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1 Background

Recall the Riemann zeta function

ζ(s) =
∑ 1

ns
=

∏
p prime

(1− p−s)−1

which converges absolutely for any Re(s) > 1. Analytic continuation by

ζ(s)− 1

s− 1
=

∞∑
n=1

∫ n+1

n

(n−s − x−s)dx

shows that ζ(s) continues to Re(s) > 0 except for a simple pole at s = 1. Now using
the functional equation ξ(s) = ξ(1− s) where

ξ(s) = π−s/2Γ(s/2)ζ(s)

We see that ζ(s) continues meromorphically to C.

One pioneering use of the Riemann zeta function is to bundle the collection of
all prime numbers into a single analytic function. By studying the poles and zeros
of the meromorphic continuation, we would recover some statistical behaviours of
primes. For instance, the Prime Number Theorem is equivalent to the fact that ζ(s)
has no zeros on the line Re(s) = 1. Moreover, the more we are able to push the line
of no zero closer to Re(s) = 1

2
, the better the error estimate in PNT we will get.

Similar ideas are employed in the study of hyperbolic dynamics, i.e. dynamics
that exhibit chaotic behaviours. In these systems, it is rather hopeless to study the
trajectory of a single particle. For instance, on a Riemannian manifold with negative
sectional curvature, the trajectory of a single particle under the geodesic flow is dense
on the manifold.

Instead, it is more realistic to study the statistical behaviour of the trajectories
of a group of particles on the manifold. For instance, do these particles eventually
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equidistribute? If they do, how fast? Thus, it does not seem unnatural to bring
back Riemann’s idea to bundle a countable set of positive real numbers (related to
the dynamics) into an analytic function. By studying the poles and zeros of the
meromorphic continuation (if it exists), we hope to discover statistical statements
about the dynamics.

One such notion of zeta functions in the study of dynamical systems is the Selberg
zeta function:

ζS(s) =
∏
γ♯∈G

∞∏
m=0

(1− e−ℓ(γ♯)(m+s))

where G is the set of primitive closed geodesics on a compact negatively curved Rie-
mannian surface (X, g). Since the number of closed geodesics on (X, g) is countable
1 and grow at most exponentially in length 2, we know ζS(s) converges absolutely
for Re(s) ≫ 1. By using his trace formula, Selberg showed that ζS(s) continues
meromorphically to C when (X, g) is hyperbolic.

Another notion of zeta function is the Ruelle (dynamical) zeta function, which
resembles the Riemann zeta function:

ζR(s) =
∏
γ♯

(
1− e−ℓ(γ♯)s

)
It is closely related to ζS via the relation

ζR(s) =
ζS(s)

ζS(s+ 1)

Hence, the Ruelle zeta function on hyperbolic manifolds extends meromorphically to
C via the Selberg trace formula. We refer to Pollicott’s beautifully written review
for more historical developments and classical results.

On the other hand, in his seminal review paper Differentiable Dynamical Systems ,
Smale conjectured that ζR has a meromorphic continuation even for manifolds of
variable sectional curvature. He claimed that “a positive answer would be a little
shocking” perhaps due to the lack of symmetry in this general setting.

1Proof: Closed geodesics are in one-to-one correspondence with conjugacy classes of the funda-
mental group. Since the fundamental group is finitely generated, as are its conjugacy classes.

2LetN(T ) be the number of closed geodesics of length no more than T , thenN(T ) ≤ Ce(2n−1)LT .
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Nevertheless, to his shock, Giulietti-Liverani-Pollicott first established the mero-
morphic continuation by applying spectral theory methods in 2012. Soon in 2013,
Dyatlov-Zworski provided a different proof using microlocal analysis. Eventually,
Dyatlov-Guillarmou settled the meromorphic continuation for Axiom A flow, the
most general case conjectured by Smale.

2 Meromorphic Continuation

In this section, we will provide a sketch of Dyatlov-Zworski’s proof of the meromor-
phic continuation of the Ruelle zeta function. We’ll start by introducing the space
we’ll be working with, namely Anosov manifolds.

2.1 Dynamical System

Definition. Let X be a compact manifold with C∞ flow φt : X → X and φt =
exp tV , V ∈ C∞(X;TX). The flow is Anosov if the tangent space to X has a
continuous decomposition

TxX = E0(x)⊕ Es(x)⊕ Eu(x)

which is invariant under the flow, namely dφt(E•) = E•(φt(x)) and E0(x) = RV (x).
Moreover, for some C and θ > 0 3 fixed

|dφt(x)v|φt(x) ≤ Ce−θ|t||v|x, v ∈ Eu(x), t < 0,

|dφt(x)v|φt(x) ≤ Ce−θ|t||v|x, v ∈ Es(x), t > 0,

where | • |y is a smooth Riemannian metric on X.

Example. Let (M, g) be a compact Riemannian manifold of negative sectional cur-
vature. We define the geodesic flow on X = S∗M (the cosphere bundle) as the
Hamiltonian flow with

p(x, ξ) := |ξ|g, X := Hp, φt := exp(tX) : S∗M → S∗M.

It was shown by Anosov that such geodesic flow is Anosov. See Semyon Dyatlov’s
notes for a nice proof of the surface case.

