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INTRODUCTION

The goal of this thesis is to cover the background of Hausdorff measure, density
and tangency, and to explain how they have been used to prove many fundamental
geometric results on sets of integral as well as nonintegral Hausdorff dimensions. In
section 1, we review basic measure theory concepts corresponding to the Lebesgue
measure. In section 2, we introduce the Hausdorff measure and Hausdorff dimension
together with their unique properties, laying the framework for the rest of the paper.

In section 3, we mainly study the density, which is an intrinsic function associated
to a measurable set in the Euclidean space. We examine how it is affected by the
dimension of the given set and show that it is stable when passed to measurable
subsets or countable unions. In section 4, we introduce the notions of tangency
and rectifiability of sets in the plane. In particular, we look at how these objects
behave under a regularity condition described in terms of the circular density. With
a substantial amount of work, we are able to show that regularity, rectifiability and
tangency are equivalent conditions for subsets of Hausdorff dimension one in the
plane. In section 5, we carry the discussion on tangency and density to subsets of
nonintegral dimensions in the plane, and we examine an elegant result by Marstrand
which says tangents and density fail to exist at almost every point of such sets.

In general, this thesis is an expository study on some of the early results by Besi-
covitch and Marstrand in geometric measure theory. Falconer’s book [Fal85] is used
as the major source; meanwhile, other standard textbooks [Ste05], [Mat95] as well as
original papers [Bes38], [Mar54] are consulted to supply a richer context. Intended
readers are expected to know basic topology and real analysis; preferred though, a
knowledge of measure theory is not required.
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NOTATIONS

Rn n-dimensional Euclidean space.

N the set of positive integers.

Br(x) closed ball centered at x with radius r.

Sr(x,θ, φ) sector centered at x pointing θ with radius r.

|U | diameter of the set U.

E◦ interior of the set E.

Ec complement of the set E

L (Γ) length of the curve Γ.

Hs s-dimensional Hausdorff measure or outer measure.

Hs
δ δ-outer measure used in constructing Hs

Ln n-dimensional Lebesgue measure.

Ds(E, x) density of E at x.

Ds(E, x), D
s
(E, x) lower, upper densities.

D
s

c(E, x) upper convex density.

D
s
(E, x,θ, φ) upper angular density.
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1. Measure Theory Preliminaries

Given a subset E of Rn, one of the first questions we could ask is how big it is. As
sets in Rn can be quite intangible, we need a careful measurement of their sizes. The
basic idea is to approximate E by unions of sets whose sizes are intuitive. Here we
adopt (closed) cubes as our building blocks as they have a standard notion of size or
volume.

Definition 1.1. A cube C is a subset of Rn of the form

C = [a1, b1]× [a2, b2]× · · · × [an, bn]

where ai, bi ∈ R and ai < bi for each i. Define the volume of C as

V (C) = (b1 − a1)(b2 − a2) · · · (bn − an)

Proceeding with this idea, we arrive at our first notion of size for E.

Definition 1.2. Define the Lebesgue outer measure of E ⊂ Rn as

Ln(E) = inf

{
∞∑
i=1

V (Ci)

∣∣∣∣E ⊂ ∞⋃
i=1

Ci

}
i.e. the infimum is taken over all countable coverings of E by closed cubes.

Note that the countable coverings exists because Rn is separable. Moreover, we also
see that by construction the Lebesgue outer measure is always nonnegative, possibly
infinite, and defined for all subsets of Rn. The following properties of the Lebesgue
outer measure are direct consequences of the definition:

1. (Subadditivity) Given a countable collection {Ei} ⊂ Rn,

Ln
(
∞⋃
i=1

Ei

)
≤

∞∑
i=1

Ln(Ei)

2. Ln(∅) = 0.
3. (Translation Invariant) For any E ⊂ Rn, x ∈ Rn, Ln(E + x) = Ln(E).
4. For any closed cube C ⊂ Rn, Ln(C) = V (C).
Note that in general any set function µ : P(X) → [0,∞] on a nonempty set X is

an outer measure if it satisfies properties 1 and 2. Now while properties 2, 3 and 4
are fairly intuitive for the Lebesgue outer measure, property 1 may seem unfamiliar
at first, but since the Ei’s are likely to have nonempty intersection, so the size of the
union is partly consumed by the overlapping.

Nevertheless, when Ei’s are disjoint, we do wish that the inequality in property 1
becomes an equality. Unfortunately, one can show that such an additive property,
if imposed, will be inconsistent with properties 2 and 3. As it is hopeless to require
the three desirable properties to hold for all subsets of Rn, we take a step back and
ask if they hold for a reasonably large collection of subsets, which are known as the
Lebesgue measurable sets.
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Definition 1.3. A subset E ⊂ Rn is Lebesgue measurable, or Ln-measurable, if for
every A ⊂ Rn,

Ln(A) = Ln(A ∩ E) + Ln(A \ E).

The above condition is oftentimes known as the Carathéodory’s criterion. We denote
the collection of all Lebesgue measurable sets as M and call the Lebesgue outer
measure Ln restricted to M the Lebesgue measure.

It then can be shown that M is a σ-algebra, namely M is closed under comple-
mentation and countable unions, and for a disjoint collection {Ei} ⊂ M, we have

Ln
(
∞⋃
i=1

Ei

)
=
∞∑
i=1

Ln(Ei),

which is called the additivity of Ln. Moreover, Ln satisfies the following properties,
whose proofs can be found in a standard real analysis textbook such as [Ste05]:

1. (Continuity from below) If {Ei} ⊂ M and E1 ⊂ E2 ⊂ · · · , then

Ln
(
∞⋃
i=1

Ei

)
= lim

i→∞
Ln(Ei)

2. (Continuity from above) If {Ei} ⊂ M, and E1 ⊃ E2 ⊃ · · · , and Ln(Ej) < ∞
for some j, then

Ln
(
∞⋂
i=1

Ei

)
= lim

i→∞
Ln(Ei)

We also briefly mention one result that make Lebesgue measure Ln particularly
nice to work with: We say a measure µ over a topological space X is called Borel
regular if (i) all open sets are µ-measurable and (ii) each subset A of X is contained
in a Borel set B for which µ(A) = µ(B). We have the following theorem.

Theorem 1.4. The Lebesgue measure is Borel regular.

We shall prove Theorem 1.4 as a special case of the Theorem 2.5 as we show that
the Hausdorff measure, as a natural generalization of the Lebesgue measure, is Borel
regular. Finally, we conclude this section by introducing the Cantor set as a particular
L1-measurable set that serves as a motivation for the next chapter.

Example 1.5. Start by removing the middle third open interval (1/3, 2/3) from
C0 = [0, 1], then removing the middle third open intervals (1/9, 2/9) and (7/9, 8/9)
of the two remaining intervals of C1, and so forth...

C0

C1

C2

C3

C4
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The Cantor set C is defined as C =
⋂∞
k=0Ck, and it has the following properties

[Ste05]:

(1) C has Lebesgue measure zero.
(2) C is uncountable.
(3) C is self-similar in the sense that any part is a replica of the whole.

2. Hausdorff Measure

Lebesgue measure, powerful though, is not an ideal setting to investigate geometric
properties of sets. First of all, Lebesgue measure is not sensitive enough to capture
the “dimension” of a given set. By dimension we mean for each appropriate set E,
there is a value s ≥ 0 associated to E such that the quantity Ht(E) captures the
actual size of E when t = s, in the sense that for any t > s, we have Ht(E) = 0 and
for any t < s, we have Ht(E) =∞.

Take the Cantor set in [0, 1] as an example: Since it has Lebesgue measure zero,
its size in dimension one is negligible. This shows the dimension of the Cantor set is
less than or equal to 1. The question is can we be more accurate? In fact, we will
show that the Cantor set has a well-defined Hausdorff dimension s = log 2/ log 3.

Definition 2.1. Given δ > 0 and E ⊂ Rn, a countable collection of {Ui} of (arbitrary)
sets in Rn is a δ-cover of E if E ⊂

⋃∞
i=1 Ui and 0 < |Ui| ≤ δ, where

|Ui| = diam(Ui) = sup{|x− y| : x, y ∈ Ui}.

Definition 2.2. Let E ⊂ Rn and s be a non-negative real number. For δ > 0, define

Hs
δ(E) = inf

{
∞∑
i=1

|Ui|s
}

where the infimum is taken over all δ-cover of E. SinceHs
δ increases as δ decreases, the

limit limδ→0Hs
δ(E) = supδ>0Hs

δ(E) exists (possibly infinite). Define the Hausdorff
s-dimensional outer measure of E as

Hs(E) = lim
δ→0
Hs
δ(E)

We check that Hs is indeed an outer measure: It is clear from the definition that
Hs(∅) = 0. Moreover, for any countable collection {Ei} of sets in Rn, δ > 0, and
ε > 0, there exists a δ-cover {Ui,j}j≥1 of Ei such that

∞∑
j=1

|Ui,j|s ≤ Hs
δ(Ei) +

ε

2i

Now since
⋃
i,j Ui,j is a δ-cover of

⋃∞
i=1Ei, we have

Hs
δ

(
∞⋃
i=1

Ei

)
≤

∞∑
i=1

Hs
δ(Ei) + ε ≤

∞∑
i=1

Hs(Ei) + ε

Since ε is arbitrary, letting δ → 0 shows that Hs(
⋃∞
i=1Ei) ≤

∑∞
i=1Hs(Ei). This

shows the countable subadditivity.
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Moreover, the Hausdorff s-dimensional outer measure Hs has the nice geometric
property that it is additive on positively separated sets, namely it satisfies the fol-
lowing theorem:

Theorem 2.3. If d(E1, E2) > 0, then Hs(E1 ∪ E2) = Hs(E1) +Hs(E2).

Proof. By the subadditivity, we automatically have Hs(E1∪E2) ≤ Hs(E1) +Hs(E2).
Hence, it suffices to show that Hs(E1 ∪ E2) ≥ Hs(E1) +Hs(E2).

Notice if 0 < δ < d(E1, E2), then no set in a δ-cover {Ui} of E ∪ F intersects both
E and F . That is the δ-cover of E defined as V = {Ui : Ui ∩ E 6= ∅} and the δ-cover
of F defined as W = {Ui : Ui ∩ F 6= ∅} are disjoint. Hence,∑

Uj∈V

|Uj|s +
∑
Uk∈W

|Uk|s ≤
∞∑
i=1

|Ui|s

which implies

Hs
δ(E) +Hs

δ(F ) ≤
∞∑
i=1

|Ui|s

Since {Ui} is an arbitrary, taking the infimum over all δ-cover of E∪F gives Hs
δ(E)+

Hs
δ(F ) ≤ Hs

δ(E ∪ F ). Now letting δ → 0, we obtain the desired result. �

Together with the following theorem, whose proof can be found in [Fal85],

Theorem 2.4. If ν is a metric outer measure on (X, d), then all Borel subsets of X
are ν-measurable.

We know that Hs is a measure when restricted to Borel sets in Rn, in which case
it is called the s-dimensional Hausdorff measure. Comparing the definitions of
Hausdorff measure and Lebesgue measure, we see that one of the major differences is
that a scaling factor “s” appears in the definition of Hausdorff outer measure. This
reflects the idea that the measure of a set should scale according to its dimension. For
example, if Γ is a curve of “length” L, then rΓ has “length” rL. If C is a cube in Rn,
then the volume of rC is rnV (C). This feature of dimension is precisely captured in
the definition of the Hausdorff measure in the way that if a set E is scaled by r, then
|E|s is scaled by rs. To formalize this notion of dimension, consider for any F ⊂ Rn,
if |F | ≤ δ, then if t > s,

|F |t = |F |t−s|F |s ≤ δt−s|F |s

which implies for any F ⊂ Rn

Ht
δ(E) ≤ δt−sHs

δ(E) ≤ δt−sHs(E)

If Hs(E) <∞, then taking δ → 0 gives Ht(E) = 0. Similarly, if t < s and Hs(E) > 0,
taking δ → 0 implies Ht(E) = ∞. Thus, there is a unique real value dim(E),
namely the Hausdorff dimension of E, such that Hs(E) = ∞ if 0 ≤ s < dim(E),
Hs(E) = 0 if dim(E) < s <∞.

Next we prove that Hs is a regular measure (see the definition above Theorem 1.4),
together with a very useful result that allows us to approximate s-sets from below by
closed subsets.
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Theorem 2.5. (i) Hausdorff measure is Borel regular. (ii) Any Hs-measurable set of
finite Hs-measure contains a closed set differing from it by arbitrarily small measure.

