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We know from elementary calculus that a differentiable function is continuous but the
converse is not necessarily true. We may, starting from the very first day we learn about
this fact, wonder how badly the converse fails to be true. Weierstrass, the grandmaster in
analysis, answered in 1860s that it can be super bad.

Theorem. If a ≥ 3 is an odd integer and if b ∈ (0, 1) such that ab > 1 + 3π/2, then the
function

f(x) =
∞∑
k=0

bk cos (πakx)

is continuous everywhere but nowhere differentiable.

Lemma. If B > 0, then ∣∣∣∣cos (Aπ +Bπ)− cos (Aπ)

B

∣∣∣∣ ≤ π

The proof of this lemma can serve as a good elementary calculus exercise.

Proof. First we show the function f is continuous. Indeed, since |bk cosπakx| ≤ bk

and b ∈ (0, 1), we know the series defining f converges absolutely and uniformly on R by
Weierstrass M-test. Moreover, since bk cos(πakx) is continuous on R for each k, the limiting
function f is continuous on R.

Now we show f is nowhere differentiable: For any r ∈ R, we want to show that f ′(r)
does not exist. For each m = 1, 2, 3, . . ., since amr is a real number, there exists an integer
αm such that

αm −
1

2
< amr ≤ αm +

1

2

Let εm = 21mr − αm be the corresponding gap for each m, we see that

αm + εm = amr (1)

Moreover, since −1/2 < εm ≤ 1/2, it follows that

0 <
1/2

am
≤ 1− εm

am
<

3/2

am
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Let hm = (1− εm)/am. Then (4) guarantees that hm → 0 as m→∞. Moreover,

amhm = 1− εm,
1

hm
>

am

3/2
(2)

Now fix the integer m and consider the difference quotient

f(r + hm)− f(r)

hm
=

∑∞
k=0 b

k cos (akπ(r + hm))−
∑∞

k=0 b
k cos (akπr)

hm

=
m−1∑
k=0

cos (akπ(r + hm))− cos (akπr)

hm/bk

+
∞∑
k=m

cos (akπ(r + hm))− cos (akπr)

hm/bk

Now we estimate the finite sum first: Applying the lemma to each summand with A = akr
and B = akhm gives ∣∣∣∣cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣ ≤ (ab)kπ

Thus by triangle inequality∣∣∣∣∣
m−1∑
k=0

cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣∣ ≤
m−1∑
k=0

∣∣∣∣cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣ (3)

≤
m−1∑
k=0

(ab)kπ = π
ambm − 1

ab− 1
<

2

3
(ab)m (4)

where the last inequality follows from the assumption on ab. Moreover, we can extend
the result that the finite sum above is less than (2/3− ε)(ab)m for some ε > 0. To estimate
the infinite sum, we first observe

akπr + akπhm = ak−mπ(amr + amhm) = ak−mπ(αm + 1) (5)

where the last equality follows from (1) and (2). Since k ≥ m and αm is an integer, it
follows cos (akπr + akπhm) = (−1)αm+1. Moreover, we make another observation that

cos (akπr) = cos (ak−mπαm + ak−mπεm)

= cos (ak−mπαm) · cos (ak−mπεm)− sin (ak−mπαm) · sin (ak−mπεm)

= (−1)αm · cos (ak−mπε)

Now from (5) and the above result, the infinite sum becomes

∞∑
k=m

cos (akπ(r + hm))− cos (akπr)

hm/bk
=

(−1)αm+1

hm

∞∑
k=m

bk(1 + cos (ak−mπεm))
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Thus, ∣∣∣∣∣
∞∑
k=m

cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣∣ =
1

hm

∞∑
k=m

bk(1 + cos (ak−mπεm))

where the summand on the right hand side above is nonnegative. Therefore, the infinite
sum is greater than its first term (where k = m), which gives∣∣∣∣∣

∞∑
k=m

cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣∣ ≥ bm(1 + cos (πεm))

hm
≥ bm

hm
>

2

3
(ab)m

where the second to the last inequality follows because −1/2 < εm ≤ 1/2 and the last
inequality follows from (2). Finally, we are able to appreciate Weierstrass’ main performance:
From above,

2

3
(ab)m <

∣∣∣∣∣
∞∑
k=m

cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣∣
=

∣∣∣∣∣f(r + hm)− f(r)

hm
−

m−1∑
k=0

cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣∣
≤
∣∣∣∣f(r + hm)− f(r)

hm

∣∣∣∣+

∣∣∣∣∣
m−1∑
k=0

cos (akπ(r + hm))− cos (akπr)

hm/bk

∣∣∣∣∣
<

∣∣∣∣f(r + hm)− f(r)

hm

∣∣∣∣+

(
2

3
− ε
)

(ab)m

where the last inequality follows from the extension of (4). This implies∣∣∣∣f(r + hm)− f(r)

hm

∣∣∣∣ > ε(ab)m →∞ as m→∞

Since hm → 0, we know

f ′(r) = lim
h→0

f(r + h)− f(r)

h

is also unbounded.

Remark: A proof for a specific choice of a and b is presented in The Calculus Gallery
by Dunham. Here we show the general case, but the main tastes are exactly the same.
This proof demonstrates the “Weierstrassian rigor” to an extreme and puts the last piece of
intuitive and geometric foundation of calculus into the coffin.
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