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2022.1.21 Background (Yiran Wang)
Given a compact Riemannian manifold (M, g), consider the Laplace-Beltrami operator

∆M : C∞(M) → C∞(M) defined as ∆f = −div(gradf). In local coordinates,

∆ := − 1
√
gij
∂i(

√
gijg

ij∂j)

Consider ∆ acting on L2(M,dV ) where dV is the volume measure induced by the metric.
By Green’s identity, ∆ is positive and symmetric on C∞

0 (M). By the Friedrich’s extension
method, ∆ is self-adjoint on D(∆) = {u ∈ H1

0 (M) : ∆u ∈ L2(M)} and essentially self-adjoint
on C∞(M).

A classical spectral theory result gives σ(∆) = σpt(∆) ⊂ R≥0 with limk→∞ λk = ∞. Now
the question is what geometric information of (M, g) can be inferred from the eigenvalues
{λk}. A related question is concerned with the spectrum of the Schrödinger operator ∆+V
where V is a scalar function.

One approach is to consider functions defined in terms of the eigenvalues (i.e. the spectral
invariants). For example, the heat trace, also known as the Minakshisundaram–Pleijel zeta
function,

Z(t) = tr(e−t∆M ) =
∞∑
j=1

e−tλj , t > 0

If looking at the behavior of Z(t) as t→ 0+, we get the Pleijel asymptotic expansion,

∞∑
j=1

e−tλj ∼ (4πt)−n/2

∞∑
n=0

ant
n ∼ vol(M)

2πt
− ℓ(∂M)

4
√
2πt

+ o

(
1√
t

)

By the classical isoperimetric inequality, we have ℓ(∂M)2 ≥ 4πvol(M) with equality holds
if and only if M is a disk. Thus, we can “hear” the shape of a disk from its eigenvalues.
In fact, disks are the only Lipschitz planar domains that are determined by their spectra.
Recently, Hezari and Zelditch proved ellipses of sufficiently small eccentricity are spectrally
determined among all smooth domains.

In particular, we ask if two Riemannian metrics g1 and g2 are isospectral (i.e. σ(∆M1) =
σ(∆M2)), what information on g1 and g2 can we get. One of the most famous counterexamples
comes from Sunada’s method of constructing pairs of isospectral manifolds. Instead, we study
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1. How big is the set of isospectral metrics?

2. Can we conclude anything on a more restricted class of manifolds?

For the first question, there is a decent answer given by Osgood, Phillips, and Sarnak
that the set of isospectral metrics is compact in C∞ topology. Their method uses the notion
of the determinant of Laplacian. Roughly speaking, they prove a local uniqueness result so
that if σ(∆g1) = σ(∆g2) for g1 close to g2, then g1 is isometric to g2.

Finally, we look at spectral rigidity & length rigidity problems, which oftentimes involves
the study of another spectral invariant, namely the wave trace,

W (t) = tr(eit
√
∆) =

∞∑
j=1

e−i
√

λjt

defined as a distribution S(M) because the above series does not converge in the usual sense.
In terms of the length rigidity problem, we define the length spectrum as the set of lengths
of closed geodesics on M . Hence, it is natural to focus on manifolds with an abundance of
closed geodesics, such as

1. compact negatively curved manifold

2. Anosov manifold

3. Zoll surface
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2022.1.28 V. Guillemin and D. Kazhdan, 1980 (Guangqiu Liang)
Given a compact Riemannian manifold (M, g), we would like to know how much infor-

mation about the manifold that we can extract from the spectrum of the associated Laplace-
Beltrami operator. For f ∈ C∞(M), the Laplacian ∆g is defined as ∆g(f) = −div(gradf).
In local coordinates,

∆g := − 1√
det g

∂i(g
ij
√
det g ∂j)

By Green’s identity, ∫
M

g(∇f,∇f) dV =

∫
M

f∆gf dV ≥ 0,

∆ is positive and symmetric on C∞
0 (M). By the Friedrich’s extension method, ∆ is

self-adjoint on D(∆) = {u ∈ H1
0 (M) : ∆u ∈ L2(M)} and essentially self-adjoint on C∞(M).

A classical result in functional analysis gives Spec(∆) ⊂ R≥0 is discrete with eigenvalues λi
satisfying limk→∞ λk = ∞.

Here we note that if the Riemannian manifold (M, g) is non-compact, then by Gaffney’s
theorem, we have that ∆g is still essential self-adjoint on C∞(M). However, σ(∆g) will be
continuous, and geometric information are much harder to extract. We are forced to work on
more restrictive class of manifolds, such as hyperbolic surfaces, and the resonances are studied
as an analog of eigenvalues in the compact case. For those who are interested, Borthwick’s
book Spectral Theory of Infinite-Area Hyperbolic Surfaces is an excellent reference for this
type of theory.