Proof. (i) It follows from Theorem 2.4 that all open sets in Rn are Hs-measurable.
Now it remains to show that each measurable set is contained in a Borel set of equal
measure.

For any subset E of Rn, if Hs(E) =∞, then Rn contains E and has equal measure.
Suppose Hs(E) < ∞. For each i ∈ N, by the definition of Hs

1/i(E), there exists an

open (2/i)-cover {Uij}j of E such that
∞∑
j=1

|Uij|s ≤ Hs
1/i(E) + 1/i.

Let G =
⋂∞
i=1

⋃∞
j=1 Uij, then G is a Borel set containing E. Moreover, since {Uij}j is

a (1/i)-cover of G, we have

Hs
1/i(G) ≤

∞∑
j=1

|Uij|s ≤ Hs
1/i(E) + 1/i.

Letting i→∞, we get Hs(G) = Hs(E), which shows that Hs is Borel regular.
(ii) Suppose E ⊂ Rn is Hs-measurable and Hs(E) < ∞. It follows from part (i)

that there is a sequence of open sets {Ui} containing E with Hs(
⋂∞
i=1 Ui \ E) = 0.

Moreover, since each open set in Rn can be written as the union of an increasing
sequence of closed sets, there exists {Fij}j for each i such that Ui =

⋃∞
j=1 Fij. Then

by the continuity of Hs,

lim
j→∞
Hs(E ∩ Fij) = Hs(E ∩ Ui) = Hs(E)

Hence, given ε > 0, there exists ji ∈ N such that

Hs(E \ Fiji) = Hs(E)−Hs(E ∩ Fiji) < ε/2i

Let F =
⋂∞
i=1 Fiji , then F is a closed set contained in E. Moreover,

Hs(F ) ≥ Hs(E ∩ F ) ≥ Hs(E)−
∞∑
i=1

Hs(E \ Fiji) > Hs(E)− ε

as desired. �

Remark. This theorem later allows us to generate results by only looking at closed
subsets, which are much more desirable to work with. It also worth mentioning that
when s is a positive integer n, there is a beautiful connection between the Hausdorff
measure and the Lebesgue measure, namely:

Theorem 2.6. If E ⊂ Rn, then Ln(E) = cnHn(E), where cn = πn/2/2n(n/2)!.

This indicates that the Hausdorff measure is indeed a natural generalization of
the Lebesgue measure. A proof can be found in [Ste05]: It relies on the isodiametric
inequality, which states that among all sets of a given diameter, the ball has the largest
volume. The constant cn arises naturally from the volume of the n-dimensional unit
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ball within this context. By Theorem 2.4, 2.5, and 2.6, Lebesgue measure is also a
metric outer measure and Borel regular (Theorem 1.4).

Now we shift our attention to the discussion of curves by starting with a lemma that
will be useful in later chapters. The lemma states how Hausdorff measure changes
via a Hölder continuous or a Lipschitz map.

Lemma 2.7. Let φ : Rn → Rn be a surjective mapping φ(E) = F such that

|φ(x)− φ(y)| ≤ c|x− y|t (x, y ∈ E, 0 < t ≤ 1)

for a positive constant c. Then Hs/t(F ) ≤ cs/tHs(E)

Proof. Let {Ui} be a δ-cover of E. For each i and any x, y ∈ E ∩ Ui, we have
|φ(x)− φ(y)| ≤ c|x− y|t ≤ c|Ui|t. This implies |φ(E ∩ Ui)| ≤ c|Ui|t and thus

∞∑
i=1

|φ(E ∩ Ui)|s/t ≤ cs/t
∞∑
i=1

|Ui|s

Since φ is surjective, {φ(E ∩ Ui)} is a cδt-cover of F . Taking infimum over all

δ-cover of E, we have Hs/t
cδt(F ) ≤ cs/tHs

δ(E). Letting δ → 0, we obtain the desired
result. �

Moreover, this theorem immediately gives another desirable property of the Haus-
dorff measure as the quantity H1(Γ) equals precisely to the length of Γ. We define
a curve as the image of a continuous injection ψ : [a, b] → Rn, where [a, b] ⊂ R is
a closed interval. Thus, a curve is a continuum (i.e. a compact connected set). The
length of the curve Γ is defined as

(1) L (Γ) = sup
m∑
i=1

|ψ(ti)− ψ(ti−1)|

where the supremum is taken over all partitions a = t0 < t1 < . . . < tm = b of [a, b].

Theorem 2.8. If Γ is a curve, then H1(Γ) = L (Γ).

Proof. Let Γ be a curve joining z and w. Let proj denote the orthogonal projection
from Rn onto the line segment [z, w] through z and w, then [z, w] = proj Γ. Since
projection does not increase length, we must have |proj(x) − proj(y)| ≤ |x − y| for
all x, y ∈ Rn. Now it follows from Lemma 2.7 and Theorem 2.6 that H1(Γ) ≥
H1(proj Γ) = H1([z, w]) = L1([z, w]) = |z − w|.

Suppose Γ is defined as ψ : [a, b] → Rn. It follows from the above result that
H1(ψ[t, u]) ≥ |ψ(u)− ψ(t)| for any u, t ∈ [a, b]. Then for any partition a = t0 < t1 <
. . . < tm = b of [a, b], we have

m∑
i=1

|ψ(ti)− ψ(ti−1)| ≤
m∑
i=1

H1(ψ[ti, ti−1]) = H1(ψ[a, b]) = H1(Γ).

Thus, taking the supremum over all partitions gives L (Γ) ≤ H1(Γ). Now for
the other direction, if L (Γ) = ∞, we are done. Suppose L (Γ) < ∞, then let ψ
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parametrize Γ by arc length, i.e. ψ : [0,L (Γ)]→ Rn such that L (ψ[0, t]) = t for any
t ∈ [0,L (Γ)]. By construction we have

|t1 − t2| = L (ψ[t1, t2]) ≥ |ψ(t1)− ψ(t2)|

for any t1, t2 ∈ [0,L(Γ)]. Since ψ is a surjection from [0,L(Γ)] to Γ, it again follows
from Lemma 2.7 that H1(Γ) ≤ H1([0,L (Γ)]) = L (Γ). �

The last yet possibly the most powerful asset we would like to secure is the Vitali
Covering Theorem, which allows us to obtain global results from examining local
property:

Definition 2.9. A collection V of closed balls in Rn is a fine cover of a set E ⊂ Rn

if

E ⊂
⋃
B∈V

B and inf{diam(B) |x ∈ B,B ∈ V} = 0.

for all x ∈ E, i.e. given any point x ∈ E, there exists B ∈ V of arbitrarily small
radius that contains x.

Lemma 2.10. Suppose V is a fine cover of E ⊂ Rn of closed balls of uniformly
bounded radii, then there exists a countable family of disjoint balls {Bi} ⊂ V such
that for each finite subcollection {B1, B2, . . . , Bm},

E \
m⋃
i=1

Bm ⊂
∞⋃

i=m+1

B̂

where B̂ = 5B.

Theorem 2.11. (Vitali covering theorem) Let E be an Hs-measurable subset of Rn

such that Hs(E) <∞ and let V be a fine cover of closed balls for E. Then there is a
disjoint sequence of closed balls {Bi} ⊂ V such that either

∑
|Bi|s =∞ or

Hs(E \
⋃
i

Bi) = 0

Moreover, we may also require that for any ε > 0

Hs(E) ≤
∑
i

|Bi|s + ε.

Proof. Fix δ > 0; we may assume that |B| < δ for all B ∈ V . Let U1 be an open set
containing E, then the collection

V1 = {B ∈ V |B ⊂ U1}

is by construction a fine cover of E. By Lemma 2.10, there exists a disjoint collection
{Bi} ⊂ V1 such that for each finite subcollection {B1, . . . , Bm},

E \
m⋃
i=1

Bi ⊂
∞⋃

i=m+1

B̂i
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If
∑
|Bi|s <∞, we may choosem1 large enough so that the finite collection {B1, B2, . . . , Bm1}

satisfies

Hs
5δ

(
E \

m1⋃
i=1

Bi

)
≤

∞∑
i=m1+1

|B̂i|s = 5s
∞∑

i=m1+1

|Bi|s < θHs(E)

for some 0 < θ < 1
2
. Letting δ → 0 and µ be the restriction of Hs to E, then the

above result is equivalent to

µ

(
U1 \

m1⋃
i=1

Bi

)
< θµ(U1)

Let m0 = 0 and define inductively

Uk+1 = Uk \
mk⋃

i=mk−1+1

Bi for each k ≥ 1

By construction Uk+1 is open, we may repeat the above steps and get a finite disjoint
subcollection {Bmk+1, . . . , Bmk+1

} ⊂ V such that

µ

(
U1 \

mk+1⋃
i=1

Bi

)
= µ

(
Uk+1 \

mk+1⋃
i=mk+1

Bi

)
< θµ(Uk+1) < θk+1µ(U1)

Since mk →∞ as k →∞,

Hs

(
E \

∞⋃
i=1

Bi

)
= µ

(
U1 \

∞⋃
i=1

Bi

)
= 0

which proves the first part of the theorem. Moreover, given ε > 0, by the definition
of Hs as the limit of Hs

δ, we may choose δ at the beginning of the proof so that

Hs(E) < Hs
δ(E) +

1

2
ε ≤

∞∑
i=1

|Wi|s +
1

2
ε

for any δ-cover {Wi} of E. Given how the collection {Bi} has been constructed, we
may find a δ-cover {Vi} of E \

⋃
iBi such that

1

2
ε = Hs

(
E \

∞⋃
i=1

Bi

)
+

1

2
ε >

∞∑
i=1

|Vi|s

Since {Bi} ∪ {Vi} is then a δ-cover of E and Hs(H \
⋃
Ui) = 0, it follows

Hs(E) <
∞∑
i=1

|Bi|s +
∞∑
i=1

|Vi|s +
1

2
ε <

∞∑
i=1

|Bi|s + ε.

�

Finally, we conclude this chapter by examining the Hausdorff dimension and mea-
sure of the Cantor set from Example 1.5. Since in general calculating the Hausdorff
measure and dimension of a given set is difficult, it is striking to see that these quan-
tities associated to the Cantor set turn out to be simple.
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Theorem 2.12. The Hausdorff dimension of the Cantor set E is s = log 2/ log 3.

Proof. We show 0 < Hs(C) < ∞ for s as above. Recall from Section 1 that the
Cantor set C =

⋂∞
k=1Ck, where each Ck is a finite union of 2k intervals of length

3−k. For any δ > 0, there exists a K such that 3−K < δ. Now since Ck covers C and
consists of 2K intervals of diameter less than δ, we have

Hs
δ(C) ≤ 2K(3−K)s = 1

Letting δ → 0, we have Hs(C) ≤ 1. For the other direction, consider the Cantor-
Lebesgue function F constructed in Folland, which is the limit of a sequence {Fn} of
piecewise linear functions. Since Fn increases by at most 2−n on each interval of 3−n,
it follows that for any x, y ∈ [0, 1].

|Fn(x)− Fn(y)| ≤
(

3

2

)n
|x− y|

Notice |F (x)−Fn(x)| ≤ 2−n for any x ∈ [0, 1]. Together with the triangle inequality,

|F (x)− F (y)| ≤ |F (x)− Fn(x)|+ |Fn(x)− Fn(y)|+ |Fn(y)− F (y)|

It follows that for every n ∈ N,

|F (x)− F (y)| ≤ (3n|x− y|+ 2) 2−n

In particular, for fixed x and y, we may choose n so that 3n|x− y| lies between 1 and
3. Then, we have |F (x) − F (y)| ≤ 5 · 2−n = 5 · (3−n)s ≤ c|x − y|s for some positive
constants c. Thus, by Lemma 2.7 cHs(C) ≥ H1(F (C)) = H1([0, 1]) = 1, which
implies Hs(C) > 0, and proof is complete. (We may further show that Hs(C) = 1,
but the proof is more involved and not shown here. Interested readers may consult
[Fal85] for a detailed inquiry.) �

3. Basic Density Properties

One of the important results in the theory of Lebesgue measure is the Lebesgue
density theorem, which says for a Ln-measurable subset E of Rn, the Lebesgue density
of E at x

lim
r→0

Ln(E ∩Br(x))

Ln(Br(x))
,

exists and equals 1 if x ∈ E a.e. and equals 0 a.e. if x /∈ E. Motivated by this result,
we look for its analogue for Hausdorff measure.