3Here C depends on the metric but θ does not, so it is intrinsic to the dynamics; see a proof in
Smale’s review Differentiable Dynamical Systems
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Let γ be a closed trajectory of φt with period Tγ and let x ∈ γ. Then the map
φ−Tγ : X → X maps γ onto γ and x onto x; so dφ−Tγ is a linear map of Tx onto
itself having the tangent space to γ at x as a one-dimensional eigenspace. We call
Pγ := dφ−Tγ |Es⊕Eu the (linearized) Poincaré map of γ.

Remark. Note that although the definition of Pγ depends on the choice of x ∈ γ, it
is clear that Pγ defined at x is conjugate to Pγ defined at x′ for any pair of x and x′

on γ. Hence, the notation Pγ makes sense.
Moreover, for Anosov flows, all periodic trajectories γ are nondegenerate, i.e.

I −Pγ is invertible. Indeed, if v ∈ Eu(x)⊕Es(x) and v = dφ−Tγv, then dφ−nTγv = v
for all n ∈ Z, which by the expanding and contracting properties implies that v = 0.
Hence, det(I −Pγ) is well defined and nonzero for all periodic trajectories of Anosov
flow φt. Moreover, standard linear algebra 4 shows

det(I − Pγ) =
n−1∑
k=0

(−1)ktr
(
∧kPγ

)
and an easy computation from Dyatlov-Zworski pp.6 shows that

| det(I − Pγ)| = (−1)q det(I − Pγ), q = dimEs.

Note that in general, we can construct Anosov flows with any dimEs and dimEu

by suspending Anosov diffeomorphisms. However, the flow is contact if the Anosov
1-form α ∈ C0(T ∗X) defined by

ker(α(x)) = Eu(x)⊕ Es(x), (α(x))(V (x)) = 1, ∀x ∈ X.

is a contact 1-form, namely dα|Eu⊕Es is symplectic, we must have dimEs = dimEu

(Lagrangian subspaces). 5 In this case, Ω := α∧(dα)n is an invariant smooth volume
form on X with n = dimEs, and Eu(x)⊕ Es(x) is smooth.

Generally, the last statement is not true: E0(x) is smooth because the generator
V is assumed to be smooth. The distributions Eu(x), Es(x), Eu(x)⊕ Es(x) are only
Hölder continuous even if the flow φt is smooth. For geodesic flow on negatively
curved manifolds, the Anosov foliations Eu(x), Es(x) are C1; furthermore, if they
are C∞, it automatically implies the manifold has constant negative curvature. See
Renato Feres’ thesis for more interesting discussions on the regularity of Anosov
foliations.

4Find reference
5Proof: Let ω = dα|Eu⊕Es

be the flow invariant symplectic form. If us, vs ∈ Es(x), then
ω(us, vs) = ω(dφt(us), dφt(vs)) → 0 as t → ∞. Hence, ω|Es = 0 and similarly, ω|Eu = 0.
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2.2 Guillemin Trace Formula

In this subsection, we collect some useful and interesting results from Guillemin’s
paper, including some spectral properties of the generator of the geodesic flow and
the so-called Atiyah-Bott-Guillemin trace formula.

Let M be a compact Riemannian manifold and let ∆ be its Laplace-Beltrami opera-
tor. The positive square root

√
∆ is a self-adjoint elliptic pseudodifferential operator

of order one with symbol p(x, ξ) = |ξ|g. Then p generates a Hamiltonian flow on S∗M
which is exactly the geodesic flow on S∗M . Let V be the generator (i.e. the geodesic
vector field). Let P be the self-adjoint L2 extension of the first-order differential
operator

−iLV : C∞(S∗X) → C∞(S∗X)

Theorem. Either the spectrum of P is the whole real line or all trajectories of the
flow are periodic. In particular, if φt = exp(tV ) is Anosov, σL2(P ) = R.

Remark. First, the proof works for more general operators such as ∇E
V , where ∇E

is a unitary connection on a Hermitian vector bundle E → S∗M . Moreover, this
theorem indicates that the L2-spectrum of the geodesic vector field is useless for
spectral theory purposes. Hence, to reveal its inherent spectral data, it is necessary
to modify L2 into a space (anisotropic Sobolev spaces) on which P would have a
discrete spectrum.

Furthermore, using the above theorem and other results, Guillemin showed that
the eigenvalues of

√
∆ cluster on R unless every trajectory of φt is periodic. One

example for the latter case is the geodesic vector field on S1 where every trajectory
is periodic; a simple computation using Fourier transform shows that σL2(V ) = Z.
Next, we turn to Guillemin’s main result:

Theorem. If all trajectories of V are non-degenerate, then

tr♭e−itP =
∑
γ

ℓ(γ♯)δ(t− ℓ(γ))

| det(I − Pγ)|
, t > 0

Here the flat trace of an operator B : C∞(M) → D′(M) satisfying

WF (B) ∩∆(T ∗X) = ∅, ∆(T ∗X) = {(x, ξ, x, ξ) : (x, ξ) ∈ T ∗M}

for a compact manifold X is defined as

tr♭B :=

∫
X

(ι∗KB)(x) dx, ι : x → (x, x).
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where KB is the Schwartz kernel of B with respect to some density dx on X.
The disjoint condition guarantees the distributional pullback ι∗KB is well defined
(Hörmander I, Thm 8.2.4).

