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Theorem. Suppose Ω ⊂ C is simply-connected and Ω 6= C. Then there exists a ono-to-
one analytic function f of Ω onto D = {z : |z| < 1}. If z0 ∈ Ω then there is a unique such
map with f(z0) = 0 and f ′(z0) > 0.

The main recipe of the following proof is the use of normal family to solve an extremal
problem, and the proof is outlined in Complex Analysis, Marshall. Two lemmas needed
throughout the proof will be provided at the end.

Proof. We present the proof in three step: First we show that for fixed z0 ∈ Ω, the family

F = {f : f is one-to-one, analytic, |f | < 1 on Ω, f(z0) = 0, f ′(z0) > 0}

is nonempty and normal. Then we show that there exists a function f ∈ F that maximizes
the set F ′ = {f ′(z0) : f ∈ F}. Finally, we show that the function f we found with the optimal
derivative is indeed to Riemann map we are looking for.

By the assumption that Ω 6= C, then there exists z1 ∈ C\Ω. Since Ω is simply-connected
and z − z1 6= 0 in Ω, the logarithm log(z − z1) is well-defined and analytic on Ω. Let
g1(z) =

√
z − z1. Now we show that g1 is one-to-one: Suppose g1(z) = g1(w), squaring

both sides gives z − z1 = w − z1 and implies z = w. Moreover, if z 6= w, we also have
g1(z) 6= −g1(w) by the same argument above. Thus, g1(z) is univalent.

Choose z2 ∈ Ω such that g1(z2) 6= 0, then there exists r > 0 such that B(g(z2), r) ⊂
g(Ω) by the open mapping theorem. Moreover, B(−g(z2), r

′) ⊂ g(Ω)C for some r′. Thus,
|g1(z) + g(z2)| ≥ r′ and hence g2(z) = r′/(g1(z) + g(z2)) maps Ω conformally onto a subset
of D. Moreover, we can choose an automorphism T to get f = T ◦ g2(z) such that f(z0) = 0.
Moreover, we have the freedom to choose the rotational constant to make f ′(z0) > 0. Thus,
F 6= ∅.

Now since F is a family of globally bounded analytic functions, by Lemma 1 (an analytic
version of Arzela-Ascoli theorem), F is normal. Moreover, choose a sequence {fn} ⊂ F such
that

lim
n→∞

f ′n(z0) = M = sup{f ′(z0) : f ∈ F}

By normality, we can relabel {fn} with a subsequence that converges uniformly on com-
pact subsets of Ω. Now by Weierstrass theorem, the limit function f is analytic in Ω, |f | ≤ 1
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and {f ′n} converges uniformly to f ′. Thus f ′(z0) = M . In particular, this implies M is
bounded and M 6= 0. Moreover, f(z0) = limn→∞ fn(z0) = 0 and f is one-to-one by Hurwitz
theorem. Thus, f ∈ F .

Finally, we want to show that D ⊂ f(Ω) by contradiction: Suppose there is w ∈ D\f(Ω),
then the function

h1(z) =
f(z)− w
1− wf(z)

≡ T1 ◦ g1(z)

is nonzero analytic function on the simply-connected domain Ω. Thus, we can define
the logarithm function and thereby an analytic square root h2(z) =

√
h1(z) which is also

one-to-one. Composing h2 with a LFT gives

h(z) =
h2(z)− h2(z0)
1− h2(z0)h2(z)

≡ T2 ◦ g2(z)

which fixes h(z0) = 0. We may also choose a rotational constant λ = |h′(z0)|/h′(z0) so
that λh ∈ F . Now if we look at the composition

ϕ = T−11 ◦ S ◦ T−12 , S(z) = z2

which is an automorphism of the disk and which fixes the origin ϕ(0) = 0. Moreover, from
the other direction, f(z) = ϕ ◦ h(z), equivalently ϕ(z) = f ◦ h−1(z). By Schwarz’s lemma,
we have |ϕ′(0)| = |(f ◦ h−1)′(0)| < 1, which implies |f ′(z0)| < |h′(z0)| by the inverse function
theorem. Now we have found another function in F , namely λh, that has a derivative larger
than the optimal value of f ′(z0), which is a contradiction. Thus, D ⊂ f(Ω) and therefore
f(Ω) = D. Moreover, the uniqueness of the conformal map f follows from Lemma 2.

Lemma 1. The following are equivalent for a family F of analytic functions on a region
Ω: (i) F is normal on Ω; (ii) F is locally bounded on Ω; (iii) F ′ = {f ′ : f ∈ F} is locally
bounded on Ω and there is a z0 ∈ Ω so that {f(z0) : f ∈ F} is a bounded subset of C.

Proof. Suppose F is normal. By the proof of Arzela-Ascoli theorem or Exercise 10.2, we
know that F is globally bounded and thereby locally bounded. Now suppose F is locally
bounded, that is |f | ≤M on a closed disk B(z1, r) ⊂ Ω for all f ∈ F and all z in the disk.

Now by Cauchy’s estimate, we have

|f ′(z)| ≤ sup |f |
r/2

=
2M

r

which implies F ′ is locally bounded, and (iii) holds. Finally, if (iii) holds and z1 ∈ Ω, then
|f ′(z)| ≤ L <∞ for all z in a disk B(z1, r). Integrating f ′ along a line segment from z1 to z
gives the estimate |f(z)− f(z1)| ≤ L|z− z1| for all f ∈ F . By definition F is equicontinuous
at z1. Since z1 is arbitrarily chosen, we know F is equicontinuous on Ω. By Arzela-Ascoli,
F is normal.

Lemma 2. If there exists a conformal map of a region Ω onto D, then given any z0 ∈ Ω,
there exists a unique conformal map f of Ω onto D such that f(z0) = 0 and f ′(z0) > 0.
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Proof. If g is a conformal map of Ω onto D, then

h(z) = c
z − g(z0)

1− g(z0)z

is an automorphism of D for |c| = 1, and f = h ◦ g maps Ω onto D with f(z0) = 0. Then,
a direct computation shows f ′(z0) = cg′(z0)/(1 − |a|2), and we have the freedom to choose
the rotational constant c so that f ′(z0) > 0.

Now suppose k also maps Ω onto D with k(z0) = 0 and k′(z0) > 0, then H = k ◦ f−1
is an automorphism of the disk with H(0) = 0. By Schwarz’s lemma, |H(z)| ≤ |z| and
similarly |H−1(z)| ≤ |z| so that |H(z)| = |z| and H(z) = cz, with |c| = 1. Since H ′(0) =
k′(z0)/f

′(z0) > 0 by assumption, we have c = 1 and therefore k = f .
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