First, we restrict our attention to a particular family of sets. A subset E of Rn is
called an s-set (0 ≤ s ≤ n) if E is Hs-measurable and 0 < Hs(E) <∞. Note that an
s-set by definition is automatically a set of Hausdorff dimension s, and when s = 0,
E is of no interest in studying since it is simply a set of finitely many points.

Now we define the density of an s-set E at a given point x, which captures the
amount of masses that E has at x locally with respect to a ball. Densities will play
a major role in our analysis.
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Definition 3.1. The upper and lower densities of an s-set E at a point x ∈ Rn are
defined respectively as

D
s
(E, x) = lim sup

r→0

Hs(E ∩Br(x))

(2r)s
, Ds(E, x) = lim inf

r→0

Hs(E ∩Br(x))

(2r)s

If D
s
(E, x) = Ds(E, x), we say that the density of E at x exists and denote it as

D(E, x). Moreover, if D(E, x) = 1, we say that x is a regular point of E, otherwise
x is an irregular point. Lastly, an s-set is regular if D(E, x) = 1 for x Hs-almost
everywhere in E.

Characterizing regular sets and obtaining bounds for the upper and lower densities
of s-sets are two major themes in section 4. In fact, we will look at one of the most
fundamental as well as elegant results in geometric measure theory in section 5 that
an s-set cannot be regular unless s is an integer.

We shall first examine a few density properties of s-sets for all values of s. In
particular, the following two theorems can be viewed as the analogue of Lebesgue
density theorem for Hausdorff measure.

Theorem 3.2. If E is an s-set in Rn, then 2−s ≤ D
s
(E, x) ≤ 1 for Hs-almost all

x ∈ E.

Proof. We first prove the left hand inequality: Let Λ = {x ∈ E : D
s
(E, x) < 2−s}

and for each k ∈ N,

Λk =

{
x ∈ E : Hs(E ∩Br(x)) <

krs

k + 1
, 0 < r <

1

k

}
.

Then we have Λ =
⋃∞
k=1 Λk, and we show that Hs(Λ) = 0 by showing Hs(Λk) = 0 for

each k: Indeed, let ε > 0, by the definition of Hs(Λk), we can find a (1/k)-cover {Vi}
of Λk such that Vi ∩ Λk 6= ∅ and

∞∑
i=1

|Vi|s ≤ Hs
1/k(Λk) + ε ≤ Hs(Λk) + ε

Now for each i we pick xi ∈ Vi∩Λk and let ri = |Vi|. Then it follows from elementary
geometry that Vi ∩ Λk ⊂ Bri(xi) ∩ Λk ⊂ Bri(xi) ∩ Λ. Thus,

Hs(Λk) ≤
∞∑
i=1

Hs(Vi ∩ Λk) ≤
∞∑
i=1

Hs(Bri(xi) ∩ Λ)

<
∞∑
i=1

k

k + 1
rsi =

k

k + 1

∞∑
i=1

|Vi|s ≤
k

k + 1
(Hs(Λk) + ε)

Letting ε→ 0, we have Hs(Λk) = 0 since k ≥ 1 and Hs(Λk) ≤ Hs(Λ) ≤ Hs(E) <∞.
Now for the right hand inequality, for every t > 1 let At = A = {x ∈ E : D

s
(E, x) >

t}. We show that D
s
(E, x) ≤ 1 by showing Hs(A) = 0. Indeed, given ε > 0 and

δ > 0, by the Borel regularity of Hs, we may find an open set U containing A such
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that Hs(E ∩ U) < Hs(A) + ε. Moreover, by the construction of A, the collection of
closed balls

V = {Br(x) : x ∈ A, Hs(E ∩Br(x)) > t(2r)s, 0 < r < δ/2, Br(x) ⊂ U}
is a fine cover of A. Thus, by the Vitali Covering Theorem, there exists a sequence
of disjoint balls {Bi} such that Hs(A \

⋃∞
i=1Bi) = 0. Thus,

Hs(A) + ε > Hs(E ∩ U) ≥
∞∑
i=1

Hs(E ∩Bi) > t

∞∑
i=1

|Bi|s ≥ tHs
δ

(
A ∩

∞⋃
i=1

Bi

)
Letting δ → 0 and ε → 0, we have Hs(A) ≥ tHs(A ∩

⋃∞
i=1 Bi). However, since

Hs(A \
⋃∞
i=1 Bi) = 0, we have Hs(A) = tHs(A ∩

⋃∞
i=1Bi), which forces Hs(A) = 0

using t > 1. Since the result holds for every t > 1, we get the desired result. �

Remark. Because of the above theorem, upper densities are usually more useful in
practice than lower densities.

Theorem 3.3. If E is an s-set in Rn, then Ds(E, x) = 0 at Hs-almost all x /∈ E.

Proof. We first show that for any t > 0, the set A = {x ∈ Rn \ E : D
s
(E, x) > t}

has measure zero. Given ε > 0 and δ > 0, since Hs(E ∩ A) = 0, it follows from
the Borel regularity of Hs that there exists an open set U containing A such that
Hs(E ∩ U) < ε. Now by the construction of A, we know that the collection of closed
balls

V = {Br(x) : x ∈ A, Hs(E ∩Br(x)) > t(2r)s, 0 < r < δ/2, Br(x) ⊂ U}
is a fine cover of A. Thus, by the Vitali Covering Theorem, there exists a disjoint
sequence of closed balls {Bi} such that Hs(A \

⋃∞
i=1Bi) = 0. Thus,

ε > Hs(E ∩ U) ≥
∞∑
i=1

Hs(E ∩Bi) > t
∞∑
i=1

|Bi|s ≥ tHs
δ

(
A ∩

∞⋃
i=1

Bi

)
Letting δ → 0 and ε → 0, using Hs(A \

⋃∞
i=1 Bi) = 0, we have tHs(A) = 0. Since

t > 0, we have that Hs(A) = 0, which implies Ds(E, x) = D
s
(E, x) = D(E, x) = 0

at Hs-almost all x /∈ E. �

The two following useful corollaries that are direct consequences of the above the-
orems, which will allow us to pass density results to subsets and countable union:

Corollary 3.4. Let F be a measurable subset of an s-set E. Then Ds(F, x) =
Ds(E, x) and D

s
(F, x) = D

s
(E, x) for almost all x ∈ F .

Proof. Let H = E \ F . Then,

Hs(H ∩Br(x)) = Hs(E ∩Br(x))−Hs(F ∩Br(x))

which implies

D
s
(H, x) = D

s
(E, x)−Ds

(F, x), Ds(H, x) = Ds(E, x)−Ds(F, x)

Since by Theorem 3.3 D
s
(H, x) = Ds(H, x) = D(H, x) = 0 for almost all x ∈ F , we

have the desired results. �
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Remark. Since it is easy to check that for any s-set E in Rn, the set of regular
points A and that of irregular points B are both measurable, it follows from the above
theorem that E = A ∪ B, D(A, x) = 1 for almost all x ∈ A and D(B, x) 6= 1 for
almost all x ∈ B, i.e. any s-set can be decomposed into a disjoint union of a regular
set and an irregular set.

Corollary 3.5. Let E = ∪jEj be a countable disjoint union of s-sets with Hs(E) <
∞. Then for any k,

Ds(Ek, x) = Ds(E, x) and D
s
(Ek, x) = D

s
(E, x)

for almost all x ∈ Ek.

Proof. Since Ek ⊂ E for each k, the result follows from Corollary 3.4. �

Remark. It worth mentioning that in Theorem 3.2 the upper bound 1 is always
sharp, while the lower bounded 2−s is sharp for all s ≤ 1. A sharp estimate in the
case when s > 1 is conjectured to be 1/2 yet still unknown. This shows that density
behaves differently for different s, which we will discuss in details in Sections 4 and
5.

Before concluding this section, we introduce one more type of density that come in
handy when studying the properties of s-sets, namely:

Definition 3.6. The upper convex density of an s-set E at x is defined as

D
s

c(E, x) = lim sup
r→0

{
sup
Hs(E ∩ U)

|U |s

}
where the supremum is taken over all convex sets U with x ∈ U and 0 < |U | ≤ r.

Since any bounded set is contained in a convex set of equal diameter, the definition
of upper convex density is equivalent to taking the supremum over all sets U with
x ∈ U and 0 < |U | ≤ r. Moreover, since Br(x) is convex and if x ∈ U , then U ⊂ Br(x)
for r = |U |, thus the convex density is related to the normal density by

2−sD
s

c(E, x) ≤ D
s
(E, x) ≤ D

s

c(E, x)

It can be shown that if E is an s-set, then D
s

c(E, x) = 1 for almost all x ∈ E.1

4. Sets of Integral Dimension

Now we arrive at the first highlight of this paper, which is a characterization of the
structure of s-sets in Rn in terms of tangency, density, and rectiafiability. The main
question we would like to answer is that “what do integral dimensional regular sets
look like?”.

Considering the higher dimensional case is much more difficult to deal with, thus
we will restrict our attention to the case when s = 1 and n = 2, which is almost
entirely the work of Besicovitch [Bes28], [Bes38], and [Bes39]. Meanwhile, we will
examine what makes the higher dimensional version of the question hard to answer.

1Theorem 2.3 [Fal85]; we will use this result without proving later in Section 4.
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First, we introduce some definitions: Recall the length of a curve Γ, L (Γ), defined
in equation (1) of Section 2, we say:

Definition 4.1. A curve Γ ⊂ Rn is rectifiable if its length L (Γ) is finite.

Remark. It follows from Theorem 2.8 that if Γ is a rectifiable curve, then Hs(Γ) =
∞ if s < 1 and Hs(Γ) = 0 if s < 1.

Definition 4.2. An s-set E ⊂ Rn is rectifiable (or 1-rectifiable) if it contained in a
countable union of rectifiable curves. E is purely unrectifiable if E intersects any
rectifiable curves in a set of Hs-measure zero.

Finally, we would like to define what does it mean for an s-set E to have a tangent
at x. Following the traditional train of thought, we expect the tangent to be locally
the best linear approximation to the set. However, since there is no smoothness
condition guaranteed on E, we look for an analogue in a measure-theoretic setting
and arrive at the following definition:

Definition 4.3. An s-set E in Rn has a tangent at x in the direction of ±θ if
D
s
(E, x) > 0 and for every angle φ > 0,

(2) lim
r→0

Hs(E ∩ (Br(x) \ (Sr(x,θ, φ) ∪ Sr(x,−θ, φ))))

rs
= 0

where Sr(x,θ, φ) denotes the circular sector with vertex x, radius r, axis in the
direction θ consisting of points y for which the segment [x, y] makes an angle of at
most φ with respect to θ. We use S∞(x,θ, φ) to denote the corresponding infinite
cone.

We visualize this definition of tangency by the following picture:
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Consider the dashed line (in the direction of ±θ) as the tangent of E at x. Then
equation (2) says for an angle φ > 0, the two-sided circular sectors locally cover
almost all the mass of E at x. Since it holds for any arbitrarily small angle φ > 0,
we see the line in the direction of ±θ nicely approximates E at x.

Moreover, there are two observations we can make on this definition. First, it is
clear that E has at most one tangent at x; otherwise, there exists two-sided cones
covering almost all the mass of E in multiple directions, which gives a contradiction
if we let the corresponding φ’s to be sufficiently small. Second, if E has a tangent in
the direction of ±θ at x, then any subset of E containing x has the same tangent at
x.

Angular densities were introduced by Besicovitch to study tangential properties of
s-sets in Rn when n ≥ 2. We introduce their definitions and use them later in this
section:

Definition 4.4. The upper angular density of an s-set E at x is defined as

D
s
(E, x,θ, φ) = lim sup

r→0

Hs(E ∩ Sr(x,θ, φ))

(2r)s

where the use of symbols is consistent with Definition 4.3. Similarly, the lower
angular density is defined by taking the limit infimum.

Now we are ready to look at the big theorem of this section:

Theorem 4.5. Let E be a 1-set in R2. Then the following statements are equivalent:

(1) E is regular.
(2) E is countably rectifiable.
(3) E has a tangent almost everywhere.