Mathematically speaking, the Spec operator maps a Riemannian metric to a sequence
of nonnegative integers in R, and we would like to study given a sequence {λi}, what can
we say about Spec−1({λi}). Our dream is Spec−1({λi}) is a singleton set, which means the
Riemannian manifold is uniquely determined by its spectrum. Such problems are common
and important because the spectra are oftentimes the only detectable information in practice.
See Kac’s beautiful paper “Can one hear the shape of a drum?” for a broader understanding.

From Yiran’s introduction, we know this is true for the disk. However, the dream is not
true in general, as Sunada (1985) proved there is a systematic way of constructing pairs of
isospectral but non-isometric (compact, connected) manifolds.

Instead, we ask a weaker question: Are Riemannian manifolds spectrally rigid? Roughly
speaking, we would like to know given a smooth perturbation of a Riemannian metric on X,
the associated σ(∆g) has to be perturbed.

Definition 1. A family of Riemannian metrics gt, 0 ≤ t ≤ 1, is a deformation of g0 if
gt is smooth in t. If there exists a family of diffeomorphisms ϕt such that ϕ0 = Id and
gt = ϕ∗

tg0, then we say the deformation gt is trivial. Moreover, if Spec(∆gt) = Spec(∆gs)

for all 0 ≤ t ≤ s ≤ 1, then the deformation is isospectral.

Definition 2. A Riemannian manifold (M, g) is spectrally rigid if it does not admit
non-trivial isospectral deformations.
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It is conjectured that most Riemannian manifolds are spectrally rigid. Guillemin and
Kazhdan (1980) showed that “most” contains negatively curved Riemannian 2-manifolds.
We have the following theorem:

Theorem 3. Let M be a compact 2-manifold. If the curvature of (M, g) is everywhere
negative, (M, g) is spectrally rigid.

Before going into the details, we would like to take a closer look at the assumptions of
the theorem and see why they are necessary.

1. (Compactness) If the manifolds are non-compact, it is difficult to characterize its
geodesics or spectrum. For instance, we know Spec(∆g) will be continuous.

2. (Negative Curvature) Negatively curved manifolds have many closed geodesics. In fact,
Anosov showed that if (M, g) is negatively curved, thenM has infinitely many distinct
closed geodesics. Furthermore, these geodesics are dense in M .

3. (Dimension Two) This is historically the easiest case. Later the authors generalized
the results to n-dimensional manifold subject to a pointwise curvature pinching condi-
tion. Croke and Sharafutdinov proved a full generality of compact negatively curved
Riemannian manifold in 1998.

4. (Implicit Topological Requirements) By Gauss-Bonnet, M has genus strictly greater
than 1. The k-th homotopy group πk(M) = 0 for all k > 1. In fact, we cannot see these
surfaces, meaning that they cannot be embedded into R3. The only way to realize them
is through hyperbolic surfaces H/Γ for some properly discontinous isometry subgroup.

Next we state a fairly similar theorem in Guillemin & Kazhdan’s paper. Let q ∈ C∞(M),
then ∆g + q acting on C∞(M) is known as the Schrödinger operator. Moreover, if the
closed geodesics on M are isolated, non-degenerate, and of distinct periods, we say M has
simple length spectrum, i.e. the set LM = {ℓ(γ) : γ closed geodesics} has multiplicity
one for each γ. Note that simple length spectrum is invariant under deformation.

Theorem 4. LetX be a compact negatively curved 2-manifold with simple length spectrum.
Let q1 and q2 be smooth functions on X. Suppose Spec(∆+q1) = Spec(∆+q2), then q1 = q2.

The proofs of Theorem 3 and Theorem 4 are very similar, which involve the use of
dynamics and harmonic analysis on the cosphere bundle S∗M . Before presenting the main
ingredients of the proof, we give a quick introduction to the language of symplectic geometry
and dynamical system, which will be used frequently in the rest of the paper.

Definition 5. Let V be a finite-dimensional real vector space and ω : V × V → R be a
bilinear map.

1. ω is alternating (anti-symmetric) if ω(u, v) = −ω(v, u) for all u, v ∈ V . In this case,
w is also called a 2-form.
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2. ω is nondegenerate if the linear map ω̃ : V → V ∗ defined by ω̃(u)(v) = ω(u, v) is
invertible. Equivalently, if ω(u, v) = 0 for all v ∈ V , then u = 0.

A nondegenerate 2-form on V is called a symplectic tensor. A vector space V endowed
with a symplectic tensor is called a symplectic vector space. Note that if V is a symplectic
vector space, then dimV = 2n. Transporting the idea to a smooth manifold, we say that M
is a symplectic manifold if there exists a nondegenerate closed 2-form on M .

Example 6. With standard coordinates on R2n denoted by (x1, . . . , xn, y1, . . . , yn), the
2-form

ω =
n∑

i=1

dxi ∧ dyi

is symplectic. This is called the standard symplectic form on R2n.

In fact, by Darboux Theorem, the standard symplectic form is the only symplectic form
on symplectic manifolds. To facilitate understanding, we make some simple comparisons
between Riemannian manifolds and symplectic manifolds.

