Weyl's Lemma

Guangqiu Liang

January 2020

Definition 1. A continuous function f is weakly-analytic on a region Ω if

$$\int_{\Omega} f \frac{\partial \varphi}{\partial \overline{z}} dA = 0$$

for all compactly supported continuously differentiable functions φ on Ω . Here dA denotes the area measure.

Definition 2. A continuous function $f:\Omega\subset\mathbb{R}^2\to\mathbb{R}$ is **weakly-harmonic** on a region Ω if

$$\int_{\Omega} f \Delta \varphi \ dA = 0$$

for all compactly supported twice continuously differentiable function φ on Ω .

The proofs for the following two versions of Weyl's lemma are mainly outlined in Exercise 7.13, Complex Analysis by Marshall. We use the notation

$$f_z \equiv \frac{\partial f}{\partial z} \equiv \frac{1}{2} (f_x - i f_y), \quad f_{\overline{z}} \equiv \frac{\partial f}{\partial \overline{z}} \equiv \frac{1}{2} (f_x + i f_y)$$

for the first-order derivatives where f is holomorphic and z = x + iy. Note that Cauchy-Riemann equation can be written as $f_{\overline{z}} = 0$ under this notation.

Theorem 1 (analytic version). A continuous function is weakly-analytic if and only if it is analytic.

Proof. First we show an analytic function is weakly-analytic: If R is a rectangle and φ is continuously differentiable on \overline{R} then by Green's theorem

$$\int_{R} \psi_{\overline{z}} dA = \frac{1}{2} \int_{R} (\psi_x + i\psi_y) dA = \frac{1}{2} \int_{\partial R} -i\psi dx + \psi dy = \frac{-i}{2} \int_{\partial R} \psi dz$$

Now applying the above result to $\psi = f\varphi$ on a union of squares $\Gamma = \bigcup R_{\alpha} \subset \Omega$ gives

$$\int_{\Gamma} (f\varphi)_{\overline{z}} dA = \int_{\Gamma} (f_{\overline{z}}\varphi + f\varphi_{\overline{z}}) dA = -\frac{i}{2} \int_{\partial \Gamma} f\varphi dz \tag{1}$$

Since f is holomorphic and φ is continuous on compacts and thereby bounded, the integral on the right hand side is zero by the Cauchy's theorem. Moreover, since f is analytic and thereby satisfying the Cauchy-Riemann equation, namely $f_{\overline{z}} = 0$, we have

$$\int_{\Gamma} f \varphi_{\overline{z}} \, dA = 0$$

Notice the above result holds for all compactly supported continuously differentiable φ and for all $\Gamma \subset \Omega$. Therefore, taking refinements of $\bigcup R_{\alpha}$ gives that f is weakly-analytic.

Now we show that a weakly-analytic function is analytic: Set $\varphi(z) = \frac{3}{\pi}(1-|z|^2)^2$ on |z| < 1 and 0 elsewhere. In practice, any radially symmetric, compactly supported and continuously differentiable φ will work.

Indeed, $\varphi(z) = \frac{3}{\pi}(1-|z|^2)^2 = \frac{3}{\pi}(1-(x^2+y^2))^2$ is composition of continuously differentiable functions and thereby continuously differentiable. Moreover, we want to show that φ is a probability density function, namely

$$\int_{\mathbb{C}} \varphi dA = \int_{\mathbb{D}} \varphi \ dA = \frac{3}{\pi} \int_{0}^{2\pi} \int_{0}^{1} r(1 - r^{2})^{2} dr d\theta = \frac{3}{\pi} \int_{0}^{2\pi} \frac{1}{6} \ d\theta = 1$$

We perform a standard convolution argument by letting $\varphi_{\delta}(z) = \frac{1}{\delta^2} \varphi(\frac{z}{\delta})$ and

$$f_{\delta}(z) = \int_{\mathbb{C}} f(w)\varphi_{\delta}(z-w) \ dA(w)$$

Now suppose f is weakly-analytic on region Ω , then for rectangle $R \subset \overline{R} \subset \Omega$, from equation (1) we have

$$\int_{\partial R} f_{\delta}(z) dz = 2i \int_{R} (f_{\delta}(z))_{\overline{z}} dz = 2i \int_{R} \frac{\partial}{\partial \overline{z}} \left(\int_{\mathbb{C}} f(w) \varphi_{\delta}(z - w) dA(w) \right) dz$$

Since φ_{δ} is continuously differentiable and compactly supported, we can differentiate under the integral sign, which gives

$$\int_{\partial R} f_{\delta}(z)dz = 2i \int_{R} \left(\int_{\mathbb{C}} f(w) \frac{\partial \varphi_{\delta}}{\partial \overline{z}} (z - w) dA(w) \right) dz \tag{2}$$