In our case, the flat trace of φ∗
−t = e−itP is defined similarly by the pullback of

ι(t, x) = (t, x, x) and pushforward of π : (t, x) → t, namely

tr♭e−itP = π∗ι
∗Ke−itP ,

whereKe−itP (t, x, y) ∈ D′(Rt×X×X) is the Schwartz kernel of e−itP and the pullback
is well-defined because

WF (Ke−itP ) ∩N∗(Rt ×∆(X)) = ∅, t > 0

where ∆(X) ⊂ X ×X is the diagonal and N∗(Rt ×∆(X)) ⊂ T ∗(Rt ×X ×X) is the
conormal bundle.

Generally, suppose E → S∗X is a vector bundle, and suppose the one-parameter
group of diffeomorphisms exp(tV ) : C∞(S∗X) → C∞(S∗X) lifts to a one-parameter
group of vector bundle automorphisms(

˜exp(tV )
)
: E → E ,

then there is an induced one parameter group of linear mappings e−itP : C∞(X; E) →
C∞(X; E). Let γ be a periodic trajectory of period ℓ(γ). For each x ∈ γ, we get a
map (

˜exp(tV )
)
x
: Ex → Ex

Let χE(γ) be the trace of this map. Then Guillemin’s trace formula generalizes to

tr♭U(t) =
∑
γ

ℓ(γ♯)δ(t− ℓ(γ))

| det(I − Pγ)|
χE(γ)

In particular, when E = Ek
0 the smooth invariant vector bundle given by all differen-

tial k-forms u satisfying ιV u = 0, then χE(γ) = tr
(
∧kPγ

)
. 6

6check this
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2.3 Reduction

Now we are ready to start on the meromorphic continuation of ζR(s):

log ζR(s) =
∑
γ♯

log(1− e−ℓ(γ♯)s)

=
∑
γ♯

∞∑
k=1

1

k
e−ℓ(γ♯)ks

(
ℓ(γ) = kℓ(γ♯)

)
=

∑
γ

ℓ(γ♯)

ℓ(γ)
e−ℓ(γ)s

= −
∑
γ

n−1∑
k=0

(−1)k+q ℓ(γ
♯) e−ℓ(γ)s tr

(
∧kPγ

)
ℓ(γ) | det(I − Pγ)|

=
n−1∑
k=0

(−1)k+q log ζk(s)

where

log ζk(s) = −
∑
γ

ℓ(γ♯) e−ℓ(γ)s tr
(
∧kPγ

)
ℓ(γ) | det(I − Pγ)|

.

Differentiating log ζk gives

d

ds
log ζk(s) =

ζ ′k(s)

ζk(s)
=

∑
γ

ℓ(γ♯) tr
(
∧kPγ

)
e−ℓ(γ)s

| det(I − Pγ)|

Recall from complex analysis that: When h is a meromorphic function on a simply
connected domain D ⊂ C with simple poles and integral residues, then there exists
g meromorphic on D such that h = g′/g. Hence, it suffices to continue ξ′k(s)/ξk(s).

Now Guillemin’s trace formula says that

tr♭(e−itP)|C∞(X;Ek
0 )
=

∑
γ

ℓ(γ♯) tr
(
∧kPγ

)
δ(t− ℓ(γ))

| det(I − Pγ)|

Hence, we have

d

ds
log ζk(s) =

∑
γ

ℓ(γ♯) tr
(
∧kPγ

)
e−ℓ(γ)s

| det(I − Pγ)|
=

∫ ∞

0

e−ts tr♭(e−itP)|C∞(X;Ek
0 )
dt
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Then it is enough to show that the right-hand side has a meromorphic continuation
to C with simple poles and integral residues. Furthermore, it suffices to take t0 > 0
smaller than ℓ(γ) for all γ and consider a continuation of∫ ∞

t0

e−ts tr♭(e−itP)|C∞(X;Ek
0 )
dt = e−t0s

∫ ∞

0

e−ts tr♭(φ∗
−t0

e−itP)|C∞(X;Ek
0 )

dt

Now by spectral theorem

1

i

∫ ∞

0

e−ts φ∗
−t0

e−itP dt = φ∗
−t0

(P− is)−1, for Re(s) ≫ 1

We see that it is sufficient to continue

tr♭
(
φ∗
−t0

(P− λ)−1
)
, for Im(λ) ≫ 1.

to C with simple poles and integral residues. Recall that it was shown in Faure-
Sjöstrand that (P − λ)−1 continues meromorphically on suitably chosen anisotropic
Sobolev spaces. Hence, we only need to check the disjoint wave front set condition
for the distributional kernel of φ∗

−t0
(P − λ)−1, namely that this wave front set does

not intersect N∗(∆(X)).
In the following, we review Dyatlov-Zworski’s proof on the meromorphic continu-

ation of (P −λ)−1, which is slightly different from Faure-Sjöstrand’s proof and relies
on the propagation of singularities and radial points estimates.

2.4 Anisotropic Sobolev Spaces

In section 2.2, we briefly mentioned Helton’s result that the L2-spectrum of the
generator P = −iLV consists of the entire real line, which is not helpful from a
spectral theory perspective. It turns out that we are simply looking at the operator
on the wrong space (L2(S∗X) in this case). Consider the following examples:

Example. The first order differential operator −i d
dx

: C∞(0, 1) → C∞(0, 1) is not
closed and unbounded with respect to the sup norm. On the other hand, −i d

dx
:

H1
0 (0, 1) → L2(0, 1) is a self-adjoint closed bounded operator with finite-dimensional

kernel and cokernel, in which case −i d
dx

has discrete eigenvalues.

