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Motivation: We have the result from classical complex analysis that

π cotπz =
1

z
+
∑
n6=0

(
1

z − n
+

1

n

)
which is a periodic meromorphic function that has a simple pole at every integer. Now

we wish to extend the result to obtain a “nice” doubly periodic function over C. That is for
w1, w2 ∈ C \ {0} with w1/w2 /∈ R, we have f(z + w1) = f(z + w1) = f(z) for all z.

Sadly, there is no non-constant entire function satisfying the above property, by Liouville’s
theorem. We take a step back to look for meromorphic function perhaps having poles at the
lattice points mw1 + nw2 where m,n ∈ Z. One naive try would be simply copying down
what we have above, namely

G(z) =
1

z
+

∑
(m,n) 6=0

(
1

z − (mw1 + nw2)
+

1

mw1 + nw2

)
However, this doesn’t quite work because the series on the right hand side does not

converge. Moreover, a doubly periodic function has to be even, while the function G(z) we
came up with is odd. A cheap fix would be defining

℘(z) =
1

z2
+

∑
(m,n)6=(0,0)

(
1

(z −mw1 − nw2)2
− 1

(mw1 + nw2)2

)
(1)

This is called the Weierstrass ℘ function. Now we show that the function is indeed well
defined, or equivalently the series on the right hand side converges.

Proof. For simplicity, we let ζm,n = mw1 + nw2. We apply a standard trick: For |z| < R,
we split the sum in (1) into a finite sum of terms with |ζm,n| ≤ 2R and the sum of terms
with |ζm,n| > 2R. That is

℘(z) =
1

z2
+

∑
|ζm,n|≤2R

(
1

(z − ζm,n)2
− 1

ζ2m,n

)
+

∑
|ζm,n|>2R

(
1

(z − ζm,n)2
− 1

ζ2m,n

)
(2)

Now if |z| ≤ R and |ζ| > 2R,∣∣∣∣ 1

(z − ζ)2
− 1

ζ2

∣∣∣∣ =

∣∣∣∣ 2zζ − z2

ζ2(z − ζ)2

∣∣∣∣ ≤ R(2|ζ|+R)

|ζ|2|ζ/2|2
<

10R

|ζ|3
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where the first inequality above follows from reverse triangle inequality that |z − ζ| ≥
|ζ| − |z| ≥ |ζ/2|. Now by Weierstrass M-test it suffices to show that∑

(m,n)6=(0,0)

10R

|ζ|3
<∞ (3)

To estimate the doubly indexed sum, we first find a lower bound for |ζm,n|. Indeed, if
m,n 6= 0, then

|mw1 + nw2| = |w2||m(w1/w2) + n| ≥ |w2||Im(w1/w2)|

If m = 0 and n 6= 0, then |mw1 + nw2| ≥ |w2|. Let δ > 0 be the minimum of the above
lower bounds. We have shown that no two points on the lattice formed by {ζm,n} is closer
than δ. In another word, if we place a disk of radius δ/2 centered at each point of the lattice,
then the disks are disjoint.

Now we sum (3) over sequence of annulus k ≤ |ζ| ≤ k + 1 with common center: Clearly,
the area of the annulus k ≤ |ζ| ≤ k+ 1 is (2k+ 1)π, and the number of lattice points ζm,n in
this annulus is at most 4(2k + 1)/δ2, which is increasing with respect to k at a linear rate.
Thus, ∑

|ζm,n|>2R

∣∣∣∣ 1

(z − ζm,n)2
− 1

ζ2m,n

∣∣∣∣ =
∞∑

k=2R

∑
k<|ζm,n|≤k+1

∣∣∣∣ 1

(z − ζm,n)2
− 1

ζ2m,n

∣∣∣∣
≤

∞∑
k=2R

Ck
10R

k3
<∞

By Weierstrass theorem on convergent sequence of analytic functions, we know that the
second sum in (2) converges uniformly on {|z| ≤ R} to an analytic function, while the first
sum is meromorphic with singular parts Sm,n = 1/(z− ζm,n)2 provided |ζm,n| ≤ 2R. Since R
is arbitrary, we have shown that the ℘ function is a well defined meromoprhic function that
has double poles at all ζm,n.

Next we show that ℘ is doubly periodic: We avoid cumbersome computation by looking
at ℘′. Indeed, by Weierstrass again,

℘′(z) = − 2

z3
−

∑
(m,n)6=(0,0)

2

(z − ζm,n)3
= −

∑
(m,n)∈Z2

2

(z − ζm,n)3

By the same estimate above, this series converges uniformly and absolutely so that we
can rearrange the terms, which implies ℘′(z + w1) = ℘′(z). Hence, ℘(z + w1) − ℘(z) is a
constant. Moreover, by construction ℘ is even, so ℘(z+w1) = ℘(z) when z = −w1/2. Thus,
℘(z + w1) = ℘(z) for all z. By the same argument, ℘(z + w2) = ℘(z).

Remark: This above proof is outlined in standard complex analysis textbooks such as
Marshall and Gamelin. One more thing that I want to point out is that a doubly periodic
meromorphic function in C is also called an elliptic function. The Weierstrass ℘ function is
in some sense the simplest elliptic function we can write down because applying the residue
theorem over an elliptic function cannot only have simple poles at its lattice points:
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Consider integrating an elliptic function along the boundary of the fundamental do-
main P = {tw1 + sw2 : t, s ∈ [0, 1)}. The double periodicity tells that the integral has to be
0, which implies the residue of any elliptic function within any copy of P is 0. This forces
elliptic functions to have either non-simple poles at the lattice points or to have simple poles
but the corresponding residues cancel.

The simplest example in the former case is the ℘ function, while the examples in the
latter case give rise to a type of elliptic functions called Jacobian elliptic function.
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