A Cute but Brutal Geometry Problem

Guangqiu Liang

September 2020

Theorem. Let $B D$ and $C E$ be the angular bisectors of $\angle A B C$ and $\angle A C B$ respectively. If $B D=C E$, then $A B=A C$.

Proof. Suppose for the sake of contradiction that $A B \neq A C$, then without loss of generality we may assume $A B>A C$, which implies $\angle A B C<\angle A C B$ and thus $\angle 1<\angle 2$. Since $B D=C E$, law of cosines implies $B E>C D$. By law of sines,

$$
\begin{aligned}
& \frac{C E}{\sin \angle A}=\frac{A E}{\sin \angle 2} \quad \Rightarrow \quad C E=\frac{\sin \angle A}{\sin \angle 2} A E . \\
& \frac{B D}{\sin \angle A}=\frac{A D}{\sin \angle 1} \quad \Rightarrow \quad B D=\frac{\sin \angle A}{\sin \angle 1} A D .
\end{aligned}
$$

Since $\sin \angle 1<\sin \angle 2$ and $B D=C E$, we have $A E>A D$. Now by angle bisector theorem,

$$
A B \cdot A D=B C \cdot C D, \quad A C \cdot A E=B C \cdot B E
$$

which implies

$$
\frac{A B \cdot A D}{C D}=\frac{A C \cdot A E}{B E}
$$

With $B E>C D$, we have $A B \cdot A D<A C \cdot A E$. By law of cosine again,

$$
\cos \angle A=\frac{A B^{2}+A D^{2}-B D^{2}}{2 A B \cdot A D}=\frac{A C^{2}+A E^{2}-E C^{2}}{2 A C \cdot A E}
$$

which implies

$$
A B^{2}+A D^{2}-B D^{2}<A C^{2}+A E^{2}-E C^{2}
$$

and thus $A B^{2}+A D^{2}<A C^{2}+A E^{2}$. Notice

$$
(A B+A D)^{2}=A B^{2}+A D^{2}+2 A B \cdot A D<A C^{2}+A E^{2}+2 A C \cdot A E=(A C+A E)^{2}
$$

implying $A B+A D<A C+A E$. However,

$$
A B+A C=A B+A D+C D<A C+A E+B E=A C+A B
$$

a contradiction. Thus, we have shown that $A B \leq A C$. By exactly the same argument, we can also show that $A C \leq A B$. Thus, $A B=A C$.

Remark. This problem was given, by my friend Pubo Huang, to me who initially went gentle into the amusing delusion that it is cute but trivial. Three weeks later, I decided the title above would serve as a better indication of how much fun I had with this problem.