1. (Existence) All smooth manifolds admit Riemannian structures, but only some of them
admit symplectic structures.

2. (Geometry) Riemannian manifolds have rich local geometry (abundant geometric in-
variants such as curvature), but by Darboux theorem, symplectic manifolds do not.

3. (Relation) The cotangent bundle of every Riemannian manifold has a symplectic struc-
ture. Geodesics on Riemannian manifolds lift to geodesic flows on their cotangent
bundles.
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2022.2.4 Guillemin & Kazhdan continued (Guangqiu Liang)
We elaborate a little more on the last remark: In general, we can define a tautological

1-form on T ∗M by the bundle isomorphism induced by the symplectic form. Namely, given
a symplectic manifold (M,ω), the map ω̂ : TM → T ∗M defined by ω̂(X)(Y ) = ω(X, Y ) for
any X, Y ∈ X(M) is an isomorphism.

Let (xi, ζi) be a local coordinate of (q, φ) ∈ T ∗M where q = (x1, x2, . . . , xn) ∈ M and
φ = ζidx

i ∈ T ∗
qM . Consider the natural projection map π : T ∗M →M such that π(q, φ) = q,

which induces the differential dπ : T (T ∗M) → TM and the pointwise pullback dπ∗
(q,φ) :

T ∗
qM → T ∗

(q,φ)(T
∗M). We define the tautological 1-form on T ∗M to be α(q,φ) = dπ∗

(q,φ)(φ).
Note that α is defined intrinsically in terms of the structure of T ∗M .

In local coordinates, we can compute for any v ∈ T(x,ζ)(T
∗M),

dπ∗(dxi)(v) = dxi(dπ(v)) (definition of dπ∗)

= dπ(v)(xi) (definition of dxi)

= v(xi ◦ π) (definition of dπ)

= d(xi ◦ π)(v) (definition of d(xi ◦ π)(v)

Therefore, dπ∗(dxi) = d(xi ◦ π). Since the context is clear, we simplify the notation by
stating dπ∗(dxi) = dxi. Therefore, α(x,ζ) = dπ∗

(x,ζ)(ζidx
i) = ζidx

i. It is clear that α is a
smooth 1-form on T ∗M .

Now let ω = −dα. Immediately, we have that ω is a closed 2-form on T ∗M . Moreover,
in local coordinates,

ω = −dα = −d(ζidxi) =
n∑

i=1

dxi ∧ dζi.

which is clearly nondegenerate. Thus, ω is a symplectic form on T ∗M .

Next we discuss the relation between symplectic geometry and dynamical system, as the
language will be useful in understanding the proof. Suppose (M,ω) is a symplectic manifold.
For any smooth function f ∈ C∞(M), we define the Hamiltonian vector field of f to be
the smooth vector field Xf defined by

Xf = ω̂−1(df), i.e. Xf ⌟ ω = df.

where ω̂ is the natural bundle isomorphism induced by ω. Equivalently, Xf is the unique
vector field that satisfies

ω(Xf , Y ) = df(Y ) = Y f, for any Y ∈ X(M).

In local (Darboux) coordinates (xi, yi), suppose

Xf =
n∑

i=1

(
ai

∂

∂xi
+ bi

∂

∂yi

)
for some coefficients ai and bi.

Computing Xf ⌟ ω gives

Xf ⌟ ω =
n∑

j=1

(
aj

∂

∂xj
+ bj

∂

∂yj

)
⌟

n∑
i=1

dxi ∧ dyi =
n∑

i=1

(aidyi − bidxi)
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On the other hand,

df =
n∑

i=1

(
∂f

∂xi
dxi +

∂f

∂yi
dyi
)

Comparing the coefficients gives

Xf =
n∑

i=1

(
∂f

∂yi
∂

∂xi
− ∂f

∂xi
∂

∂yi

)
. (1)

Now we are ready to see the connection between symplectic geometry and dynamics.
A symplectic manifold (M,ω) together with a smooth function H ∈ C∞(M) is called a
Hamiltonian system. The function H is called the Hamiltonian of the system. The flow
of the Hamiltonian vector field XH is called its Hamiltonian flow, and the integral curves
of XH are called the orbits of the system.

In Darboux coordinates, we know from equation (1) that the orbits are those curves
γ(t) = (xi(t), yi(t)) satisfying (By definition of integral curves γ̇(t) = XH(γ)),

ẋi(t) =
∂H

∂yi
(x(t), y(t)),

ẏi(t) = −∂H
∂xi

(x(t), y(t)).

These are calledHamilton’s equations. Moreover, sinceXHH = dH(XH) = ω(XH , XH) =
0, we have that H is constant along each integral curve of XH . This is also known as the
conservation of energy in physics where H is the energy function of the Hamiltonian system.

In terms of Theorem 2.1 in Guillemin & Kazhdan, which says:
Theorem 7. Suppose one has a family of Hamiltonians pt, homogeneous of degree one

on T ∗M − 0 and a corresponding family of closed orbits γt, depending smoothly on t such
that γt lies on the energy surface pt = 1. Let γ = γ0 and ṗ = (dp/dt)t=0. Then if the γt are
all of the same length,

∫
γ
ṗ = 0.