Example. The Laplacian operator on Rn serves as a more interesting example. Even
after isotropically modifying the domain, namely adding a weight ⟨ξ⟩2 to the do-
main, the operator ∆ : H2(Rn) → L2(Rn) is not closed and remains true for all
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weighted Sobolev spaces ⟨x⟩rHs(Rn). However, if M is a compact manifold, then
∆ : H2(M) → L2(M) is self-adjoint and bounded with finite-dimensional kernel and
cokernel, in which case ∆ has discrete eigenvalues.

In general, our goal is to find the appropriate spaces on which P − λ is Fredholm.
Since it is invertible for some Im(λ) ≫ 1, it follows from the analytic Fredholm
theorem that (P − λ)−1 is meromorphic.

Such a scheme is in fact quite common in geometric scattering theory, where given
an operator P , we would like to find function spaces X and Y such that P : X → Y
is Fredholm, i.e.

1. P has a finite-dimensional kernel (uniqueness up to finite-dimensional error).

2. P∗ has a finite-dimensional kernel (solvability up to finite-dimensional error).

3. P has closed range (solution Pu = f can be controlled as ∥u∥X ≤ C ∥f∥Y).

We will accomplish this goal by applying microlocal analysis to construct suitable
Sobolev spaces Hs adapted to the flow so that the following type of estimate holds:
For any N ∈ Z,

1. ∥u∥Hs ≲ ∥Pu∥Hr + ∥u∥H−N

2. ∥u∥Hr ≲ ∥P∗u∥Hs + ∥u∥H−N

Granted such estimates, we see that Pu = 0 implies u ∈ H−N → u ∈ Hs is bounded.
Choosing N sufficiently negative, we have by Rellich compact embedding theorem
that the composition H−N → Hs ↪→ H−N is compact, which is impossible unless u
belongs to a finite-dimensional subspace of Hs.

Now to set up the stage, we introduce some notations: Let E =
⊕n

j=0 Λ
j(T ∗X) be

the vector bundle of differential forms of all orders on X and consider the first-order
differential operator

P : C∞(X; E) → C∞(X; E), P := −iLV

where V is the generator of the Anosov flow φt and L the Lie derivative with principal
symbol σ(P)(x, ξ) = ξ(V (x)) ∈ S1(X;R) being diagonal and homogeneous of degree
1. Define the dual decomposition

T ∗
xX = E∗

0(x)⊕ E∗
s (x)⊕ E∗

u(x)
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where E∗
0 , E

∗
s and E∗

u are dual to E0, Eu and Es. We are now ready to describe the
anisotropic Sobolev spaces that grant P − λ nice spectral properties. Let mG ∈
C∞(T ∗X \ o; [−1, 1]) be an escape function homogeneous of degree 0 satisfying the
following properties:

mG(x, ξ) =

{
1 near E∗

s

−1 near E∗
u

and HpmG ≤ 0 everywhere, where Hp is the Hamiltonian vector field generated by
the principal symbol p. We refer to Dyatlov-Zworski’s appendix for the construction
of such an escape function and to Faure-Sjöstrand for a finer version. Now with mG

in hand, we choose a pseudodifferential operator G ∈ Ψ0+(X) satisfying

σ(G)(x, ξ) = mG(x, ξ) log |ξ|,

where | • | is any smooth norm on the fibers of T ∗X. Then e±sG ∈ Ψs+(X) 7 for any
s > 0 and the anisotropic Sobolev spaces are defined using this weight

HsG := e−sG(L2(X)), ∥u∥HsG
:=

∥∥esGu∥∥
L2

The analogy here would be that standard Sobolev space can be phrased as Hs :=
Λ−s(L2) where Λ is a pseudodifferential operator with principal symbol σ(Λ) = ⟨ξ⟩,
and ∥u∥Hs = ∥Λsu∥L2 =

∥∥∥⟨ξ⟩sf̂(ξ)∥∥∥
L2
.

Moreover, since the symbol of e±sG belongs to Ss
1−ε,ε for each ε > 0, we have

that Hs ⊂ HsG ⊂ H−s. More specifically, in these anisotropic Sobolev spaces HsG,
functions are smoother in the stable direction and rougher in the unstable direction
with

HsG =

{
Hs near E∗

s

H−s near E∗
u

Now since the flow moves from stable to unstable, we “move” smoother functions
into spaces of rougher functions, which results in the Fredholm properties. We define
the domain DsG := {u ∈ HsG : Pu ∈ HsG} and the Hilbert space norm on DsG by
∥u∥DsG

:= ∥u∥HsG
+ ∥Pu∥HsG

.

2.5 Propagation of Regularities

Once the correct spaces are set up, we are ready to analyze the operator P−λ. First
let’s consider its principal symbol p(x, ξ) = ξ(V (x)), which is a linear function on

7We refer to the appendix of Faure-Roy-Sjöstrand for a precise description of microlocal theorems
related to symbols of variable orders.
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T ∗X. This implies the characteristic set (i.e. zero set of the symbol) is a hyperplane
in T ∗X and hence noncompact. Now outside this hyperplane, the principal symbol
is nonzero and thereby invertible. Elliptic regularity from microlocal analysis takes
care of the local invertibility of the operator P for us.

