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In 1917, Japanese mathematician Sōichi Kakeya proposed the following question:

Kakeya Problem. What is the minimum area of a region D ⊂ R2 in which a line segment
of unit length can be turned through 360◦?

Examples of Kakeya sets are disk of radius 1/2, equilateral triangle of height 1, and
deltoid of height 1, which have areas π/4,

√
3/3, and π/8 respectively. If we require D to be

convex, Kakeya & Fujiwara conjectured that the equilateral triangle of unit height achieves
the minimum, which was proved by Pal in 1920. In the non-convex case, Kakeya himself
seemed to conjecture that the deltoid is optimal. However, Besicovitch showed in 1928 the
following stunning result:

Theorem 1. Given any ε > 0, there exists compact D ⊂ R2 in which a unit line segment
can be turned through 360◦.

Remark. Besicovitch’s construction is based on the following two observations:

1. One can translate a needle using arbitrarily small area, following a path of shape “N”.

2. Define a Kakeya set in R2 to be any set which contains a unit line segment in every
direction, then there exists Kakeya set of arbitrarily small area.

We illustrate briefly on the second observation, which is not entirely straightforward.

The idea is to preserve the angle that the needle can sweep while reducing the area needed.
For instance, the above cut and sliding construction maximally reduces the area while keeping
the angle that the needle can sweep through to be 60◦.
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The main difficulty in justifying the construction actually works lies in the crucial estimate
that at each stage, the overlapping annihilates enough amount of area. Those who are
interested in a detailed proof are directed to Falconer’s Geometry of Fractal Sets.

In fact, Davies showed in 1971 that there exist Kakeya sets in the plane of measure zero.
At the same time, he also observed that they must have (Hausdorff) dimension 2, which
motivates the general Kakeya conjecture.

Kakeya Conjecture. A Kakeya set E in Rn (i.e. a set that contains a unit line segment
in every direction) has dimension n.

The conjecture remains open today since it was proposed in the 70s. It appears that as
dimension grows, the problem becomes harder. Except for some partial results, for example
dimE > 5/2 when n = 3, it looks like the conjecture is far from being solved. However,
increasing interests were raised when Wolff proposed the finite field analogue of the Kakeya
conjecture as a model problem.

Definition 2. Let F be a finite field, and F n be the vector space over F . Let E ⊂ F n be
such that for any v ∈ F n \{0}, there exists x ∈ F n such that the line Lx,v = {x+ tv : t ∈ F}
is contained in E, then E is a Kakeya set over F .

Examples of Kakeya set when n = 2 and F = Z3 or F = Z5.
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A characterizing feature of a set E ⊂ Rn of Hausdorff dimension s ≤ n is that Hs(rE) =
rsHs(E), namely the measure of the set is scaled proportionally with respect to the s-
dimensional volume when the set is scaled. Hence, the finite field analogue conjecture can
be stated as follows:

Kakeya Conjecture over Finite Fields. Let E ⊂ F n be a Kakeya set. Then |E| ≥ cn|F |n
for some cn > 0 that only depends on n.

We present a beautiful proof of this conjecture by Dvir in 2008, using polynomial methods
from combinatorics. In particular, we would like to control the size of a set E by studying
polynomials vanishing on E. We have the following basic facts from high school:

Theorem 3. (Factor Theorem) Let F be a field and d ≥ 0 be an integer.

1. If p(x) ∈ F [x] nontrivial and deg p(x) ≤ d, then p has at most d roots.

2. If E ⊂ F and |E| ≤ d, there exists a nontrivial p ∈ F [x] such that deg p(x) ≤ d and
p(x) = 0 on E.

From 2, we see that to lower bound the set E, it suffices to show that the only small degree
polynomials vanishing on E is the zero polynomial. We will achieve this through the following
two higher-dimensional results:

Theorem 4. Let E ⊂ F n with |E| <
(
n+d
n

)
for some d, then there exists a nontrivial

p ∈ F [x1, . . . , xn] such that deg p ≤ d and p vanishes on E.