We briefly mention that this result holds for any s-set in Rn when s is an integer less
than n. However, this generalization into higher dimensions was extremely difficult
and took over 50 years. We follow the original work of Besicovitch and establish
the equivalence of the three statements by showing that (1) ⇒ (2), (2) ⇒ (3) and
(3) ⇒ (1). Not necessary though, we provide a proof for the direction (2) ⇒ (1)
because it is relatively simple and contains useful ideas.

(Rectifiability ⇒ Regularity) [(2)⇒ (1)]

This rather innocent-looking lemma will be very powerful and frequently used later:

Lemma 4.6. Let E be a continuum (a compact connected set) containing x and y.
If |x− y| = ρ, then H1(E ∩Bρ(x)) ≥ ρ. In particular, H1(E) ≥ |E|.

Proof. Define a function f : Rn → [0,∞) by f(z) = |z − x|. Then by triangle
inequality,

|f(z)− f(w)| = ||z − x| − |w − x|| ≤ |(z − x)− (w − x)| = |z − w|
for all z, w ∈ Rn. Thus f is continuous. Now we claim the set f(E ∩Bρ(x)) contains
the interval [0, ρ]: Suppose not, then there exists an r with 0 < r < ρ such that



GEOMETRIC PROPERTIES OF SETS IN EUCLIDEAN SPACE 15

r /∈ f(E ∩ Bρ(x)). But the continuity of f implies that there exists some δ > 0 such
that (r − δ, r + δ) ∩ f(E ∩ Bρ(x)) = ∅. Thus, E = (E ∩ Br(x)) ∪ (E \ Br(x)) is a
decomposition of E into disjoint closed set since E \Br(x) = E \Br+δ/2(x) is closed,
which contradicts the assumption that E is a continuum. Now applying Lemma 2.7
gives

H1(E ∩Bρ(x)) ≥ H1(f(E ∩Bρ(x))) ≥ H1([0, ρ]) = ρ.

Moreover, since E is compact and the distance function is continuous, we know that
there exists z, w ∈ E such that |z − w| = |E|, which implies H1(E) ≥ |E|. �

Now we are ready to show:

Theorem 4.7. A rectifiable curve is a regular 1-set.

Proof. We first show that a rectifiable curve Γ is a 1-set: Indeed, since Γ by construc-
tion contains at least two distinct points, it follows from the previous Lemma that
H1(Γ) > 0. Moreover, since Γ is rectifiable, i.e. L (Γ) <∞. It follows from Theorem
2.8 that H1(Γ) <∞.

To show that Γ is regular, let x ∈ Γ be a point on Γ other than an endpoint, then
x divides Γ into two rectifiable subcurves, say Γ+ and Γ−. Then by Lemma 4.6, when
ρ > 0 is small enough, we have H1(Γ+ ∩ Bρ(x)) ≥ ρ and H1(Γ− ∩ Bρ(x)) ≥ ρ, which
implies H1(Γ ∩Bρ(x)) ≥ 2ρ. By definition,

D1(Γ, x) = lim inf
ρ→0

H1(Γ ∩Bρ(x))

2ρ
≥ 1.

At the same time, we also know from Theorem 3.2 that D
1
(Γ, x) ≤ 1 for almost all

x ∈ Γ, which implies D
1
(Γ, x) = D1(Γ, x) = D1(Γ, x) = 1 for almost all x ∈ Γ. �

The following result follows immediately by applying Corollaries 3.4 and 3.5 to The-
orem 4.7

Corollary 4.8. If a 1-set E is countably rectifiable, then E is regular.

(Rectifiability ⇒ Tangency) [(2)⇒ (3)]

A smooth curve has tangents everywhere because at each point, the curve turns
continuously and does not spike, which allows us to determine its best linear approx-
imation at each point. However, rectifiable curves do spike, quite often sometimes,
yet we would still like to examine their tangential properties. Thus, an estimate on
the size of the set of spikes a rectifiable curve can have is crucial:

Lemma 4.9. Let Γ be a rectifiable curve with endpoints x and y, and let φ be an angle
with 0 < π < π/2. Let E be the set of points on Γ that belong to pairs of arbitrarily
small subarcs of Γ subtending chords that make a angle of more than 2φ with each
other. Then H1(E) ≤ (L (Γ)− |x− y|)/(1− cosφ).

To visually translate the statement of the lemma, we take a rectifiable curve Γ:
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and look at the spike of Γ at A locally;

If γ > 2φ, then the point A belongs to the set E since for arbitrarily small subarcs
AB and AC, their subtending chords make a constant angle γ. Moreover, we have
either α > φ or β > φ.

Proof. To prove the above lemma, let L denote the line through x and y and let V
be the collection of closed subarcs of Γ subtending chords that make angles of more
than φ with L. See the figure below:
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That is if γ > φ, then the subarc Σ ⊂ Γ is included in the collection V . Then
we see for any x ∈ E, at least half of the arbitrarily small subarcs associated with
x belong to V , which implies V is a fine cover of E by closed subarcs. Now for any
ε > 0, by the Vitali Covering Theorem 2, we may find a finite collection Γ1, . . . ,Γm
of disjoint subarcs of Γ belonging to V such that

(3) H1(E) ≤
m∑
i=1

|Γi|+ ε ≤
m∑
i=1

H1(Γi) + ε =
m∑
i=1

L (Γi) + ε

Suppose Γ′0,Γ
′
1, . . . ,Γ

′
m are the complementary arcs and φ′0, φ

′
1, . . . , φ

′
m are the cor-

responding angles between the subtending chords and the line L. If we denote
the corresponding angles between the subtending chords of Γ1,Γ2, . . . ,Γm and L as
φ1, φ2, . . . , φm respectively, then projecting them orthogonally onto the line L, we see
that since π/2 > φi > φ > 0,

(4) |x− y| ≤
m∑
i=1

cos (φi)L (Γi) +
m∑
i=0

cos (φ′i)L (Γ′i) ≤ cosφ
m∑
i=1

L (Γi) +
m∑
i=0

L (Γ′i).

Since
m∑
i=1

L (Γi) +
m∑
i=0

L (Γ′i) = L (Γ),

together with (3) and (4), we get

H1(E)− ε ≤
m∑
i=1

L (Γi) ≤ (L (Γ)− |x− y|)/(1− cosφ).

Since ε is arbitrary, we obtain the desired result. �

This upper bound on H1(E) allows us to neatly “chop off” each of the spikes by a
straight line and concludes that the set of all the spikes are invisible:

Corollary 4.10. If φ > 0 and E is the set of points on a rectifiable curve Γ that
belong to pairs of arbitrarily small subarcs of Γ subtending chords that make an angle
of more than 2φ with each other, then H1(E) = 0.

Proof. Given ε > 0 and suppose ψ : [a, b] → R2 defines the curve Γ parametrized
by arc length, it follows from the definition of L (Γ) that there exists a partition
a = x0 < x1 < . . . < xm = b such that

L (Γ) ≤
m∑
i=1

|xi − xi−1|+ ε

2Here we use a variant of Theorem 2.11 where the fine cover is allowed to be any closed sets. A
proof can be found in [Fal85] Theorem 1.10.
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Let Γi denote the subarc between ψ(xi) and ψ(xi−1). The applying Lemma 4.9 to
each subarc Γi gives

H1(E) =
m∑
i=1

H1(E ∩ Γi) ≤
m∑
i=1

(L (Γi)− |xi − xi−1|)/(1− cosφ)

= (L (Γ)−
m∑
i=1

|xi − xi−1|)/(1− cosφ) < ε/(1− cosφ).

Since ε is arbitrary, we may conclude that H1(E) = 0. �

Now we are finally ready to show the direction that rectifiability implies existence
of tangents almost everywhere:

Theorem 4.11. A rectifiable curve Γ has a tangent at almost all of its points.

Proof. Since Γ is a continuum having at least two distinct points, say x and y. If

|x− y| = ρ, then it follows from Lemma 4.6. that D
1
(Γ, z) ≥ 1/2 > 0 for almost all

z ∈ Γ.
Now to check the limit condition of a tangent, namely equation (2), holds, let

ψ : [a, b] → Rn be the function that defines Γ parametrized by arc length. It follows
from Corollary 4.10 that for almost all x ∈ Γ, given φ > 0, there exists a unit vector
θ and ε > 0 such that,

ψ(u) ∈ S∞(x,θ, φ) ∪ S∞(x,−θ, φ)

whenever |u − t| < ε, where ψ(t) = x. Moreover, we claim that there exists ρ > 0
such that if |u− t| ≥ ε, then ψ(u) /∈ Bρ(x): Suppose not, then there exists a sequence
{ui} ⊂ [a, b] such that |ui − t| ≥ ε for each i and φ(ui) → x. On the other hand,
by the sequential compactness of [a, b], there exists u ∈ [a, b] such that ui → u by
passing to a subsequence if necessary. However, this shows that ψ(t) = x = ψ(u)
with |u− t| ≥ ε, which contradicts the injectivity of Γ. Thus,

Γ ∩ (Bρ(x) \ (Sρ(x,θ, φ) ∪ Sρ(x,−θ, φ))) = ∅
which implies equation (2) holds for almost all x ∈ Γ, i.e. Γ has a tangent at almost
all of its points. �

Corollary 4.12. If a 1-set E is countably rectifiable, then E has a tangent at almost
all of its points.

Proof. It follows from Theorem 4.7 that E is regular, which implies D
1
(E, x) > 0 for

almost all x ∈ E. Moreover, it follows from Corollaries 3.4 and 3.5 that equation (2)
holds for almost all x ∈ E. �

Before we dive into the remaining directions, let us take a look at a beautiful and
very unique geometric property of continuum with finite one dimensional Hausdorff
measure. We first need a lemma:

Lemma 4.13. A continuum E with H1(E) <∞ is arcwise connected.
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Proof. For any z, w ∈ E, since E is connected, we claim that z and w are ε-chainable,
i.e. for every ε > 0 there exists a finite sequence of points z = x0, x1, . . . , xm = w in
E such that |xi − xi−1| < ε for all 1 ≤ i ≤ m: Indeed, denote the set of points in E
that are ε-chainable to z as A. Since z itself is in A, we know A is nonempty. A is
open because for any point u ∈ A, the ε-neighborhood of u belongs to A. A is also
closed because for any limit point u′ of A, there exists u ∈ A such that |u− u′| < ε,
thus A contains all of its limit points. Hence, A = E.

Moreover, we may assume that |xi − xj| ≥ ε/2 when |i− j| ≥ 2 by deleting points
of the chain if necessary. Thus, no point of Rn lies in more than two of the balls
B 1

2
ε(xi) for all i. Assuming m ≥ 2 and applying Lemma 4.6, we have

2H1(E) ≥
m∑
i=0

H1(E ∩B 1
2
ε(xi)) ≥

1

2
mε.

Let Γε denote the polygonal curve joining x0, x1, . . . , xm, then Γε is necessarily not
self-intersecting, and

L (Γε) =
m∑
i=1

|xi − xi−1| ≤ mε ≤ 4H1(E).

Now let ψε : [0, 1]→ Rn be the parametrization of Γε by arc length such that the part
of Γε connecting z = ψε(0) and ψε(t) has length tL (Γε). Then for any 0 ≤ t1 < t2 ≤ 1,

|ψε(t1)− ψε(t2)| ≤ L (ψε[t1, t2]) ≤ 4|t2 − t1|H1(E)

Hence, the sequence of functions {ψ1/j} is equicontinuous and uniformly bounded
(because {Γ1/j} is contained in a bounded subset of Rn). By the Arzela-Ascoli theo-
rem, there exists a subsequence {ψ1/jk} and a continuous function ψ such that ψ1/jk

converges uniformly to ψ on [0, 1].
Let ψ[0, 1] = Γ, and we show that Γ is the desired curve in E joining z and w:

Indeed, Γ(0) = limk→∞ Γ1/nk
(0) = z and similarly Γ(1) = w. Moreover, for any

x ∈ Γ and δ > 0, there exists a K ∈ N such that 1/jK < δ/2, thus the curve
Γ1/jK ∩ Bδ/2(x) 6= ∅. Thus, x is a limit point of E. Since E is closed, we have x ∈ E
and therefore Γ ⊂ E. �

Lemma 4.14. Any compact arcwise connected set E with H1(E) <∞ consists of a
countable union of rectifiable curves union a set of H1-measure zero.

Proof. Define a sequence of curves {Γi} inductively: Let Γ1 be the curve in E joining
two of the most distant points in E. Such a curve exists because of the continuity of
the distance function, compactness of E, and arcwise connectedness of E.