Remark. In the context of this paper, the family of Hamiltonians pt are exactly the family
of Riemannian metrics gt, 0 ≤ t ≤ 1, which can be regarded as a C∞-function on T ∗M (via
the bundle isomorphism). The Hamiltonian vector field Xpt is the corresponding geodesic
spray, and the flow of Xpt is the geodesic flow. The family of closed orbits γt corresponds
to the closed geodesics on M 1 (such curves are abundant because our surface is negatively
curved). Moreover, the energy surface pt = 1 corresponds exactly to the cosphere bundle
S∗M .

On the other hand, the assumption that γt are all of the same length may seem absurd
at first, the following theorem gurantees its connection with the original problem.

Theorem 8. Let M be a compact negatively curved Riemannian manifold. Then the
spectrum of the Laplace-Beltrami operator determines the lengths of the periodic geodesics
on M .

1A proof of the statement is given in the appendix (to be included).
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This theorem shows under an isospectral deformation of g0, the closed geodesics on M
all have the same length. Finally, ṗ = (dp/dt)t=0 can be understood as the derivative of the
deformation gt at t = 0, and if we define L̇γt = (dLγt/dt)t=0, then L̇γt =

∫
γ
ġ. 2 Therefore,

the theorem gives a variational result on the length of the geodesics.

Proof. (Theorem 7) Consider the band B in T ∗M , the union of the images of the closed
geodesics γt. Then it follows from the Stokes’ Theorem (note T ∗M is orientable because ωn

is a non-vanishing 2n-form) that
∫
B
ω =

∫
∂B
α = 0 since L(γ0) = L(γ1).

Along each γt, the Hamiltonian vector field Xpt induced by pt is by definition Xpt ⌟ ω =
dpt. On the other hand, by the definition of p̂, we have

dpt = dp0 + tdṗ+O(t2) = dp0 + d(tṗ)− ṗdt+O(t2). (2)

Moreover, since the orbits γt lies in the energy surface pt = 1 (equivalently, the cosphere
bundle S∗M), we have the following identity

1 = pt = p0 + tp̂+O(t2) ⇒ d(p0 + tṗ) = O(t)dt+O(t2).

Applying the above identity to equation (2) gives

Xpt ⌟ ω = −ṗdt+O(t)dt+O(t2). (3)

on γt. Let L be the common length of the curves γt and let B be parametrized by ϕ(s, x), 0 ≤
s ≤ t, 0 ≤ x ≤ L, which maps the curves, with t being constant, onto the image of γt. Then
by construction ϕ∗(∂/∂x) = Xpt and the pullback of t is still t. Now since

ϕ∗(Xpt ⌟ ω)(∂/∂t) = ω(Xpt , ϕ∗(∂/∂t)) = ω

(
ϕ∗

(
∂

∂x

)
, ϕ∗

(
∂

∂t

))
= ϕ∗(ω)

(
∂

∂x
,
∂

∂t

)
by equation (3), we have

ϕ∗(ω)

(
∂

∂x
,
∂

∂t

)
dx dt = −ϕ∗(ṗ)(x, t) dx dt+O(t) dx dt.

Integrating both sides with respect to x and t gives

0 =

∫
B

ω =

∫ t

0

∫ L

0

ϕ∗(ω)

(
∂

∂x
,
∂

∂t

)
dx dt = −

∫ t

0

∫ L

0

ϕ∗(ṗ) dx dt+O(t2)

Differentiating both sides with respect to t gives∫ L

0

ϕ∗(ṗ)(x, t)dx = O(t)

Setting t = 0 gives ∫
γ

ṗ =

∫ L

0

ϕ∗(ṗ)(x, 0)dx = 0.

2A proof is given in the appendix (to be included).
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Appendix.

Theorem 1. Given a Riemannian manifold (M, g), the cotangent bundle T ∗M naturally
admits a symplectic structure ω. Let (T ∗M,ω, g) be a Hamiltonian system, then the integral
curves generated by the Hamiltonian vector field Xg correspond exactly to the geodesics on
M .

Proof. Let π∗
m : C∞(M ;SmT ∗M) → C∞(TM) be the natural pullback map by evaluation

(defined in PSU or Guillarmou’s paper). Then the Riemannian metric g ∈ C∞(M ;S2
+T

∗M)
can be regarded as a C∞-function g̃ on T ∗M , namely

g̃(x, v) =
1

2
(π∗

2g)(x, v
#) =

1

2
gijdx

i(v#)dxj(v#) =
1

2
gijv

ivj

Then the Hamiltonian vector field Xg is given by

(Xg)(x,v) =
n∑

k=1

(
∂g

∂vk
∂

∂xk
− ∂g

∂xk
∂

∂vk

)
=

n∑
k=1

(
vk

∂

∂xk
− vivjΓk

ij

∂

∂vk

)
It follows from the characterization of Hamiltonian orbits that the integral curves γ(t) =
(xk(t), vk(t)) of Xg are those satisfying

ẋk(t) = vk
∂

∂xk
, v̇k(t) = −vivjΓk

ij

∂

∂vk
.