Thus, our major enemy lives on the hyperplane OV := {(x, ξ) ∈ T ∗X : ξ(V (x)) =
0} normal to the flow direction. This generally won’t cause a problem because
another powerful tool from microlocal analysis called propagation of singularities
allows us to obtain microlocal estimates in the characteristic set, if an a priori control
of regularity is known. However, since we would like to set up a global Fredholm
problem, global estimates (particularly estimates when ξ → ∞) are necessary. Hence,
we start by compactifying the cotangent bundle T ∗X into T

∗
X, the fiber-radially

compactified cotangent bundle.

Definition. Let B∗X = {(x, ξ) : |ξ| ≤ 1} denote the coball bundle. Embed T ∗X into
B∗X by

(x, ξ) →
(
x,

ξ

1 + ⟨ξ⟩

)
with fiber infinity ∂B∗X = S∗X identified via the map κ : T ∗X \ o → S∗X by
κ(x, ξ) = (x, ξ/|ξ|). Such B∗X is a fiber-radially compactified cotangent bundle and
denoted as T

∗
X. In particular, for each (x, ξ) ∈ T ∗X \ o, the ray (x, sξ) converges

to κ(x, ξ) in T
∗
X as s → ∞.

Note that the Hamiltonian flowHp extends to a smooth vector field on T
∗
X which

is tangent to ∂T
∗
X 8. On the other hand, the drawback of this compactification is

also clear: We have artificially created fiber infinity points on T
∗
X that are radial:

Points α ∈ ∂T
∗
X such that the Hamiltonian vector field Hp|α is parallel to ξ∂ξ.

More precisely, these radial points are classified into sources and sinks. Let etHp :
T ∗X → T ∗X denote the canonical lift of the flow φ : X → X to the cotangent
bundle, namely etHp(x, ξ) = (φt(x), (dφ−t(x))

T ξ) for (x, ξ) ∈ T ∗X. Assume that
L ⊂ T ∗X \ o is a closed conic set invariant under the flow etHp(x, ξ) and there exists
an open conic neighbourhood U of L with the following properties for some θ > 0:

d(κ(e−tHp(U)), κ(L)) → 0 as t → ∞;

(x, ξ) ∈ U ⇒ |e−tHp(x, ξ)| ≥ C−1eθt|ξ|
8Proposition E.5. from Dyatlov-Zworski’s book: Let p ∈ Sk(T ∗X). Then ⟨ξ⟩1−kHp extends to a

smooth vector field on T
∗
X which is tangent to ∂T

∗
X. Hence, the above statement is true thanks

to the fact that p(x, ξ) ∈ S1(T ∗X).
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for any norm on the fibers. We call L a radial source, and radial sink is defined
analogously by reversing the direction of the flow.

Note that in our setting, we have chosen E∗
u and E∗

s so that the following holds:∣∣dφ−t(x)
T ξ

∣∣ ≤ Ce−θ|t||ξ|, ξ ∈ E∗
u, t < 0∣∣dφ−t(x)

T ξ
∣∣ ≤ Ce−θ|t||ξ|, ξ ∈ E∗

s , t > 0

This implies for any ξ /∈ E∗
0(x)⊕E∗

s (x), applying e
tHp for positive time flow eventually

kills any E∗
s component and thus d(κ(etHp(x, ξ), κ(E∗

u)) → 0 as t → ∞. Similarly,
for any ξ /∈ E∗

0(x)⊕ E∗
u(x), we have d(κ(etHp(x, ξ)), κ(E∗

s )) → 0 as t → −∞. Hence,
E∗

u is a radial sink and E∗
s a radial source.

At these radial points, the Hamiltonian vector fields are simply dilations of the
fibers. Since propagation of singularities is by default conic in the fibers, it is trivial
near these points. In summary, we are faced with the following two obstacles:

1. We need an a priori control on regularity to start propagating regularity.

2. We need to find a way to deal with regularity at radial points.

Miraculously, these two problems are solved simultaneously by the work of Mel-
rose and Vasy on radial points estimate. What these estimates accomplish is that
they provide unconditional control of regularity at the radial points, assuming a cer-
tain regularity threshold is achieved. This is possible due to exactly the degeneracy
of P at these points.

Provided with all the tools mentioned above, we are ready to establish a global
estimate of P on T

∗
X. Instead of working directly with P, we consider an artificial

semiclassical adaption, namely Pδ(z) = hP− iQδ − z where z = hλ and Q is a com-
pact operator supported near the zero section of T ∗M , which will eliminate trapping
and guarantee invertibility. The use of semiclassical pseudodifferential operators will
help us keep track of the wavefront set in the compactified cotangent bundle, but
eventually, we will let h > 0 be small but fixed.