But notice

$$\frac{\partial}{\partial \overline{w}} \varphi_{\delta}(z - w) = \frac{1}{2} \left(\frac{\partial}{\partial x_{w}} \varphi_{\delta}(z - w) + i \frac{\partial}{\partial y_{w}} \varphi_{\delta}(z - w) \right)
= \frac{1}{2} \left(\frac{\partial}{\partial x_{z}} \varphi_{\delta}(w - z) + i \frac{\partial}{\partial y_{z}} \varphi_{\delta}(w - z) \right)
= -\frac{1}{2} \left(\frac{\partial}{\partial x_{z}} \varphi_{\delta}(z - w) + i \frac{\partial}{\partial y_{z}} \varphi_{\delta}(z - w) \right)
= -\frac{\partial}{\partial \overline{z}} \varphi_{\delta}(z - w)$$

where the second equality holds by symmetry. Also with the assumption that f is weakly-analytic, we have from (2) that

$$\int_{\partial R} f_{\delta}(z)dz = -2i \int_{R} \left(\int_{\mathbb{C}} f(w) \frac{\partial \varphi_{\delta}}{\partial \overline{w}} (z - w) dA(w) \right) dz = 0$$

Therefore, since f_{δ} is by definition continuous, by Morera's theorem, f_{δ} is analytic.

Now we want to show the limiting function of f_{δ} is f and thereby showing f is analytic: Indeed, by direct estimate,

$$|f_{\delta}(z) - f(z)| = \left| \int_{\mathbb{C}} f(w) \varphi_{\delta}(z - w) dA(w) - f(z) \right|$$
$$= \left| \int_{\mathbb{C}} (f(w) - f(z)) \varphi_{\delta}(z - w) dA(w) \right|$$
$$\leq \int_{\mathbb{C}} |f(w) - f(z)| |\varphi_{\delta}(z - w)| dA(w)$$

Since f is continuous, we can always pick $|z-w| < \delta$ for δ small enough so that $|f(w)-f(z)| < \epsilon$ for any given $\epsilon > 0$. Moreover, since $\varphi_{\delta}(z-w)$ by definition is positive and compactly supported, we have for δ small enough,

$$|f_{\delta}(z) - f(z)| \le \epsilon \int_{\Omega} \varphi_{\delta}(z - w) dA(w)$$

which shows that f_{δ} converges pointwise. Now since f_{δ} is uniformly continuous for each $\delta > 0$ on \overline{R} , we know from triangle inequality that f_{δ} converges uniformly to f on compact subsets of Ω . Thus, the limiting function f is analytic on Ω , by Weierstrass theorem.

Theorem 2. A continuous function is harmonic if and only if it is weakly-harmonic. *Proof.* (Harmonic implies weakly-harmonic) Suppose f is harmonic, then by definition $\Delta f = 0$. Now for any φ satisfying the assumption and any closed rectangle $R \subset \Omega$, integra-

tion by parts gives

$$\int_{R} f \Delta \varphi \, dA = \int_{R} \nabla f \cdot \nabla \varphi \, dA - \left(\int_{R} f \varphi_{x} dx dy + \int_{R} f \varphi_{y} dy dx \right) \\
= \int_{R} \Delta f \varphi \, dA - \left(\int_{R} \varphi f_{x} dx dy + \int_{R} \varphi f_{y} dy dx \right) \\
= \int_{R} \Delta f \varphi \, dA = 0$$

where the sum of integrals in the brackets is zero by Fubini's theorem. Since the integral on the left hand side is zero for any R and thereby zero for any union of rectangles in Ω . The integral over Ω can be approximated up to $\epsilon > 0$, therefore $\int_{\Omega} f \Delta \varphi \ dA = 0$, implying f is weakly-harmonic.

(Weakly-harmonic implies harmonic) Suppose f is weakly harmonic, then follow the same procedure as in the proof that weak analyticity implies analyticity: Define

$$f_{\delta}(z) = \int_{\mathbb{C}} f(w)\varphi_{\delta}(z-w) \ dA(w)$$

where $\varphi_{\delta}(z) = \frac{1}{\delta^2} \varphi(\frac{z}{\delta})$. Moreover, by the same argument in part (c), we have $\Delta_z \varphi_{\delta}(z - w) = -\Delta_w \varphi_{\delta}(z - w)$ where Δ_z denotes the laplacian operator with respect to the variable z. Now take a rectangle $R \subset \overline{R} \subset \Omega$,

$$\Delta_z f_{\delta}(z) = \Delta_z \left(\int_{\mathbb{C}} f(w) \varphi_{\delta}(z - w) \ dA(w) \right)$$
$$= \int_{\mathbb{C}} f(w) \Delta_z \varphi_{\delta}(z - w) \ dA(w)$$
$$= -\int_{\mathbb{C}} f(w) \Delta_w \varphi_{\delta}(z - w) \ dA(w) = 0$$

where the second equality follows from the fact that since φ_{δ} is continuously differentiable and compactly supported, thus we can differentiate under the integral sign. The last equality follows from the assumption that f is weakly harmonic.

Now we know that f_{δ} is harmonic for all $\delta > 0$. Furthermore, by the same estimate in the analytic case, we know that f_{δ} is a sequence of harmonic function that converges uniformly to f on compact subsets of Ω . Finally by Harnack's principle, the limiting function f is harmonic.