Identifying (x, v) ∈ T ∗M with (x, ẋ) for x ∈ M , we see that the integral curves of Xg on
T ∗M descend exactly to the geodesics on M satisfying the geodesic equation,

ẍk + ẋiẋjΓk
ij = 0.

Theorem 2. Given a Riemannian manifold (M, g), let gt be a smooth isospectral deforma-
tion of g0 = g. Let γt be the corresponding closed geodesics, γ = γ0, ġ = (dgt/dt)t=0, and
L̇γ = (dL(γt)/dt)t=0. Then L̇γ =

∫
γ
ġ.

Proof. This follows from a straightforward computation: Assuming γt(s) : [0, 1] → M for
each t, then by definition,

dLγt

dt
=

d

dt

(∫ 1

0

g(γ̇t(s), γ̇t(s))
1/2 ds

)
=

∫ 1

0

ġ(γ̇t, γ̇t)

2
√
g(γ̇t, γ̇t)

ds

restricting to t = 0 gives

L̇γ =
1

2
√
g(γ̇, γ̇)

∫ 1

0

ġ((̇γ), (̇γ)) ds

as desired.

Question 3. In the proof of Theorem 7, only the first order Taylor expansion is used. Can
we extract more information using a higher order estimate?
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2022.2.17 Guillemin & Kazhdan Continued (Guangqiu Liang)
From Max’s talk last week, we learned that there exists three vector fields ξ1, ξ2, ∂/∂θ ∈

X(S∗M) such that the following equations hold

[∂/∂θ, ξ1] = ξ2, [∂/∂θ, ξ2] = −ξ1, [ξ1, ξ2] = K∂/∂θ

Note that for our purpose, ξ1 is the vector field that generates the geodesic flow on M , and
∂/∂θ is the vector field on S1. Here we remark that the above identities can be computed via
isothermal coordinates explicitly, or computed via the connection form (dual basis ω1, ω2, φ)
construction in Singer & Thorpe using the following useful identity.

dτ(X, Y ) = Xτ(Y )− Y τ(X)− τ([X, Y ]).

Moreover, since the Lie derivatives of the volume form Ω = ω1 ∧ ω2 ∧ φ on S∗M with
respect to ξ1 and with respect to ∂/∂θ are both zero, −i∂/∂θ and −iξ1 extend to a densely
defined self-adjoint operator on L2(S∗M). Finally, recall the vector fields η+ and η− defined
as

η+ =
ξ1 − iξ2

2
, η− =

ξ1 + iξ2
2

with the commutator equations rewritten as

[−i∂/∂θ, η+] = η+, [−i∂/∂θ, η−] = −η−, [η+, η−] = (−K/2)(−i∂/∂θ).

Now our task is to study the properties of the operators η+ and η− (elaborate more of
these vector fields from PSU & Guillarmou). First we note that S∗M is not a product space
globally but is indeed a local product space. Therefore, we may assume from now on that

L2(S∗M) =
∑

L2(S∗Mi) =
∑

L2(S1)
⊗

L2(Xi) =
∑

Hn

where each Hn is the space of polynomials of degree n, and the vector field −i∂/∂θ acts like
n times the identity operator. Next we examine how η+ and η− act on each subspace Hn.
As the name suggests, η+ takes a function from Hn to Hn+1 and η− takes a function from
Hn to Hn−1.

Indeed, if f ∈ Hn, then by the commutator identity involving η+,

(−i∂/∂θ)η+f = η+(−i∂/∂θf) + [−i∂/∂θ, η+]f
= nη+f + η+f

= (n+ 1)η+f

which implies η+f is a function in Hn+1. By a similar argument using the commutator
identity involving η−, we may show that η− extends to an operator from Hn to Hn−1 for all
n. Moreover, note that since −iξ1 is self-adjoint, ξ1 = η+ + η− is skew-adjoint, i.e.

−(ηt+ + ηt−) = η+ + η−

Considering the domain of these operators, we get ηt+ = −η− and ηt− = −η+. The next
lemma is where the negative curvature condition comes in. It shows roughly speaking that
both η+ and η− are stable when pushing functions upwards or downwards.
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Lemma 1. Let a0 = min(−K/2) and a1 = max(−K/2) where K is the scalar curvature
function. Then for all f ∈ Hn ∩ D(η+) ∩ D(η−) and n ≥ 0,∥∥η−f∥∥2 + a0n ∥f∥2 ≤

∥∥η+f∥∥2 ≤ ∥∥η−f∥∥2 + a1n ∥f∥2

Proof. By the commutator relation again,

[η+, η−] = η+η− − η−η+ = (η+)
tη+ − (η−)

tη− = (−K/2)(−i∂/∂θ)

Thus, ∥∥η+f∥∥2 = ⟨(η+)tη+f, f⟩ ≥ ⟨(η−)tη−f, f⟩+ a0n ∥f∥2

with a similar inequality the other way.

