), the resolutions of the levels in the multi-
level strategy, and the smoothing parameter (default: θ = 0.01).
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Fig. 1. Effect of 3D susceptibility artifact correction. We visualize axial (left) and
sagittal (right) projections of the images I11 and I12 , acquired without diffusion weight-
ing. The oppositely distorted images and their absolute difference are depicted using
equally scaled intensities. Considerable susceptibility artifacts manifest in the original
data; compare image pairs in first row. Using the SPM fieldmap toolbox improved the
similarity of I11 and I12 , however, structures in the difference image remained; see sec-
ond row. Superior correction results were obtained using the proposed HySCO method;
see third row.

2.4 Comparison of Susceptibility Artifact Correction Methods

We compared the correction results of the fieldmap correction and HySCO based
on two criteria. As a first step, we compared the similarity of the first image
pair acquired without diffusion weighting, i.e.,k = 1. To this end, we used visual
assessment of uncorrected, fieldmap corrected, and HySCO corrected image pairs,
as well as their respective difference images given by (1). In a second step, we
compared the impact of the correction pipeline on the diffusion tensor recon-
struction using visual inspection of the rms(ε) maps as well as quantification of
the rms(ε) over the whole brain.

3 Results

In Fig. 1 we visualize axial and sagittal slices of the original 3D data, fieldmap
corrected data, and results of HySCO. Severe distortions manifest in the original
data, especially at the transition between bone and air; compare images in first
row and difference images. Similarity between both images was increased by the
fieldmap correction indicated by a reduction of the distance functional in (2)
from 100% to 52.91%; see second row in Fig. 1. A considerable improvement was
achieved by HySCO, which relies on the correction scheme [1]. The image pairs
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Fig. 2. Impact of susceptibility correction methods on tensor-fit error rms(ε) (axial
and sagittal slices). The root-mean square of rms(ε) (3rd and 6th column) and the non-
diffusion weighted images I11 and I12 (1st, 2nd, 4th, and 5th column) are visualized. The
tensor-fit error is larger in regions, where the effect of susceptibility artifacts has been
insufficiently corrected; see, e.g., bright spots at the sinuses and frontal areas, high-
lighted by arrows. Over the whole brain HySCO yielded a considerably smaller average
tensor-fit error as compared to the fieldmap correction; 0.1 mm2/s vs. 0.15 mm2/s.

were visually almost indistinguishable; see third row in Fig. 1. The superiority
manifests also in the reduction of the distance functional to 8.8%. The multi-level
correction required about 20 seconds on a current standard computer.

The distance between the image pairs Ik1 and Ik2 , where k = 2, . . . , 66, was on
average reduced from 100% to 50% for the fieldmap correction. By applying the
transformation model described in (1) with the inhomogeneity estimate B1 from
the first problem the image distance was on average reduced to 38.4%. Best
results were obtained by performing correction steps on the finest resolution
with an average distance reduction to 18.1%. All intensity modulations were
positive and overall in a range between 0.03 and 1.97. The average runtime for
the correction steps was around 12 seconds on a current standard computer.

Fig. 2 shows axial and sagittal slices of the fieldmap and HySCO corrected non-
diffusion-weighted images and tensor-fit error maps. Using the HySCO method
resulted in a smaller tensor-fit error than when using the fieldmap method; see,
e.g., bright spots in the sinuses and frontal areas highlighted by arrows. The
mean tensor fit error over the whole brain was 0.15 mm2/s for the fieldmap
approach and 0.1 mm2/s for HySCO.

4 Discussion

We introduced HySCO, a novel pipeline for susceptibility artifact correction of
DTI data. Our pipeline requires two DTI datasets, acquired with reversed phase
encoding gradients and thus opposite distortion effects. The backbone of our
pipeline is the susceptibility correction scheme presented in [1]. HySCO is inte-
grated as a toolbox into the Statistical Parametric Mapping (SPM) software
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in Matlab. To enable convenient processing of large datasets, a graphical user
interface was designed and integrated into the batch mode of SPM.

In our pipeline, the first image pair, acquired without diffusion weighting, is
corrected for susceptibility artifacts using a multi-level strategy. Based on this
starting guess correction steps are performed for the diffusion weighted images.
This leads to a considerable reduction of computation times, which is desirable
for the correction of DTI datasets with many diffusion measurements.

The proposed pipeline requires the acquisition of two DTI datasets and thus
doubles scan time, which might not always be feasible. As our results indicate,
however, even solving the correction problem once for non-diffusion weighted
images and applying the transformation to the remaining image volumes can
considerably reduce susceptibility artifacts. In this case, only one image needs
to be acquired with reversed phase encoding gradients. This case is also covered
by our HySCO implementation.

Preliminary results indicate that HySCO gives superior correction results com-
pared to fieldmap approaches, e.g., [4], with respect to image similarity and ten-
sor fit error. Extensive evaluations will be a main focus of future work. Further,
combinations with other correction techniques like, e.g., [9] will be investigated.
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