Proof. The proof is a simple dimension counting argument. Let V be the vector space of
polynomials in F [x1, . . . , xn] of degree less than or equal to d, then by balls-and-urns formula,
dimV =

(
n+d
n

)
. On the other hand, since F is a field, the set of functions W = {f : E → F}

has a vector space structure. In particular, dimW = |E|, as the basis is given by the
characteristic function on each element of E.

Thus, the evaluation homomorphism evE : V → W defined as evE(p) = (p(x))x∈E has
nontrivial kernel. Thus, there exists nontrivial p ∈ V such that p ̸= 0 and p(x) = 0 on E.

Theorem 5. Let P ∈ F [x1, x2, . . . , xn] be a polynomial of degree at most |F | − 1 and P
vanishes on a Kakeya set E, then P is the zero polynomial.

Proof. Suppose for the sake of contradiction that P is nonzero, and let P =
∑d

i=1 Pi be the
corresponding homogeneous decomposition, where 0 ≤ d ≤ |F | − 1. Then we must have
Pd ̸= 0.

Now for any v ∈ F n \ {0}, we know that there exists x ∈ E such that the line {x + tv :
t ∈ F} ⊂ E and by hypothesis P (x + tv) = 0 for all t ∈ F . Thinking of P (x + tv) as a
polynomial of degree d in t, we have that the polynomial P (x + vt) vanishes at |F | points.
However, since d ≤ |F |−1, so P (x+tv), as a polynomial in t, is of degree at most |F |−1. By
the factor theorem, we know that the polynomial P (x + tv) in t vanishes identically, which
implies the coefficient Pd(v) of t

d vanishes for any nonzero v.
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Since Pd is homogeneous of degree d > 0, we have Pd vanishes on all of F n. But since
d < |F |, then applying the factor theorem repeatedly to each variable xi shows Pd = 0, a
contradiction.

Corollary 6. Every Kakeya set in F n has cardinality at least
(
n+|F |−1

n

)
.

In particular, the corollary implies the Kakeya conjecture over finite fields:

|E| ≥
(
n+ |F | − 1

n

)
=

(n+ |F | − 1)(n− 1 + |F | − 1) · · · (|F |)
n!

≥ 1

n!
|F |n

We end our discussion by some interesting remarks on the current progress of the Kakeya
conjecture and its application in other areas of math:

1. The original Kakeya conjecture (F = R) still remains far from reach; the currently best
estimate we have is about dimH E > n+2

2
(1995, Wolff/Katz/Tao). However, there has

been interesting developments in the case when F is a ring in the past two years.

In Nov 2020, Dvir & Dhar proved that the case when F = Z/nZ where n is square-free.

In Aug 2021, Arsovski proved the case when F = Qp, the p-adic numbers.

In Oct 2021, Dhar proved the case when F = Z/nZ for any n ∈ N.
In Feb 2022, Salvatore generalized the result to local fields of positive characteristic.

2. The existence of Kakeya set in Rn, which can be obtained by E×[0, 1]n−2 for any Kakeya
set E ⊂ R2, is surprisingly useful in the study of harmonic analysis. In particular, it
is used by Fefferman in 1971 to prove the following striking result related to the Lp

convergence of Fourier inversion formula:

Theorem 7. If n > 1, then SR is unbounded for any p ̸= 2.

where the operator SR is defined as the following:

SRf(x) =

∫
|x|≤R

f̂(ξ)e2πiξ·x dξ

where f̂(ξ) is the Fourier transform of f . Upon invoking the uniform boundedness
principle, Fefferman’s theorem implies that SRf ↛ f unless p = 2.

3. There are fascinating connections among the Kakeya conjecture, arithmetic combina-
torics (in particular the sum-product phenomenon), and dispersive linear PDE. Terence
Tao’s survey article “From rotating needles to stability of waves: emerging connections
between combinatorics, analysis, and PDE.” explains these connections in details.
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