Suppose Γ1,Γ2, . . . ,Γk have been defined. Let x be a point in E at maximum
distance, say dk, from

⋃k
i=1 Γi. If dk = 0 for some k, then E =

⋃k
i=1 Γi because E

is closed. Since by Theorem 2.8 L (Γi) = H1(Γi) ≤ H1(E) < ∞, we know Γi is
rectifiable for each i, and we are done.
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If dk > 0, let Γk+1 be a curve in E joining x to
⋃k
i=1 Γi with Γk+1 disjoint from⋃k

i=1 Γi except for an endpoint. By Lemma 4.6, H1(Γk+1) ≥ dk. Hence,

(5)
∞∑
i=1

di ≤
∞∑
i=1

H1(Γi) ≤ H1(E) <∞

which implies di → 0 as i → ∞. Thus, for any y ∈ E, the distance between y

and
⋃∞
i=1 Γi is zero, implying E =

⋃∞
i=1 Γi. Now for each k, consider the following

collection of closed balls

Vk =

{
Br(x) : x ∈ E \

k⋃
i=1

Γi, Br(x) ∩
k⋃
i=1

Γi = ∅

}

Since
⋃k
i=1 Γi is closed, we have that Vk is a fine cover of E \

⋃k
i=1 Γi. For any

Br(x) ∈ Vk, since x is in E and thereby in the closure of
⋃∞
i=1 Γi, it follows that there

are points of
⋃∞
i=1 Γi arbitrarily close to x (see picture below). Such points must be

connected via a sequence of arcs in Γ∞i=k+1Γi to a point of
⋃k
i=1 Γi necessarily outside

Br(x).

Thus by Lemma 4.6,

(6)
1

2
|Br(x)| ≤ H1

(
Br(x) ∩

∞⋃
i=k+1

Γi

)

Now given any ε > 0, by the Vitali Covering Theorem there exists a sequence of
disjoint {Bj} ⊂ V such that

H1

(
E \

k⋃
i=1

Γi

)
≤

∞∑
j=1

|Bj|+ ε ≤ 2
∞∑
j=1

H1

(
Bj ∩

∞⋃
i=k+1

Γi

)
+ ε
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where the last inequality follows from (6). Moreover, since Bj’s are disjoint, we have

∞∑
j=1

H1

(
Bj ∩

∞⋃
i=k+1

Γi

)
= H1

(
∞⋃
j=1

Bj ∩
∞⋃

i=k+1

Γi

)
≤ H1

(
∞⋃

i=k+1

Γi

)
Altogether we have

H1

(
E \

k⋃
i=1

Γi

)
≤ 2H1

(
∞⋃

i=k+1

Γi

)
+ ε ≤ 2

∞∑
i=k+1

H1(Γi) + ε

By (5), letting k →∞ and ε→ 0 shows H1(E \
⋃∞
i=1 Γi) = 0, as desired. �

Theorem 4.15. Let E be a continuum in Rn with H1(E) <∞. Then E consists of
a countable union of rectifiable curves, together with a set of H1-measure zero.

Proof. Combining Lemma 4.13 and Lemma 4.14 gives the result. �

Remark. This unique feature of 1-sets makes tangency and density results much
easier to obtain, and there is no such analogue in the case when s is an integer greater
than 1. An immediate consequence of Theorem 4.15 is that any purely unrectifiable
set intersects a continuum of finite H1-measure in a set of measure zero.

(Regularity ⇒ Rectifiability) [(1)⇒ (2)]

In this part of the proof, we show that a regular 1-set E is countably rectifiable by
establishing that any measurable subset of E of positive measure can be exhausted
by pieces of rectifiable curves, i.e. any appreciable amount of E cannot behave like a
purely unrectifiable set. We achieve this result by showing a purely unrectifiable set
has lower density strictly less than 1 almost everywhere.

We follow the footsteps of Besicovitch to unravel one of the most complicated as
well as remarkable proofs. First of all, we require a purely topological result on the
removal of the interiors of discs from continua. We say that a collection of discs is
semidisjoint if no member of the collection is contained in any other.

Lemma 4.16. Let E be a continuum in R2. Suppose that {Bi}∞i=1 is a countable
semidisjoint collection of closed discs with each center contained in E and such that
|Bi| ≥ d for only finitely many i for any d > 0. Then if Γi is the perimeter of Bi,

F =

(
E \

∞⋃
i=1

Bi

)
∪
∞⋃
i=1

Γi

is a continuum.

Proof. We first show that F is closed. Note F = (E \
⋃
iB
◦
i ) ∪

⋃
i Γi where B◦i is

the interior of Bi. Thus, it suffices to show that the closure of
⋃
i Γi is contained in

F . Let x ∈
⋃
i Γi but x /∈ E \

⋃
iB
◦
i , since E is closed, we know that x ∈

⋃
iB
◦
i ,

which implies x ∈ B◦k for some k. Let d = dist(x,Γk) > 0. If Γj ∩ Bd/2(x) 6= ∅, we
know Bj ∩ Bd/2(x) 6= ∅. Moreover, since Bj is not contained in Bk by assumption,
we also know that Bj ∩ (R2 \ Bk) 6= ∅. Hence, Γj, as the perimeter of Bj, touches
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both Bd/2(x) and the complement of Bk, which implies |Γj| ≥ dist(Bd/2(x),Γk) = 1
2
d,

so only finitely many circles Γj can meet Bd/2(x). Since x ∈
⋃
i Γi, we may conclude

that x ∈
⋃k
i=1 Γi =

⋃k
i=1 Γi ⊂ F for some k, as desired.

Since {Bi} is a sequence of closed balls with decreasing radii, we have that sup |Bi| <
∞. Moreover, since each of Bi’s is centered in the bounded set E, we have E∪

⋃∞
i=1 Bi

is also bounded. Thus, F is closed and bounded and thereby compact. Now it remains
to show that F is connected. Suppose for the sake of contradiction that F = F1 ∪ F2

where F1 and F2 are disjoint nonempty closed sets. Let

E1 = F1 ∪
⋃

i:Γi⊂F1

Bi , E2 = F2 ∪
⋃

i:Γi⊂F2

Bi

Since each Γi is contained in either E1 or E2, we know that E = E1 ∪E2. Moreover,
we also have E1 ∩E2 = ∅: Indeed, since any ball B1 from E1 clearly cannot intersect
F2, and similarly any ball B2 from E2 cannot intersect F1, it suffices to check that( ⋃

i:Γi⊂F1

Bi

)
∩

( ⋃
i:Γi⊂F2

Bi

)
= ∅

Suppose not, that is, there exist Bj ⊂ E1 and Bk ⊂ E2 such that Bj ∩ Bk 6= ∅.
Since Bj and Bk are semidisjoint, it follows that Γj ∩ Γk 6= ∅, which contradicts the
assumption that F1 and F2 are disjoint. Thus, we see that E1 and E2 are disjoint.

Finally, we show that E1 is closed. If x ∈
⋃
{i:Γi⊂F1}Bi, then x is either the limit

of a sequence of points in
⋃k
i=1 Bi for some k, in which case x ∈

⋃k
i=1Bi ⊂ E1. Or

x is the limit of a sequence of discs with boundaries in the closed set F1 and radii
approaching zero, which by definition implies x is a limit point of F1 and thus x ∈ F1.
In either case, we see that x ∈ E1. By exactly the same argument, we have that E2

is also closed. Hence, E1 and E2 give rise to a separation of E, contradicting the
assumption that E is connected. �

What we present next is the main ingredient to a result that provides an upper
bound for the lower densities of a purely unrectifiable set. Let R(x, y) denote the
common region of the circle-pair with centers x and y, so that R(x, y) = B◦d(x) ∩
B◦d(y) where d = |x−y|. Roughly speaking, the next lemma shows that if the common
regions with centers in a 1-set E contain a good amount of E, then E can be seen by
rectifiable curves.

Lemma 4.17. Let E be a 1-set in R2 and suppose that α > 0. Let E0 be a compact
subset of E with H1(E0) > 0, such that H1(E∩R(x1, x2)) ≥ α|x1−x2| for all x1, x2 ∈
E0. Then there exists a continuum H such that 0 < H1(H ∩ E) ≤ H1(H) <∞.

Proof. By Theorem 3.2 we know that 1
2
≤ D

1
(E, x) ≤ 1. Now by Theorem 2.5, there

exists a closed subset F ⊂ E0 with H1(F ) > 0 and ρ1 > 0 such that

H1(Br(x) ∩ E) ≤ 2 · 2r if x ∈ F and 0 < r ≤ ρ1
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Since D
1
((E \ F ), x) = 0 and D

1
(F, x) ≥ 1/2 by Theorem 3.3 and 3.2 respectively,

we may find a point y ∈ F and a positive number ρ with 0 < ρ ≤ ρ1/10 such that

(7) H1((E \ F ) ∩Br(y)) < 2r · 10−3α (0 < r ≤ 3ρ)

and

(8) H1(F ∩Bρ(y)) ≥ 2ρ · 1

4
=
ρ

2

By reducing ρ if necessary, we may also assume that the perimeter Γ of Bρ(y) contains
some point of F . Let V be the family of closed discs

V = {Br(x) : x ∈ F ∩Bρ(y), 0 < r < 2ρ, H1((E \ F ) ∩Br(x)) ≥ αr}
If V 6= ∅, then by the classic Vitali Covering Theorem, we may find a sequence of
closed balls {Bi} ⊂ V such that⋃

B∈V

B ⊂
∞⋃
i=1

B̂i where B̂i = 5Bi

Moreover, by eliminating B̂i’s that are completely contained in one of the others, we
may assume that the collection {B̂i} to be semidisjoint. Let Γi denote the perimeter

of B̂i,

G = (F ∩Bρ(y)) ∪ Γ ∪
∞⋃
i=1

B̂i

and

H =

(
G \

∞⋃
i=1

B̂i

)
∪
∞⋃
i=1

Γi
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For the reminder of the proof, we divide it into six parts and show that H is indeed
the desired continuum. Note that if V = ∅, then G = (F ∩Bρ(y))∪Γ and H = G, so
the results below follow directly.

(a) G is closed: Since F ∩Bρ(y) and Γ are closed, it suffices to show that
⋃
i B̂i ⊂ G.

For any z ∈
⋃
i B̂i, then either z ∈

⋃k
i=1 B̂i for some k, in which case z ∈ G. Or z is the

limit of points from a subsequence of the discs {B̂i}i. But since Bi’s are disjoint and
their centers are in the compact set F ∩Bρ(y), it follows that

⋃∞
i=1 Bi ∪ (F ∩Bρ(y) is

bounded. On summing areas we have
∑∞

i=1 |Bi|2 = Hs(
⋃∞
i=1Bi) <∞, which implies

|B̂i| = 5|Bi| → 0 as i → ∞. Hence, z is the limit point of the centers of Bi’s, so
z ∈ F ∩Bρ(y) since F ∩Bρ(y) is closed. In either case, z ∈ G, and we conclude that
G is closed.

(b) G is connected: Suppose for the sake of contradiction that G = G1 ∪G2 where
G1 and G2 are nonempty disjoint closed sets. Since Γ is a connected subset of G, Γ
is a subset of either G1 or G2, so assume that Γ ⊂ G1. Note that for each B̂i that
contains points on or outside Γ, since its center is in Bρ(y), we know that it has to
meet Γ and hence is contained in G1. Thus, G2 cannot contain points on or outside
Γ, which implies G2 ⊂ B◦ρ(y).

Let G′1 = G1 ∪ (R2 \ B◦ρ(y)), then we have that G′1 is closed and disjoint from
G2. Now G′1 contains Γ which by construction contains points of F , and G2, since

it is nonempty, contains either some B̂i or meet F ∩ Bρ(y). In either case, G2 also
contains points of F . Let x1 ∈ G′1 ∩ F and x2 ∈ G2 ∩ F be the points that minimize
the distance r = |x1 − x2|. This infimum is attained and is positive (because G′1 ∩ F
and G2 ∩ F are closed and disjoint). As Γ ⊂ G′1 contains a point of F , we also know
that r < 2ρ. Moreover, the common region R(x1, x2) is disjoint from F , for otherwise
r can be further reduced. Thus, by the assumption of the lemma,

0 < αr ≤ H1(E ∩R(x1, x2)) = H1((E \ F ) ∩R(x1, x2))

≤ H1((E \ F ) ∩Br(x2))

Since x2 ∈ F ∩Bρ(y) and r < 2ρ, we see that Br(x2) ∈ V , and thus Br(x2) ⊂
⋃∞
i=1 B̂i.