At this point, it is imperative to summarize what we have accomplished so far: To prove
that compact 2-manifolds of negative curvature are spectrally rigid, we assume that there
exists an isospectral deformation gt of (M, g) and would like to show that it is trivial, i.e.
there exists a family of diffeomorphisms ϕt such that ϕ∗

tg = gt.
Since the spectrum of the Laplace-Beltrami operator determines the lengths of the peri-

odic geodesics on X, we know that the lengths of the closed geodesics under an isospectral
deformation are of the same length. Then, by Proposition 2.1 we have that the geodesic
X-ray transform of the infinitesimal deformation ṗ = dpt/dt is zero. By a theorem in Livsic
cohomology problem, we know that there exists a smooth function q such that ξq = ṗ. We
will use the fact that ṗ is a real quadratic form on T ∗M (i.e. ṗ ∈ H−2 ⊕H0 ⊕H2) to argue
such a smooth q (belonging to H1⊕H−1) cannot exist unless the deformation is trivial. Now
we present the ingredient that there exists a smooth q on S∗M such that ξq = p.

Lemma 2. Let p be a smooth function on S∗M of the form

p =
∑
|i|≤N

pi, pi ∈ Hi.

Suppose the integral of p over every periodic integral curve of ξ is zero. Then there exists a
smooth function q of the form

q =
∑

|i|≤N−1

qi, qi ∈ Hi

such that ξq = p.

Proof. By Livsic, given such smooth function p in the hypothesis, there exists a C1 function
q on S∗M such that ξq = p. Suppose q =

∑
qi with qi ∈ Hi, then the equation ξq = p is

equivalent to the system

η−qi+1 + η+qi−1 = pi, i = 0,±1,±2, . . .

Since pi = 0 for all i > N , we have that η+qi−1 + η−qi+1 = 0 for all i > N . Therefore, by
Lemma 1, ∥∥η+qi−1

∥∥ =
∥∥η−qi+1

∥∥ ≤
∥∥η+qi+1

∥∥
11



for all i > N . Since q is C1, the differential η+qi converges to zero in the L2 topology. Hence,
the above estimate implies η+qi = 0 for all i ≥ N . By Lemma 1 again, we have qi = 0 for
all i ≥ N .

By a similar argument, we can show that qi = 0 for i ≤ −N . Finally, to show the required
smoothness, write the system as η+qi−1 = pi − η−qi+1. It is clear that the right hand side is
smooth for all i ≥ N , seeing η+ as a first order elliptic differential operator, we may conclude
that qN−1 is smooth. By induction on i, we have that qi is smooth for all i.

So far we have obtained all the ingredients we need. Applying to the problem where ∥ ∥t
is an isospectral deformation of ∥ ∥0 on M , let pt : T

∗M → R be the function p(x, ξ) = ∥ξ∥2t
and let ṗ = dt/dt|t=0 restricted to S∗X.

Then since ṗ is a real valued quadratic form on T ∗
pM for each p ∈M , we have that ṗ as

a linear combination of the basis (dz)2, (dz)2 and ∥ ∥2p must satisfy p2 = p−2 and p0 = p0.
Similarly, for the corresponding solution q such that ξq = ṗ, we have that q ∈ H−1 ⊕H1:

Indeed, by Lemma 2, there exists smooth q = q1 + q0 + q−1 such that ξq = ṗ. But since
p1 = p−1 = 0, we have that η+q0 = η−q0 = 0. Moreover, since q0 ∈ H0, it follows (∂/∂)θq0 =
0. However, {η+, η−, ∂/∂θ} is a basis of T (S∗M) at each point, so q0 must be a constant.
Without loss of generality, we may assume q0 = 0, and thus q ∈ H1 ⊕H−1. (missing the end
of the proof)
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2022.3.18 Osgood, Phillips & Sarnak, 1988 (Borthwick)
Let (M, g) be a compact Riemannian surface and −∆g be the associated Laplacian, then

the set of eigenvalues σ(−∆g) is an invariant of the isometry class ĝ. OPS proved in their
1987 papers, Isospectral Sets of Surfaces and Extremals of Determinants of Laplacian, that

Theorem 1. An isospectral family {ĝn} of isometry classes of metrics on M is compact
in the C∞ topology.

Remark. Here compactness in the C∞ topology means sequentially compactness, i.e.
for any sequence {ĝn}, there exist representatives gn ∈ ĝn such that a subsequence {gnk

}
converges in the C∞ topology.

It is conjectured that in the case of Riemannian surfaces (Riemannian manifolds of di-
mension 2), the set of isospectral isometry classes {ĝn} is also discrete. If the conjecture
is true, together with the compactness result, we may conclude that the set {ĝn} is in fact
finite. However, the conjecture still remains open.

