A tight bound for Green's arithmetic triangle removal lemma

László Miklós Lovász (MIT)

Let p be a fixed prime. A triangle in \mathbb{F}_{p}^{n} is an ordered triple (x, y, z) of points satisfying $x+y+z=0$. Let $N=p^{n}$, (the size of \mathbb{F}_{p}^{n}). Green proved an arithmetic triangle removal lemma which says that for every $\epsilon>0$ and prime p, there is a $\delta>0$ such that if X, Y, and Z are subsets of \mathbb{F}_{p}^{n} and the number of triangles in $X \times Y \times Z$ is at most δN^{2} (so a δ fraction of all possible triangles), then we can delete ϵN elements from X, Y, and Z and remove all triangles. Green posed the problem of improving the quantitative bounds on the arithmetic triangle removal lemma, and, in particular, asked whether a polynomial bound holds. Despite considerable attention, prior to our work, the best known bound, due to Fox, showed that $1 / \delta$ can be taken to be an exponential tower of twos of height logarithmic in $1 / \epsilon$.

In this talk, we will discuss our solution to Green's problem. We prove an essentially tight bound for Green's arithmetic triangle removal lemma in \mathbb{F}_{p}^{n}. We show that for any fixed p, a polynomial bound holds, and further determine the best possible exponent for each prime p. The proof uses Kleinberg, Sawin, and Speyer's essentially sharp bound on multicolored sum-free sets, which builds on the recent breakthrough on the cap set problem by Croot-Lev-Pach, and the subsequent work by Ellenberg-Gijswijt, Blasiak-Church-Cohn-Grochow-Naslund-Sawin-Umans, and Alon.

Joint work with Jacob Fox.