However, Br(x2) = (Br(x2) ∩ G′1) ∪ (Br(x2) ∩ G2) is a decomposition of Br(x2) into
nonempty disjoint closed sets, which is absurd. Thus, we have shown that G is
connected.

(c) H is a continuum: We have shown that G is compact and connected, thereby

a continuum. Recall from part (a) that |B̂i| → 0 as i→∞, thus by Lemma 4.16, H
is also a continuum.

(d)
∑∞

i=1 |B̂i| ≤ 1
10
ρ : By the construction of V , the disjointness of Bi’s, and (7),

we have that
∞∑
i=1

|B̂i| = 5
∞∑
i=1

|Bi| ≤
10

α

∞∑
i=1

H1((E \ F ) ∩Bi)

≤ 10

α
H1((E \ F ) ∩B3ρ(y)) ≤ 10

α
· 6ρ10−3α ≤ 1

10
ρ
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(e) H1(H) <∞: Since H ⊂ E ∪ Γ ∪
⋃∞
i=1 Γi, using part (d) gives

H1(H) ≤ H1(E) + 2πρ+ π
∞∑
i=1

|B̂i| <∞

(f) H1(H ∩ E) > 0: From the definition of H, we have

H1(H ∩ E) ≥ H1

((
G \

∞⋃
i=1

B̂i

)
∩ E

)
−H1

(
E ∩

∞⋃
i=1

B̂i

)

≥ H1(F ∩Bρ(y))−
∞∑
i=1

H1(E ∩ B̂i)

≥ H1(F ∩Bρ(y))− 2
∞∑
i=1

|B̂i| (since |B̂i| < 20ρ ≤ 2ρ1)

≥ 1

2
ρ− 1

5
ρ =

3

10
ρ > 0

where the last inequality follows from (8) and part (d). �

Now the result on the lower densities of purely unrectifiable sets is a direct conse-
quence of the geometry of circle-pairs. The main idea is that a circle-pair with centers
at points of high lower density and convex density must contain a subset of positive
measure in its common region.

Theorem 4.18. Let E be a purely unrectifiable set in R2. Then D1(E, x) ≤ 3
4

for
almost all x ∈ E.

Proof. Suppose there exists some α > 0 such that the set E1 = {x : D1(E, x) > 3
4
+α}

has positive measure. Thus, by the definition of lower density, we may find a compact
1-set E2 ⊂ E1 of positive measure and ρ > 0 such that

H1(E ∩Br(x)) >

(
3

4
+ α

)
2r (x ∈ E2, 0 < r ≤ ρ)

and since the upper convex density D
1

c(E, x) = 1 for almost all x ∈ E, we may at the
same time require that

H1(E ∩ U) < (1 + α)|U | (x ∈ E2 ∩ U, 0 < |U | ≤ 3ρ, U convex)

Let E0 be a compact subset of E2 with 0 < H1(E0) <∞ and |E0| ≤ ρ. If x1, x2 ∈ E0,
then r = |x1 − x2| ≤ ρ. Since E is purely unrectifiable, any circle intersects E in a
set of measure zero, which gives

H1(E ∩R(x1, x2)) ≥ H1(E ∩Br(x1)) +H1(E ∩Br(x2))−H1(E ∩ CH(x1, x2))

≥ 2 ·
(

3

4
+ α

)
2r − (1 + α)3r = αr

where CH(x1, x2) denotes the convex hull of Br(x1) ∪ Br(x2). Hence, by applying
Lemma 4.17 to E0, we know there exists a continuum H such that 0 < H1(H ∩E) ≤
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H1(H) <∞. But Theorem 4.15 tells that H is a countable union of rectifiable curves
up to a set of measure zero, the conclusion H1(H∩E) > 0 contradicts the assumption
that E is purely unrectifiable. �

Remark. It worth mentioning that 3
4

had been the best known upper bound for many

decades until Preiss and T̈ıser improved it to 2+
√

46
12

in 1992. Although Besicovitch

conjectured the best upper bound to be 1
2
, no further improvement has been made

after Preiss and T̈ıser. This outstanding conjecture is also known as the Besicovitch
1
2
-conjecture.
Finally, we have all the tools we need to show that a regular 1-set is countably

rectifiable. As noted at the beginning of this direction, the following procedure at-
tempts to exhaust any subset of positive measure with rectifiable curves, which highly
resembles the proof of Lemma 4.14.

Theorem 4.19. A regular 1-set E is countably rectifiable.

Proof. Since E is regular, we have D1(E, x) = 1 for almost all x ∈ E. Thus, it follows
from Theorem 4.17 and Corollary 3.4 that any measurable subset of E of positive
measure cannot be purely unrectifiable, thereby intersecting some rectifiable curve
in a set of positive measure. Based on this fact, we define a sequence of rectifiable
curves {Γi}. Let Γ1 be that

H1(Γ1 ∩ E) ≥ 1

2
sup{H1(Γ ∩ E) : Γ is rectifiable}

where we know that the supremum exists and is positive. Now if Γ1, . . . ,Γk have been
defined and Ek = E \

⋃k
i=1 Γi has positive measure (otherwise we are done), let Γk+1

be a rectifiable curve with

H1(Γk+1 ∩ Ek) ≥
1

2
sup{H1(Γ ∩ Ek) : Γ is rectifiable}

Suppose the process does not terminate in finitely many steps. We have the following
estimate

∞ > H1(E) ≥
∞∑
k=1

H1(Γk+1 ∩ Ek)

Thus, H1(Γk+1∩Ek)→ 0 as k →∞. Now we claim that H1(E\
⋃∞
i=1 Γi) = 0: Indeed,

suppose H1(E \
⋃∞
i=1 Γi) > 0, then by Theorem 4.17 again, we know there exists a

rectifiable curve Γ such that

H1

(
Γ ∩

(
E \

∞⋃
i=1

Γi

))
= d > 0
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However, as H1(Γk+1∩Ek)→ 0, there exists some K such that H1(ΓK+1∩EK) < d/2,
in which case

1

2
d >

1

2
sup{H1(Γ ∩ Ek) : Γ is rectifiable}

≥ 1

2
sup

{
H1

(
Γ ∩

(
E \

∞⋃
i=1

Γi

))
: Γ is rectifiable

}
≥ 1

2
d

a contradiction. Thus, H1(E \
⋃∞
i=1 Γi), and we obtained the desired result. �

(Tangency ⇒ Regularity) [(3)⇒ (1)]

The only missing piece to proving the remarkable Theorem 4.5 is to show that
if E is a 1-set in R2 with tangents almost everywhere, then E is regular, namely
D(E, x) = 1 for almost all x ∈ E. We achieve this by showing the contrapositive, i.e.
if E is irregular, then E has no tangent almost everywhere.

The main idea is to show that the sum of the upper angular densities of an irregular
1-set along two opposite directions cannot be too small, thereby forcing the limit in
equation (2) to be positive. To implement this idea, we first need two geometric
results:

Lemma 4.20. Let θ be a unit vector in R2 perpendicular to a line L. Let P be a
parallelogram with sides making angles ϕ to directions ±θ and let y and z be opposite
vertices of P , as in the following figure. Then |y− z| ≤ d/ sinϕ, where d is the length
of projection of P onto L.

Proof. Let w be a third vertex of P . Then by the triangle inequality, |y − z| ≤
|y − w| + |w − z|. Together with the relation that d = (|y − w| + |z − w|) sinϕ, we
get |y − z| ≤ d/ sinϕ. �

A set with the property in the next lemma is sometimes called a Lipschitz set.
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Lemma 4.21. Let E be a bounded subset of R2 such that if x, y ∈ E the segment
[x, y] makes an angle of, at most, φ < 1

2
π with a fixed line L. Then E is a subset of

a rectifiable curve.

Proof. Upon taking the closure if necessary, we may assume that E is closed and
thereby compact. Let Π(t) be the line perpendicular to L at distance t from some
origin, and let a and b be the extreme values of t for which Π(t) intersects E. It
follows from the compactness of E that such a and b exist.

Then Π(t) can contain at most one point y ∈ E for each t, for otherwise the
two points in Π(t) for a given t give a line segment that makes an angle of π/2
with L. Let ψ(t) denote the point y if it exists, otherwise if a < t < b, let ψ(t)
be the point of Π(t) on the line segment joining the points of E nearest to Π(t)
on either side. By construction, we see that ψ(t) : [a, b] → Rn is a curve joining
points of E. Furthermore, since the segment [ψ(t1), ψ(t2)] makes an angle of at
most φ with L for any t1 6= t2, we have |ψ(t1) − ψ(t2)| ≤ |t1 − t2|/ cosφ, which
implies L (ψ([a, b])) ≤ L/ cosφ < ∞. This shows that ψ([a, b]) is a rectifiable curve
containing E, as desired. �

Now we are ready to show the main ingredient of this direction of the proof. The
idea is to reduce an irregular set of points to a subset of a rectifiable curve which
necessarily has measure zero.

Theorem 4.22. Let E be an irregular 1-set in R2. Then, given θ and 0 < ϕ < π/2,

D
1
(E, x,θ, ϕ) +D

1
(E, x,−θ, ϕ) ≥ 1

6
sinϕ

for almost all x ∈ E.

Proof. Take ρ, δ+, δ− > 0, and let F0 = F0(δ+, δ−, ρ) be the set of x in E such that
both

(9) H1(E ∩ Sr(x,θ, ϕ)) ≤ 2rδ+

and

(10) H1(E ∩ Sr(x,−θ, ϕ)) ≤ 2rδ−

for all r ≤ ρ. It is clear that F0 is measurable; we show that if F0 has positive
measure, then δ+ + δ− cannot be too small, which gives a contradiction since δ+ and
δ− can be chosen to be arbitrarily small.

If H1(F0) > 0, by the regularity of H1, we may find a closed subset F1 ⊂ F0 with
positive measure. We may also take F1 to be bounded, and thus F1 is compact.
Furthermore, given any η > 0, by the result on upper convex density (Definition 3.6)
we may find a closed convex set U with 0 < |U | ≤ ρ such that

(11) H1(F1 ∩ U) > (1− η)|U |

Let F = F1∩U , and we work inside F from now on. As F is compact, we may choose
y1 and z1 to be the most distant pair of points in F which have their connecting
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segment at an angle of not more than ϕ with θ, i.e.

r1 = |y1 − z1| = sup{|y − z| : z ∈ F ∩ S∞(y,θ, ϕ), y ∈ F ∩ S∞(z,−θ, ϕ)}

See figure on the next page; then the maximality of r1 implies that

F ∩ S∞(y1,θ, ϕ) = F ∩ Sr1(y1,θ, ϕ)

and

F ∩ S∞(z1,−θ, ϕ) = F ∩ Sr1(z1,−θ, ϕ)

Since |U | ≤ ρ, we have that r1 ≤ ρ. Then from (9) and (10) we may conclude that

H1(F ∩ S∞(y1,θ, ϕ)) = H1(F ∩ Sr1(y1,θ, ϕ))

≤ H1(E ∩ Sr1(y1,θ, ϕ)) ≤ 2r1δ+(11a)

Similarly,

(12) H1(F ∩ S∞(z1,−θ, ϕ)) ≤ 2r1δ−

Let P1 be the closed parallelogram

P1 = S∞(y1,θ, ϕ) ∩ S∞(z1,−θ, ϕ)

and let Q1 be the open region

Q1 = int{S∞(y1,θ, ϕ) ∪ S∞(z1,−θ, ϕ)}
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From inequality (11a) and (12), we have

(?) H1(F ∩Q1) ≤ 2r1(δ+ + δ−)

Since Qc
1 is the union of two disjoint convex closed subsets of R2, we know that U \Q1

is compact and has at most two components. If U \Q1 contains a pair of points of F
in the same component with joining segment at angle of at most ϕ to θ, we may by
exactly the same construction get a parallelogram P2 disjoint from Q1 and an open
region Q2. Formally, for j ∈ N we may find points yj and zj of F lying in the same

component of U \
⋃j−1
i=1 Qi with rj = |yj − zj| maximal, and with

(13) H1(F ∩Qj) ≤ 2rj(δ+ + δ−),

where

Qj = int{S∞(yj,θ, ϕ) ∪ S∞(zj,−θ, ϕ)}
Continue this process indefinitely unless no suitable pair of points is left. Now let L
be a line perpendicular to θ. We estimate the value of