More precisely, we choose WFh(Qδ) ⊂ {|ξ| < δ} and σh(Qδ) > 0 on {|ξ| ≤
δ/2} with σh(Qδ) ≥ 0 everywhere. And we modify the anisotropic Sobolev spaces
accordingly: Choose a semiclassical pseudodifferential operator G(h) ∈ Ψ0+

h such
that

σh(G(h))(x, ξ) = (1− χ(x, ξ))mG(x, ξ) log |ξ|,
where χ ∈ C∞

0 (T ∗X) is equal to 1 near the zero section and WFh(G(h)) does not
intersect the zero section. Define the space HsG(h) = e−sG(h)(L2(X)) and similarly

12
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DsG(h) with the norm. Note that since σ(G(h) − G) is bounded as |ξ| → ∞, the
spaces HsG(h) and HsG, DsG(h) and DsG have equivalent norms with the constant
depending on h. 9

Recall our goal is to show P − λ : C∞ → D′ is Fredholm, which we do strip by
strip: For any constant C0 > 0, there exists s large enough so that P−λ : DsG → HsG

is Fredholm on {Im(λ) > −C0}.
Since Q is a compact perturbation and z = hλ, it suffices to show Pδ(z) :

DsG(h) → HsG(h) is invertible on {Im(z) > −hC0} provided s is chosen to be suffi-
ciently large and h sufficiently small but fixed. Injectivity is achieved by the estimate

∥u∥HsG(h)
≤ Ch−1 ∥Pδ(z)u∥HsG(h)

and surjectivity is similar by an estimate on P∗
δ . By a microlocal partition of unity,

we are able to prove the estimate above in pieces of the form:

∥Au∥Hs
h
≤ C ∥Bu∥Hs

h
+ Ch−1 ∥B1f∥Hs

h
+O(h∞)

where A ∈ Ψ0
h falls into the following categories:

1. When WFh(A) ∩ {p = 0} ∩ {|ξ| ≥ δ/2} = ∅, then Pδ is elliptic on WFh(A).
Hence, by standard elliptic estimate, we can take B = 0 and B1 = I.

∥Au∥HsG(h)
≤ C ∥B1f∥HsG(h)

+O(h∞)

2. When WFh(A) is contained in a small neighborhood of κ(E∗
s ), namely the

radial source, we choose s large enough so that HsG(h), microlocally equivalent
toHs

h near κ(E
∗
s ), has regularity beyond the critical threshold in Melrose/Vasy’s

radial points estimate, which gives the estimate with B = 0 and WFh(B1) in
a neighborhood of κ(E∗

s ).

∥Au∥HsG(h)
≤ Ch−1 ∥B1f∥HsG(h)

+O(h∞)

3. When WFh(A) is contained in a small neighborhood of (x0, ξ0) ∈ {p = 0}\E∗
u,

namely everything happens inside the characteristic set of Pδ, hence standard
propagation of singularity applies. In this case, we can take WFh(B) contained

9check Zworski’s Semiclassical Analysis
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in a neighborhood of κ(E∗
s ) and WFh(B1) contained a small neighborhood of

etHp(WFh(A)) ⊂ ell(B) for t ∈ [−T, 0].

∥Au∥HsG(h)
≤ C ∥Bu∥HsG(h)

+ Ch−1 ∥B1f∥HsG(h)
+O(h∞)

Applying step 2 again gives

∥Au∥HsG(h)
≤ C ∥B2f∥HsG(h)

+ Ch−1 ∥B1f∥HsG(h)
+O(h∞)

for some B2 ∈ Ψ0
h with WFh(B2) in a neighborhood of κ(E∗

s ).

4. When WFh(A) is contained in a small neighborhood of some (x0, ξ0) ∈ E∗
u,

then etHp(x0, ξ0) converges to the zero section as t → −∞. Since the zero
section is damped by Q, the estimate follows similarly to the previous case.

5. Finally, when WFh(A) is contained in a small neighborhood of κ(E∗
u), the radial

sink, hence radial points estimate applies again, which gives the estimate with
B,B1 ∈ Ψ0

h with WFh(B),WFh(B1) contained in a small neighborhood of
κ(E∗

u) and WFh(B) ∩ κ(E∗
u) = ∅.

∥Au∥HsG(h)
≤ C ∥Bu∥HsG(h)

+ Ch−1 ∥B1f∥HsG(h)
+O(h∞)

Applying the previous steps allows us to bound ∥Bu∥ by terms ∥B1f∥ , ∥B2f∥.

Altogether, we have been able to bound any pieces of ∥u∥HsG(h)
by pieces of ∥f∥HsG(h)

.

Hence, the bound ∥u∥HsG(h)
≤ Ch−1 ∥Pδu∥HsG(h)

is global. Reversing the direction of

the flow gives the corresponding estimate for P∗
δ , i.e.

∥v∥H−sG(h)
≤ Ch−1 ∥P∗

δv∥H−sG(h)
, v ∈ D−sG(h)

These two estimates together give the invertibility of Pδ(z) and hence the Fredholm
property of h(P − λ). Since h overall is a small but fixed constant and HsG is
topologically equivalent to HsG(h), we have that P−λ is Fredholm as well. Moreover,
since

(P− λ)−1 =
1

i

∫ ∞

0

eiλteitP dt

is well-defined and holomorphic for Im(λ) ≫ 1, it follows from analytic Fredholm
theory that (P− λ)−1 : HsG → HsG is meromorphic with poles of finite rank.

14



Note that the Schwarz kernel of (P−λ)−1 is characterized by its action on C∞(X).
Hence, the poles are independent of the choice of s and the weight G and are also
known as the Pollicott-Ruelle resonance of P.