Now we present the tools used in OPS:

1. Conformal uniformization

2. Determinant of −∆

3. Heat asymptotics
∞∑
j=0

e−tλj ∼ 1

4πt

∞∑
j=0

ajt
j

Conformal uniformization. In dimension 2, if g and g0 are conformal metrics, i.e.
g = e2φg0, then their corresponding Laplacians have a simple relation, namely ∆g = e−2φ∆g0 .
Up to conformal diffeomorphisms, we would like to reduce the problem to a background
metric with constant curvature. In fact, the curvature k = sgn(χ) where χ is the Euler
characteristic of the Riemannian surface.

Here we sketch a proof of the reduction process: Given g = e2φg0, the scalar curvature
of g is given by (recall conformal transformation of the curvature),

Sg = e−2φ(Sg0 + 2(n− 1)∆g0φ− (n− 1)(n− 2) |gradf |2g)

In the case when n = 2, we have that

Kg = e−2φ(Kg0 +∆g0φ)

or equivalently,
Kg0 = e2φ(−∆gφ+Kg)

Then the problem reduces to solving φ for which Kg is constant, which gives rise to the pde
−∆gφ = Kg + e−2φ subject to the condition obtained by integrating the equation on both
sides and applying Gauss-Bonnet Theorem, i.e.∫

M

e−2φ dVg = −2πχ(M).

13



The strategy to solve this equation resembles the proof of the Riemann Mapping Theorem,
in which the pde is converted into a minimization problem. In this case, let

f(φ) =

∫
M

(
1

2
|∇φ|2 +Kgφ

)
dVg, φ ∈ H1(M),

subject to

W := {φ ∈ H1 :

∫
M

e−2φdVg = −2πχ(M)}

We claim that f(φ) achieves a minimum at some function φ ∈ C∞(M) and φ satisfies
−∆gφ = Kg + e−2φ. Indeed, we may show that f(φ) is bounded below on W . Taking a
sequence in W that converges to the minimum and passing to a subsequence by compactness
give the desired solution φ.

Determinant of the Laplacian
It is known from standard spectral theory on compact Riemannian manifold that the

eigenvalues of the Laplacian are discrete and they tend to infinity. Formally, we would
like to borrow the traditional definition and define the determinant of the Laplacian as
det′(−∆g) =

∏∞
k=1 λk. However, a regularization process is needed to make sense of the

infinite product. For this purpose, we will use the zeta function

Z(s) =
∞∑
k=1

1

λsk
, s ∈ C

It follows from the Weyl’s law that

λk ∼ (2π)2
(

k

ωnvol(M)

)2/n

Thus, Z(s) converges absolutely for all Re(s) > 1. Morally speaking,

Z ′(s) =
∞∑
k=1

− 1

λsk
log λk ⇒ Z ′(0) = −

∞∑
k=1

log λk

and we can formally define

det′(−∆g) =
∞∏
k=1

λk = e−Z′(0)

To make sense of the value of Z ′(s) at s = 0, we claim that Z(s) admits an analytic

continuation to a neighborhood of s = 0 with Z(0) = χ(M)
6

− 1. Indeed, using Riemann’s
trick, we can write

1

λsk
=

1

Γ(s)

∫ ∞

0

ts−1e−λkt dt

14



By the Dominated Convergence Theorem,

Z(s) =
1

Γ(s)

∫ ∞

0

ts−1

(
∞∑
k=1

e−λkt

)
dt

=
1

Γ(s)

∫ ∞

0

ts−1

(
A

4πt
+

(
χ(M)

6
− 1

)
+O

(
min(t, e−λ1t)

))
dt

=
1

Γ(s)

(
A

4π

1

s− 1
+

(
χ(M)

6
− 1

)
1

s
+ h(s)

)
where h(s) is analytic for Re(s) > −1. Near s = 0, Z(s) has no pole at s = 0. Hence, the
notion of the determinant of the Laplacian is well-defined. (elaborate more on conformal
uniformization & determinant of the Laplacian)

Heat Asymptotics
Using the following Tauberian theorem, we are able to study the behavior of the heat

operator on Riemannian manifold, which yields fruitful results on the geometry of the given
manifold. Here we give a relatively detailed exposition because of the fundamental impor-
tance of the heat asymptotics in geometric inverse problems. First, we state the Karamata’s
Tauberian Theorem without proving:

Theorem 1. (Karamata’s Theorem) Let µ be a measure on [0,∞), such that e−tx is
integrable with respect to dµ(x) for each t > 0. Suppose that for α > 0,∫ ∞

0

e−tx dµ(x) ∼ At−α

as t→ 0+ (or t→ ∞). Then

µ[0, s] ∼ A

Γ(α + 1)
sα,

as s→ ∞ (or s→ 0+, respectively).
Let (M, g) be a compact Riemannian manifold, and let ∆ be the Laplace-Beltrami oper-

ator on M , namely

∆ := − 1
√
g
∂i(

√
ggij∂j)

We know from basic functional analysis that ∆ is a self-adjoint and positive operator on
L2(M), it follows from the spectral theorem that ∆ has nonnegative discrete eigenvalues
{λk}∞k=0 accumulating at infinity.