∑
rj following Besicovitch’s

original argument [Bes38].
If the sequence of parallelograms {Pj} consists of only one term P1, then

∑
rj =

r1 ≤ |U |. If the sequence {Pj} consists of more than one term, then we define a set
H of segments as follows: Denote the left vertex of Pj (refer to the previous figure) as
aj and right vertex as bj. If the points aj and bj are inside U , then the line segments
[aj, zj], [zj, bj] are included in H. If the point aj is outside U and bj inside, then the
larger of the segments [zj, bj], [bj, yj] is included in H. Notice there exists at most one

such parallelogram because if it exists for some j, then U \
⋃j
i=1 Qj will only have

one (right) component. Similarly, if the point bj is outside and aj inside, then the
larger of [aj, zj], [aj, yj] is included in H. It is clear that none of the Pj’s can have
two vertices outside U if j ≥ 2. It follows from triangle inequality that

rj = |zj − yj| ≤ |aj − zj|+ |bj − zj|
Let kj = max{|aj − zj|, |bj − zj|}, then it follows from elementary geometry that if
ϕ ≥ π/3, then rj ≤ kj. If ϕ < π/3,

rj ≤ kj +

(
1− 1

2 cosϕ

)
rj ≤ kj +

(
1− 1

2 cosϕ

)
|U |

Now we may write ∑
rj =

∑′
rj +

∑′′

rj

where
∑′ sums over those values corresponding to aj and bj both contained in U and∑′′

over those corresponding to one of aj or bj being outside U (there are at most

two terms in
∑′′

). From the above estimates, we have∑′
rj ≤

∑′
|aj − zj|+ |zj − bj|

and ∑′′

rj ≤
∑′′

kj if ϕ ≥ π/3,
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rj <
∑′′

kj + (2− secϕ)|U | if ϕ < π/3

Furthermore, by the construction of H we have

H1(H) =
∑′

(|aj − zj|+ |zj − bj|) +
∑′′

kj

Altogether we get

H1(H) ≥
∑′

rj +
∑′′

kj ≥
∑′

rj +
∑′′

rj =
∑

rj when ϕ ≥ π/3

H1(H) >
∑

rj − (2− secϕ)|U | when ϕ < π/3

Since the projections of the parallelograms {Pj} onto L are segments with disjoint

interiors and H is entirely contained in U , by Lemma 4.20 we get H1(H) ≤ |U |
sinϕ

,

which implies ∑
rj ≤ |U | cscϕ, when ϕ ≥ π/3∑

rj < (cscϕ− secϕ+ 2) |U |, when ϕ < π/3

But since
cscϕ− secϕ+ 2 < 3 cscϕ, when 0 < ϕ < π/3

We get

(14)
∑

rj =
∑
|zj − yj| ≤ 3|U | cscϕ for all 0 < ϕ < π/2

Now let y and z be distinct points of F \
⋃∞
j=1Qj. If y and z lie on opposite sides

of some Qj, then the line segment [y, z] makes an angle of at least ϕ with θ. If y and
z lie on the same side and if [y, z] makes an angle of less than ϕ with θ, then y and z
would have been selected as yj and zj for some j since |yj − zj| → 0 by (14). Hence,
in either case, we know that the line segment joining any pair of points of F \

⋃∞
j=1Qj

makes an angle with L of at most π/2−ϕ. By Lemma 4.21, F \
⋃∞
j=1Qj is contained

in a rectifiable curve. As E is irregular, E intersects any rectifiable curve in a set of
measure zero, for otherwise a subset of E of positive measure would have been regular
by Corollary 4.8. Thus, H1 (F \

⋃
Qj) = 0 Together with (11), (13) and (14) we get

H1(F ) = H1
(
F ∩ (∪∞j=1Qj)

)
+H1

(
F \ ∪∞j=1Qj

)
≤

∞∑
j=1

H1(F ∩Qj) ≤ 2
∞∑
j=1

rj(δ+ + δ−) (by (?))

≤ 6|U |(δ+ + δ−)

sinϕ
≤ 6(δ+ + δ−)

(1− η) sinϕ
H1(F ).

Given any η > 0, there exists some F of positive measure that this holds, thus
δ+ +δ− ≥ 1

6
sinϕ. Now if we pick δ+ and δ− so that δ+ +δ− <

1
6

sinϕ, then H1(F ) = 0
for all such F , which implies F0 has measure zero. Namely, the set of x in E such
that

H1(E ∩ Sr(x,θ, ϕ)) +H1(E ∩ Sr(x,−θ, ϕ)) ≤ 2r · 1

6
sinϕ
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has measure zero. Thus, upon dividing 2r on both sides and taking limit supremum,
we get

D
1
(E, x,θ, ϕ) +D

1
(E, x,−θ, ϕ) ≥ 1

6
sinϕ

for almost all x ∈ E, as desired. �

Corollary 4.23. A plane irregular 1-set has no tangent almost everywhere.

Proof. It follows from the Definition 4.3 that if an irregular 1-set E ⊂ R2 has a
tangent at x in the direction of ±θ, then for any 0 < ϕ < π/2 both

D1
(
E, x,θ +

π

2
,
π

2
− ϕ

)
= 0

and

D1
(
E, x,θ − π

2
,
π

2
− ϕ

)
= 0

hold. However, this is impossible by Theorem 4.22, and the proof is complete. �

This completes the proof of the grand Theorem 4.5. It worth mentioning that the
generalization into s > 1 and n > 2 where s, n ∈ N was not completed until 47
years after Besicovitch grounding work, using generalizations such as m-rectifiable
sets and approximate tangent planes as well as many new ideas. Interested readers
may consult papers by Mattila [Mat75]. Furthermore, Theorem 4.5 can be extended
to more general measures, in which case we no longer require the density to be exactly
1 but only require it to exist, positive and finite, which yields the desired results of
rectifiability and tangency.

As we have discussed the case when the dimension s of a set E ⊂ Rn is an integer,
the natural question to ask is what happens when s is not an integer, i.e. E is fractal-
like, and how does its nonintegral dimensionality affect rectifiability and tangency
properties? The answer is surprisingly elegant.

5. Sets of Nonintegral Dimension

In this section, we examine how the nonintegral Hausdorff dimension of a set affects
its density and tangency property. There will be no analogue of Theorem 4.5 as we
expect these sets behave very differently from their integral counterparts. Thus, we
discuss their density and tangency properties separately. The fundamental result in
terms of density is the following result of Marstrand [Mar64]:

Theorem 5.1. An s-set in Rn is irregular unless s ≤ n is an integer.

Since the higher dimensional case when s > 2 are as always much more difficult to
deal with, We will only look at two relatively simple cases, namely when s ∈ (0, 1)
and when s ∈ (1, 2). In fact, we will first look at a stronger result that density does
not exist almost everywhere for s-sets when s ∈ (0, 1), and the work is entirely due to
Marstrand [Mar54]. Interestingly, the following problem (now a theorem) was given
to Marstrand by Besicovitch.
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Theorem 5.2. If E is an s-set with 0 < s < 1 the density fails to exist at almost
every point of E. In particular, E is irregular.

Proof. Suppose for the sake of contradiction that E has a measurable subset of positive
measure where the density exists and by Theorem 3.2 is at least 2−s > 1/2. Now by
the Borel regularity of Hs, we may find r1 > 0 and a closed subset F ⊂ E of positive
measure such that if x ∈ F , then D(E, x) exists and

(15) Hs(E ∩Br(x)) >
1

2
(2r)s >

1

2
rs for all ρ ≤ r1

Let y be a point of F such that D(E \ F, y) = 0 (by Theorem 3.3 almost all points
in F suffice). Let D(E, y) = D(F, y) = c2−s where 0 < c <∞. Given any ε > 0, we
may find r2 < r1 such that

(16) (c− ε)ρs < Hs(F ∩Bρ(y)) ≤ Hs(E ∩Bρ(y)) < (c+ ε)ρs

for all ρ < 2r2. Now let α be a number with 0 < α < 1. From the above inequality
we get

Hs(E ∩Br2(y)) > (c− ε)rs2, Hs(E ∩B(1+α)r2(y)) < (c+ ε)(1 + α)srs2

Thus, if we let A((1 + α)r2, r2) denote the annular region B(1+α)r2(y) \Br2(y), then

(17) Hs(E ∩ A((1 + α)r2, r2)) < (c+ ε)(1 + α)srs2 − (c− ε)rs2
By a similar argument applied to Hs(F ∩Bρ(y)) in (16), assuming all annular regions
A throughout this proof are centered at y, we get that

Hs(F ∩ A((1 + 2α/3)r2,(1 + α/3)r2))

> (c− ε)(1 + 2α/3)srs2 − (c+ ε)(1 + α/3)srs2

Note the right hand side is positive when ε is sufficiently small. This implies there
exists a point z in A((1+2α/3)r2, (1+α/3)r2), and thus the ball Bαr2/3(z) is contained
in the annular region A((1 + α)r2, r2). By (15) we get

Hs(E ∩ A((1 + α)r2, r2)) > Hs(E ∩Bαr2/3(z)) >
1

2 · 3s
(αr2)s >

1

6
(αr2)s

Together with (17), we get

(c+ ε)(1 + α)s − (c− ε) > αs/6

Since the hold inequality holds for all ε > 0, we have

c(1 + α)s − c ≥ αs/6 > 0

However, the Taylor expansion of (1 + α)s gives (1 + α)s = 1 + O(α), which gives a
contradiction as α→ 0, and the proof is complete. �

Before we look into the density result for s-sets when 1 < s < 2, we divert our
attention temporarily to tangency properties, as we will see that they are helpful in
establishing results on density.

The question of tangents of an s-set when 0 < s < 1 is not of particular interest,
as the set is too sparse to be well defined. When 1 < s < 2, we may apply the ideas
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of the proof of Theorem 4.22: Recall that Besicovitch proof depends on the fact that
the s-set E in consideration intersects with rectifiable curves in a set of measure zero.
But this is clearly true when s > 1 because for any rectifiable curve Γ ⊂ Rn, Theorem
2.8 implies that Hs(Γ) = 0. This allows us to reproduce the result that the sum of
angular s-densities of opposite directions is strictly positive for any 0 < ϕ < π/2,θ
and almost all x ∈ E, which implies for such sets no tangent exists almost everywhere.

Instead of going into the details of proof outlined above, we show the following
stronger result, which will also help us answer questions on the density of such sets:

Theorem 5.3. If E is an s-set in R2 with 1 < s < 2, then at almost all points of E
no weak tangent exists.

We define a weak tangent of E in the direction θ at x if Ds(E, x) > 0 and for every
φ > 0,

lim inf
r→0

Hs(E ∩ (Br(x) \ (Sr(x,θ, φ) ∪ Sr(x,−θ, φ))))

rs
= 0

which is equivalent to say that for every 0 < φ < π/2 and ε > 0, there exist arbitrarily
small values of r such that

Hs(E ∩ Sr(x,θ + π/2, π/2− φ)) +Hs(E ∩ Sr(x,−θ + π/2, π/2− φ)) < εrs

Note that if the above inequality holds for all sufficiently small r, then the weak
tangent becomes a tangent. In general, a set can have more than one weak tangents
at a point.

To prove Theorem 5.3, we use the following lemma which says the upper angular
density of an s-set when 1 < s < 2 is always bounded above, which implies cones are
not enough to approximate these sets in any direction.

Lemma 5.4. Let E be an s-set in R2 with 1 < s < 2. Then for almost all x ∈ E,

D
s
(E, x,θ, φ) ≤ 6 · 7sφs−1

for all θ and all φ ≤ π
2
.

Proof. Fix ρ > 0 and let

(18) F = {x ∈ E : Hs(E ∩Br(x)) < 2s+1rs for all r ≤ ρ}

By Theorem 3.3, we know Hs(E \ F ) = 0, so we work inside F . Choose x ∈ F and
any θ and φ with 0 < φ ≤ π

2
. For each i ∈ N, let Ai be the intersection of annulus

and sector

Ai = Sirφ(x,θ, φ) \ S(i−1)rφ(x,θ, φ)

so that Sr(x,θ, φ) ⊂
⋃m
i=1Ai where m ≤ φ−1 + 1 ≤ 3φ−1. The diameter of each Ai is

at most the distance between a pair of opposite vertices travelled along the boundary
through the bigger arc, namely

|Ai| ≤ φr + 2φ(irφ) ≤ φr + 2φr(mφ) ≤ 7φr.