Given the microlocal estimates on Pδ(z)u = f , we also obtain 10 the wavefront set
description of Rδ(z), namely

WF′
h(Rδ(z)) ∩ T ∗(X ×X) ⊂ ∆(T ∗X) ∪ Ω+

where ∆(T ∗X) is the diagonal and Ω+ is the positive flow-out of etHp on {p = 0}:

Ω+ = {(etHp(x, ξ), x, ξ) : t ≥ 0, p(x, ξ) = 0}

2.6 Wavefront Set Description

So far the results mentioned above can also be found in Faure-Sjöstrand where in
replacement of a propagation of singularity argument, they constructed a more so-
phisticated escape function adapted to the flow which gives the meromorphic con-
tinuation.

The novel addition to Dyatlov-Zworski which allows them to obtain the meromor-
phic continuation of the Ruelle zeta function ζR is a precise microlocal description
of R(λ) = (P− λ)−1, namely for λ near λ0,

R(λ) = RH(λ)−
J(λ0)∑
j=1

(P− λ0)
j−1

∏
(λ− λ0)j

where RH(λ) is holomorphic near λ0 and
∏

: HsG → HsG is the commuting projec-
tion 11 onto the kernel (P− λ0)

J(λ0) and

WF′(RH(λ)) ⊂ ∆(T ∗X) ∪ Ω+ ∪ (E∗
u × E∗

s ).

Effectively, this microlocal description allows us to describe the wavefront set of
φ∗
−t0

(P− λ)−1 and in the end justify the validity of taking the flat trace.

Since R(λ) is meromorphic with poles of finite rank, it has the following Laurent
expansion near a pole λ = λ0

R(λ) = RH(λ) +

J(λ0)∑
j=1

Aj

(λ− λ0)j

10Review definition of semiclassical operator wavefront set and go through this argument
11See Dyatlov-Zworski’s scattering resonance book Appendix C Theorem 3.9
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where J(λ0) is the order of the pole λ0 and Aj’s are finite rank operators. By residue
theorem, we have

−
∏

:= A1 =
1

2πi

∮
λ0

R(λ) dλ

Moreover, we claim that Aj+1 = (P − λ0)Aj for j > 1. Since the computation
is elementary but not entirely trivial, we include it here: From the Laurent series
expansion,

Aj =
1

2πi

∮
λ0

R(λ)

(λ− λ0)−(j+1)
dλ

Then

(P− λ0)Aj =
1

2πi

∮
λ0

(P− λ0)R(λ)

(λ− λ0)−(j+1)
dλ =

1

2πi

∮
λ0

PR(λ)

(λ− λ0)−(j+1)
dλ− λ0Aj

Note the resolvent identity

P (P − λ)−1 = ((P − λ) + λ)(P − λ)−1 = I − λ(P − λ)−1

gives

1

2πi

∮
λ0

PR(λ)

(λ− λ0)−(j+1)
dλ =

1

2πi

∮
λ0

I

(λ− λ0)−(j+1)
dλ− 1

2πi

∮
λ0

λR(λ)

(λ− λ0)−(j+1)
dλ

Since j > 1, the first integral on the right hand side vanishes. Writing λR(λ) =
(λ − λ0)R(λ) + λ0R(λ) for the second integral gives the desired result. Hence,
Aj = −(P− λ0)

j−1
∏

and (P− λ0)
J(λ0)

∏
= 0.

Finally, we present the wavefront set description of RH(λ). Recall that R(λ) =
(P− λ)−1 and Rδ(z) = (h(P− λ)− iQδ)

−1 with z = hλ, then the following identity
holds with some computation

R(λ) = h(Rδ(z)− iRδ(z)QδRδ(z))−Rδ(z)QδR(λ)QδRδ(z)

Since Qδ is a pseudodifferential operator, we have

WF′
h(Rδ(z)− iRδ(z)QδRδ(z)) ∩ T ∗(X ×X) ⊂ ∆(T ∗X) ∪ Ω+

To deal with the second term, first note that QδR(λ)Qδ is microlocally supported in
{|ξ| < 2δ}. Hence,

WF′
h(Rδ(z)QδR(λ)QδRδ(z)) ∩ T ∗(X ×X) ⊂ Υδ
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where Υδ = {(ρ′, ρ) | ∃t, s ≥ 0 : etHp(ρ) ∈ WF′
h(Qδ), e

−sHp(ρ′) ∈ WF′
h(Qδ)}. Note

that R(λ) depends neither on h or δ; hence,

WF(R(λ)) ⊂ ∆(T ∗X) ∪ Ω+ ∪
⋂
δ>0

Υδ = ∆(T ∗X) ∪ Ω+ ∪ (E∗
u × E∗

s )

as desired.

2.7 Summary

Since we’ve covered the bulk of the proof, we’ll forgive ourselves for not providing
the rest of the argument for the meromorphic continuation of ζR(λ). Instead, we
only mention that:

1. Given the wavefront set description of R(λ) and the choice of t0 satisfying
0 < t0 < ℓ(γ) for all γ, the wavefront set of φ∗

−t0
(P − λ)−1 does satisfy the

condition on taking the flat trace (even though WF(R(λ)) in fact does not).

2. By standard Fredholm theory, R(λ) behaves like the resolvent of a matrix near
its pole. Together with the fact that traces of nilpotent operators 12 are 0,
we obtain that fk(λ) = −eiλt0tr♭

(
φ∗
−t0

Rk(λ)
)
has simple poles and integral

residues. Hence, its meromorphic continuation follows.

