
Math 346, HW3 Solution

3.2.2

Pivoting on the term x1 in the first equation gives (basically, adding 2 times
the first equation to the second one)

x1 + x2 − 3x3 = 7
3x2 − x3 = 16
3x2 − x3 = 16

Therefore this system of linear equations is redundant. We might eliminate the
last equation, and then pivot on 3x2, this gives

x1 − 8
3x3 = 5

3
x2 − 1

3x3 = 16
3

Note that choosing {x1, x2} as basic variables gives a basic feasible solution
(5/3, 16/3, 0), and the system above is in the canonical form with respect to
{x1, x2}.

3.2.6

(a) In order to determine which choices of basis leads to a basic feasible
solution, geometrically we have to decide which two columns of the matrix A
from the LP could span a cone containing the vector (2, 2). (For more explana-
tions, check Example 3.2.3). The four column vectors of matrix A are (1,−2),
(1, 0), (−2, 1) and (3, 0). It is not hard to see that (2, 2) is only contained in the
cone spanned by (−2, 1) and (1, 0), and the cone spanned by (−2, 1) and (3, 0).
Therefore there are only two basic feasible solutions.

(b) These two basic feasible solutions can be computed in the following way.
Choosing {x2, x3} as the basis gives x1 = x4 = 0, this leads to the equations
x2 − 2x3 = 2 and x3 = 2. Solving this system gives x2 = 6 and x3 = 2,
therefore (x1, x2, x3, x4) = (0, 6, 2, 0) is a basic feasible solution. The other BFS
can be obtained by taking {x3, x4} as the basis, so x1 = x2 = 0, and solving
−2x3 + 3x4 = 2 and x3 = 2 gives (x1, x2, x3, x4) = (0, 0, 2, 2).

(c) There are a couple of ways to show that the objective function is bounded
from below (meaning that there exists a constant C, such that the objective
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function is always greater or equal to C). One easy way is to the following
inequality:

5x1 + 2x2 + 3x3 + x4 ≥ −2x1 + x3 = 2.

The inequality is because all xi’s are nonnegative. Even easier, one can just use
all the variables are nonnegative to conclude that the objective function is at
least 0. Alternatively you might compute the extreme directions for this LP,
and show that the inner product of the vector (5, 2, 3, 1) with all the extreme
vectors are nonnegative.

(d) From this assumption that the minimal value is attained at a basic feasi-
ble solution, we just check the value of the objective function at these two BFS
we computed in (b). (0, 6, 2, 0) gives 18 and (0, 0, 2, 2) gives 8. So the optimal
solution is (0, 0, 2, 2) which gives the smaller value 8.

LP in Exercise 3.3.2 on Page 76
The linear program is already in the standard form. To solve it, we may use
the general representation theorem. First we compute the extreme points of
this linear program (that is, the basic feasible solutions). This could be done
by choosing all the
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pairs of variables as basis. We start from choosing x1, x2

as the basis, therefore x3 = x4 = 0, this gives x1 = 6, x2 = 2, which gives
a basic solution: (6, 2, 0, 0). Similarly choosing other possible bases gives us
the following basic solutions: (3, 0, 1, 0), (7, 0, 0, 12 ), (0,−2, 2, 0), (0, 14, 0,−3),
(0, 0, 74 ,−

3
8 ). Among them, only the followings are BFS: (6, 2, 0, 0), (3, 0, 1, 0),

(7, 0, 0, 12 ).
Now we compute the extreme directions, suppose (d1, d2, d3, d4) is a extreme

direction, then it must be a BFS of the following linear program:

d1 + d2 + 5d3 + 2d4 = 0
2d1 + d2 + 8d3 = 0
d1 + d2 + d3 + d4 = 1
d1, d2, d3, d4 ≥ 0

Note that all di are nonnegative and their positive linear combination d1 + d2 +
5d3 + 2d4 = 0. This implies that d1 = d2 = d3 = d4 = 0, wich contradicts the
third constraint. Therefore there is no recession direction. From the representa-
tion theorem, any feasible solution to the original LP is the convex combination
of the extreme points. By plugging the basic feasible solutions to the objective
function. We get the optimal solution is (3, 0, 1, 0), with optimum value 7.

The intersection of a finite number of convex sets is convex

Suppose S1, · · · , Sn are the convex sets considered. We would like to prove
that

⋂n
i=1 Si is also a convex set. It suffices to show that for any two points

x, y ∈
⋂n

i=1 Si, and an arbitrary λ ∈ [0, 1], λx + (1− λ)y ∈
⋂n

i=1 Si. Note that
for every i = 1, · · · , n, both x and y is contained in Si. Since Si is convex,



λx + (1 − λ)y is still contained in Si. Note that this holds for all i, so clearly
λx+(1−λ)y is contained in the intersection of all Si. And the proof is complete.