GEOMETRIC PROPERTIES OF SETS IN EUCLIDEAN SPACE 35

Thus, |Ai| ≤ ρ if r < ρ/14. For each i, if there exists xi ∈ F ∩Ai, then Ai is contained
in the ball B7φr(x0). Hence, summing over all i’s gives

Hs(F ∩ Sr(x,θ, φ)) ≤
m∑
i=1

Hs(Ai ∩ F )

≤ mHs(B7φr(xi) ∩ E) ≤ m2s+1(7rφ)s ≤ 3φ−12s+1(7rφ)s

where the third inequality follows from (18). This is equivalent to

(2r)−sHs(F ∩ Sr(x,θ, φ)) ≤ 6 · 7sφs−1

whenever r < ρ/14. Thus D
s
(F, x,θ, φ) ≤ 6 · 7sφs−1 at almost all x ∈ F . Since

D
s
(E \ F, x) = 0 for almost all x ∈ F , it follows that D

s
(E, x,θ, φ) ≤ 6 · 7sφs−1 for

all x ∈ F . Moreover, since F and E differ by a set of measure zero, we have that the
result holds for almost all x ∈ E. �

Now Theorem 5.3 is an easy corollary of the above lemma, but let us fill in the
details: It follows from Lemma 5.4 that

lim inf
r→0

Hs(E ∩ (Br(x) \ (Sr(x,θ, φ) ∪ Sr(x,−θ, φ))))

rs

≥ Ds(E, x)− (D
s
(E, x,θ, φ) +D

s
(E, x,−θ, φ))

≥ Ds(E, x)− 12 · 7sφs−1

holds for all θ, 0 < φ < π/2 and almost all x ∈ E. Now if Ds(E, x) = 0, then by
definition no weak tangent exists at x. If Ds(E, x) > 0, as φ → 0, we have that the
limit infimum is positive for all φ sufficiently small, which again implies that E does
not have a weak tangent at x.

We are now ready to revisit the density property of s-sets when 1 < s < 2. In
particular, we want to show that such a set is irregular. We accomplish this result by a
contradiction argument. We will show that any such s-set E in R2 has a weak tangent
at each of its regular points, which clearly contradicts Theorem 5.3. Naturally, we
wish to look for results in terms of angular density, and the following theorem comes
into play.

Theorem 5.5. Let E be an s-set in R2 with 1 < s < 2. Then if φ < 1
2
π the lower

angular density Ds(E, x,θ, φ) = 0 for some θ for almost all x ∈ E.

Proof. Fix α, ρ > 0 and define

F0 = {x : Hs(E ∩ Sr(x,θ, φ)) > αrs for all r ≤ ρ and for all θ}

Now it suffices to show that Hs(F0) = 0. Suppose for the sake of contradiction that
Hs(F0) > 0, then we may find ρ1 ≤ ρ and a closed subset F of positive measure such
that if x ∈ F and r < ρ1, then

Hs(E ∩Br(x)) < 2s+1rs
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by Theorem 3.2. Moreover, let y be a point of F such that D(E \ F, y) = 0. Hence,
given ε > 0, we may find ρ2 < ρ1 such that

(19) Hs((E \ F ), y) < ε(2r)s

for all r ≤ ρ2. Now we work inside the disk Bρ2(y). We claim that there are points
in Bρ2/2(y) distant from the set F . Indeed, suppose that there exists some γ ≤ ρ2/2
such that all points of Bρ2/2(y) are within γ distance from F . Then if x ∈ Bρ2/2(y),
there is a point z ∈ F such that z is contained in Bγ(x). Moreover, since z ∈ F ⊂ F0,

(20) αγs < Hs(E ∩ Sγ(z,θ, φ)) ≤ Hs(E ∩Bγ(z)) ≤ Hs(E ∩B2γ(x))

for all θ, and the last inequality follows from triangle inequality. Now if γ < ρ2/4,
then Bρ2(y) contains at most (ρ2/γ)2/4 disjoint discs with centers in Bρ2/2(y) and
radii 2γ. Hence, summing over all these discs with (20) gives

(ρ2/γ)2αγs/4 < Hs(E ∩Bρ2(y)) < 2s+1ρs2

which implies γ > cρ2 where c only depends on α and s. Since γ can be arbitrarily
small, if we choose γ ≤ cρ2, it follows that there is a disc of radius γ contained in
Bρ2(y) and containing no points of F .

Hence, we may find a disc Bρ3(w) ⊂ Bρ2(y) (see figure above) with no points of F
in its interior but with a point v of F0 on its boundary, and ρ3 satisfies ρ2 ≥ ρ3 ≥ cρ2.
Let θ be the normal direction pointing inward to Bρ3(w) at v, and let ρ4 be half the
length of the chords of Bρ3(w) through v that makes angles φ with θ. It follows from
elementary geometry that ρ4 = ρ3 cosφ.

Since the sector Sρ4(v,θ, φ) ⊂ Bρ3(w) contains possibly no points of F other than
v, then it follows

Hs(E ∩ Sρ4(v,θ, φ)) = Hs((E \ F ) ∩ Sρ4(v,θ, φ))

≤ Hs((E \ F ) ∩Bρ2(y)) < ε(2ρ2)s
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where the second to last inequality follows from (19). However,

ερs2 ≤ ε(ρ3/c)
s ≤ ε

(
ρ4

c cosφ

)s
= εc1ρ

s
4

where c1 is a positive constant that only depends on φ, c and s. Hence it follows that
for any ε > 0, there is v ∈ F0 and ρ4 < ρ and θ for which

Hs(E ∩ Sρ4(v,θ, φ)) < εc1ρ
s
4

holds, which clearly contradicts the assumption that Hs(F0) > 0. Moreover, since α
and ρ in the definition of F0 are arbitrary, the proof is complete. �

It is only a matter of technical details to extend φ to the case when φ = π/2.
Specifically, we may take a sequence of {φi} increasing to π/2. By the above theorem,
there exists a corresponding sequence {θi} such that Ds(E, x,θi, φi) = 0 for all i.
Since {θi} is bounded, by passing to a subsequence, we may assume that θi → θ.

It follows from the definition of angular density that if Ds(E, x,θ, φ) = 0, then
Ds(E, x,θ, φ′) = 0 for all φ′ < φ. Hence, we may conclude Ds(E, x,θ, φ) = 0 for all
φ < π/2. Since for each ε > 0, the circular sector Sr(x,θ, π/2) can be written as

Sr(x,θ, π/2) = Sr(x,θ, π/2− ε) ∪ Sr(x,θ′, ε/2) ∪ Sr(x,θ′′, ε/2)

for some θ′ and θ′′. Thus, by the definition of lower angular density, we get from
Lemma 5.4 that

Ds(E, x,θ, π/2) ≤ Ds(E, x,θ, π/2− ε) +D
s
(E, x,θ′, ε/2) +D

s
(E, x,θ′′, ε/2)

= D
s
(E, x,θ′, ε/2) +D

s
(E, x,θ′′, ε/2)

≤ 12 · 7s(ε/2)s−1

for almost all x ∈ E. Letting ε→ 0 shows D
s
(E, x,θ, π/2) = 0.

Now we are ready to prove the following crucial lemma that leads to our desired
conclusion on the density property. The lemma says at each regular point of an s-set
(1 < s < 2) a weak tangent exists, and proof is an ingenious argument of Marstrand
which shows that, informally speaking, if such a set is sparse to one side of a line
through one of its points, then it must also be sparse on the other side, allowing a
suitably defined linear approximation to exist.

Lemma 5.6. Let E be an s-set in R2 with 1 < s < 2. Let x be a regular point of E
at which the upper convex density equals 1, and suppose that Ds(E, x,−θ, π/2) = 0
for some θ. Then E has a weak tangent at x perpendicular to θ.

Proof. Since Ds(E, x) = D
s

c(E, x) = 1 and Ds(E, x,−θ, π/2) = 0, by definitions
given any η > 0, there exists a ρ > 0 such that

(21) Hs(E ∩Br(x)) > (1− η)(2r)s for all r ≤ ρ,

(22) Hs(E ∩ U) < (1 + η)|U |s if x ∈ U and 0 < |U | ≤ 2ρ
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and

(23) Hs(E ∩ Sρ(x,−θ, π/2)) < η(2ρ)s.

Now for any 0 < φ < π/2, let L be the line through x and perpendicular to θ, and
let M and M ′ be the two rays of the cone S∞(x,θ, φ) (See the figure from Falconer
[Fal85] below).

For a fixed positive integer m, we inductively construct a sequence of m+1 semicircles
{Sri}m+1

i=1 of strictly decreasing radii ri, all of which are centered at x and based on L.
Specifically, for each i the semicircle Sri is perpendicular to L at yi and y′i and meets
M and M ′ at zi and z′i respectively.

Suppose Sri has been constructed for all 1 ≤ i ≤ m, then Sri+1
is obtained by

taking yi+1 to be the point on the line segment [x, yi] such that

|yi+1 − y′i| = |yi+1 − yi|+ |yi+1 − z′i|.

As yi+1 ranges from x to yi, the left hand side above increases continuously from ri
to 2ri, and the right hand side decreases from 2ri to a value strictly less than 2ri, we
know from Intermediate Value Theorem that such a yi+1 exists.

Let y′i+1 denote the intersection point between L and the arc centered at yi+1

through z′i. By symmetry, yi+1 is the intersection point between L and the arc centered
at y′i+1 through zi. Denote the shaded convex region as Ui, then we know that by
construction |Ui| = 2ri+1. Now we estimate the measure of E contained in the
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intersection of annulus A(x, ri, ri+1) and sector S∞(x,θ, φ); that is

Sri(x,θ, φ) \ Sri+1
(x,θ, φ) ⊂ Ui \ Sri+1

(x,θ, φ)

⊂ Ui ∪ Sρ(x,−θ, π/2) \Bri+1
(x),

Hence,

Hs(E ∩ Sri(x,θ, φ))−Hs(E ∩ Sri+1
(x,θ, φ))

≤ Hs(E ∩ Ui) +Hs(E ∩ Sρ(x,−θ, π/2))−Hs(E ∩Bri+1
(x))

≤ (1 + η)|Ui|s + η(2ρ)s − (1− η)(2ri+1)s

= 2s+1ηrsi+1 + 2sηρs

≤ 2s+2ηρs

where the second inequality follows from (21), (22) and (23). Now summing over the
m annular sectors gives

Hs(E ∩ Sρ(x,θ, φ)) ≤ m(2s+2ηρs) +Hs(E ∩ Srm(x,θ, φ))

≤ m(2s+2ηρs) + (1 + η)(2rm)s

where the last inequality follows from applying (22) to the convex region Srm(x,θ, φ).
This shows

Hs(E ∩ Sρ(x,θ, φ))

(2ρ)s
≤ 4ηm+ (1 + η)

(
rm
ρ

)s
For any fixed η > 0, we may choose m large enough, independent of η, so that (rm/ρ)
the second term on the right hand side above is small, and then choose η sufficiently
small so that the first term is small. Thus, Ds(E, x,θ, φ) = 0 for all 0 < φ < π/2.
Together with the assumption that Ds(E, x,−θ, π/2) = 0, we have

Ds(E, x,θ, φ) +Ds(E, x,−θ, φ) = 0

for all 0 < φ < π/2, which implies the existence of a weak tangent at x in the direction
perpendicular to θ. �

Corollary 5.7. Let E be an s-set in R2 with 1 < s < 2. Then E is irregular.

Proof. Suppose for the sake of contradiction that there exists a regular subset F ⊂ E
of positive measure, then by the remark at the end of the Definition 3.6 and Theorem
5.5, we know that for any x ∈ F , D

s

c(E, x) = 1 and Ds(E, x,θ, φ) = 0 for some θ
and for all 0 < φ < π/2. Moreover, since Ds(E, x) = Ds(F, x) = 1, it follows from
Lemma 5.6 that E has a weak tangent at x. However, this is impossible according to
Theorem 5.3, and the proof is complete. �

Remark. Marstrand’s work went much deeper. He first showed in [Mar55] that
the density of s-set fails to exist at almost all of its points when 1 < s < 2. The
generalization to arbitrary n ∈ N and s was eventually proved by Marstrand in 1964
[Mar64].
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