Maximum size of a k-uniform intersecting hypergraph with a cover number k

Andrii Arman (University of Manitoba)

A k-uniform hypergraph \mathcal{F} is called *intersecting* iff any two edges of \mathcal{F} have a non-empty intersection. A subset C of vertices of \mathcal{F} is called a *cover* if every edge of \mathcal{F} has a non-empty intersection with C. The *cover number* of a hypergraph \mathcal{F} is the number of vertices in the smallest cover of \mathcal{F} . Define r(k) to be the maximal size of an intersecting hypergraph \mathcal{F} with a cover number k.

In 1975, Erdős and Lovász proved that r(k) is at most k^k . In 1994, Tuza improved the upper bound by a constant factor. In this talk I will outline the proof of a new upper bound which is of the order k^{k-1} . This talk is based on a joint work with Troy Retter.