A few years after Dyatlov-Zworski’s paper, Dyatlov-Guillarmou was able to show
the meromorphic continuation of the dynamical zeta function ζR for Axiom A flow
over general vector bundles using similar but technically more sophisticated methods.

This has opened up new classes of models on which the meromorphic continuation
of its dynamical zeta function can be studied. We briefly discuss one particular
branch in the next section.

3 Order of Vanishing at Zero

As pointed out in the opening section, the dynamical zeta function carries statistical
information about the underlying dynamical system. For instance, given the mero-
morphic continuation of the zeta function for (topologically weakly mixing) Anosov
flow, the first pole hϕ is simple and ζR(s) has no zero on the line Re(s) = hϕ, where
hϕ is also known as the topological entropy of the flow ϕ and defined as

hϕ = lim
T→∞

1

T
logN(T ) > 0

12find a reference (maybe linear algebra via exterior forms)

17

https://arxiv.org/abs/1801.00348


N(T ) denotes the counting function for primitive orbits of length less than T . In
particular, we have the prime orbit theorem analogous to the prime number theorem:

N(T ) ∼ ehϕT

hϕT
asymptotically as T → ∞

For geodesic flows on compact negatively curved surfaces, Dolgopyat was able to show
in 1998 that there exists ε > 0 such that ζR(s) has an analytic zero-free extension to
Re(s) > hϕ − ε, hence improving the error term in the prime orbit theorem:

N(T ) =

∫ e
hϕT

0

1

log u
du+O(e(hϕ−ε)T )

For higher dimensional compact negatively curved manifolds with a 1
9
-pinching con-

dition, similar conclusions were obtained by Giulietti-Liverani-Pollicott. Yet, we
don’t know if the pinching condition is necessary.

On the other hand, if we have a noncompact manifold with interesting dynamics,
we are able to deduce the decay of correlation information from the meromorphic
continuation. These cases include hyperbolic manifolds or asymptotically hyperbolic
manifolds with strictly negative variable sectional curvature.

In particular, if (M, g) is one such manifold and φt : SM → SM is the corre-
sponding geodesic flow, then we can define a correlation function as follows: Given
f, g ∈ C∞

0 (SM),

ρf,g(t) =

∫
SM

(f ◦ φ−t)g dµ

where dµ is the invariant Liouville measure. Then the long-term behavior of ρf,g
depends on how much we are able to meromorphically continue its Laplace transform

ρ̂f,g(λ) =

∫ ∞

0

e−λtρf,g(t) dt = ⟨R(λ)f, g⟩L2

or effectively the resolvent operator R(λ). Now existence of a simple pole λ0 < 0
and no other poles/zeros on the line Re(λ) = λ0 implies

ρ̂f,g(λ) = eλ0t

(∫
SM

f dµ

∫
SM

g dµ̃+ o(1)

)
and the existence of a spectral gap gives rise to an exponential error term in the
above relation. Nevertheless, we are instead interested in a region deep into the
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meromorphic continuation, i.e. meromorphic continuation of the Ruelle zeta function
at zero. It is shown that topological information of the dynamical system can still
be recovered.

Theorem 1. (Dyatlov-Zworski 17) Suppose M is a compact negatively curved
surface, then near s = 0:

ζR(s) = Cs−χ(M)(1 +O(s))

Theorem 2. (Hadfield 18) Suppose M is a compact negatively curved surface with
boundary, then near s = 0:

ζR(s) = Cs1−χ(M)(1 +O(s))

Theorem 3. (Borthwick-Judge-Perry 05) Suppose M is a geometrically finite hy-
perbolic surface, then

ζR(s) = Cs1−χ(M)(1 +O(s))

Theorem 4. Suppose M is a negatively curved asymptotically hyperbolic surface,
then near s = 0:

ζR(s) = Cs1−χ(M)(1 +O(s))

Just like the analogy between L-function and Riemann zeta function, we can also
consider a twisted version of the Ruelle zeta function

ζα(s) =
∏
γ♯

det
(
1− α(γ♯)e−ℓ(γ♯)s

)
for an arbitrary (not necessarily unitary) finitely dimensional complex representation
α : π1(S

∗X) → GL(N,C). Its meromorphic continuation follows exactly as before
and we have:

Theorem 5. (Cekić-Paternain 20) Suppose M is a compact negatively curved sur-
face and α is a unitary representation. Let N(α) denote dimension of the represen-
tation α, then near s = 0:

ζα(s) = Cs−χ(M)N(α)(1 +O(s))
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Theorem 6. (Frahm-Spilioti 23) Suppose M is a hyperbolic surface, then near
s = 0:

ζα(s) = Cs−χ(M)N(α)(1 +O(s))

However, the interesting question of the order of vanishing for surfaces of variable
curvature with non-unitary twists remains open, and we refrain from mentioning a
closely related but overwhelmingly vast study of Fried’s conjecture.

20

https://arxiv.org/abs/2105.13321

	Background
	Meromorphic Continuation
	Dynamical System
	Guillemin Trace Formula
	Reduction
	Anisotropic Sobolev Spaces
	Propagation of Regularities
	Wavefront Set Description
	Summary

	Order of Vanishing at Zero