Consider the heat equation ∂tu = ∆u under the initial condition u|t=0 = f . Formally,
the heat equation has the solution u = et∆f . Indeed, the heat operator et∆ that solves the
heat equation is well defined as a bounded operator by functional calculus.

The interplay between geometry and heat propagation is manifested into the initial evo-
lution of the heat diffusion process, i.e. how the heat operator behaves when t → 0+? The
question is answered by studying the kernel of the heat operator, namely the heat kernel.
The following fundamental theorem is given by Minakshisundaram and Pleijel in 1949:
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Theorem 2. Let M be a compact Riemannian manifold. There exists a function H ∈
C∞(R+ ×M ×M) such that

et∆f(x) =

∫
M

H(t;x, y)f(y) dVg(y)

for f ∈ L2(M). If f is continuous, then

lim
t→0+

∫
M

H(t;x, y)f(y) dVg(y) = f(x).

For each x ∈M , there is a uniform asymptotic expansion as t→ 0+,

H(t, x, x) ∼ (4πt)−n/2

∞∑
j=0

αj(x)t
j.

where α0 = 1 and αj depends only on the metric g and its derivatives.

The proof is rather involved, which we will not cover here. However, the idea is simple:
Consider the heat equation on the Sobolev space H2(Rn). The heat operator et∆ is again
well defined by the functional calculus and can be written explicitly using Fourier transform.
In particular,

et∆f(x) = (2π)−n

∫
Rn

∫
Rn

ei(x−y)·ξ−t|ξ|2f(y) dny dnξ.

which implies the heat kernel is given explicitly by

Ψ(t, x, y) = (4πt)−n/2e−|x−y|2/4t

We sketch the construction of the general heat kernel, which is based on the Euclidean
heat kernel. The strategy is to first construct an approximate solution (a parametrix) that
captures the essential features of the true heat kernel and then modify it to get the general
kernel. Set

Hk(t, x, y) =
k∑

j=0

tjuj(x, y)Ψ(t, x, y)

Up to choosing the coefficients uj and choosing a cutoff function, the parametrix is an
approximate solution to the heat equation, i.e.

(∂t −∆)Fk(t, x, y) = Rk ∼ O(tk−n/2)

as t→ 0, uniformly for (x, y) ∈M ×M . Moreover, for f ∈ C∞(M),

lim
t→0+

Fk(t, x, ·) = δx

uniformly for x ∈ M . Finally, choosing k > n/2 and setting H = Qk −Hk where Qk is the
solution of the inhomogeneous heat equation (using Duhamel’s principle),

(∂t −∆)Qk = Rk.
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which gives our desired heat kernel H.
The existence of a smooth heat kernel H implies that the heat operator et∆ is Hilbert-

Schmidt and

tr(et∆) =

∫
M

H(t, x, x) dVg(x) ∼ (4πt)−n/2

∞∑
j=0

ajt
j

where the coefficients aj =
∫
M
αj dVg are called the heat invariants ofM and the last asymp-

totic relation holds since the asymptotics of H(t, x, x) is uniform. On the other hand, writing
the trace as the sum over the eigenvalues gives

tr(et∆) =
∞∑
k=0

e−λkt ∼ (4πt)−n/2

∞∑
j=0

ajt
j

In particular, we can compute the first few aj, namely

a0 =

∫
M

α0(x) dVg =

∫
M

dVg = Vol(M).

a1 =

∫
M

α1(x) dVg =
1

6

∫
M

S dVg =
2χ(M)

3

a2 =
1

360

∫
M

(
2|R|2 − 2|Ric|2 + 5Scal2g

)
dVg

The higher order coefficients are much more difficult to compute due to the complex com-
binations of the metric g and its derivatives. Note that these heat invariants computation
implies one can hear the volume, dimension, and number of holes of a compact Riemannian
manifold from its spectrum. See Marc Kac’s famous expository paper “Can one hear the
shape of a drum?” if interested.

Finally, we are ready to present an asymptotic formula for the eigenvalues of a compact
Riemannian manifold, also known as the Weyl’s law. If we let NM(x) := #{λk ≤ x}, then

NM(x) ∼ (2π)−nωnVol(M)xn/2

as t → ∞, where ωn is the volume of the unit ball in Rn. Equivalently, if the eigenvalues
{λk} are arranged in increasing order,

λk ∼ (2π)2
(

k

ωnVol(M)

)2/n

as k → ∞. Both results follow immediately from Karamata’s theorem by letting µ = NM .
Add the notes of Paternain-Salo-Uhlmann’s 2014 paper
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2022.6.7. Guillarmou, Invariant Distribution Anosov, 2017 (Guangqiu)
For the first summer section of the reading seminar, we continue with our study of geo-

metric inverse problems. In particular, we are interested in generalizing the spectral rigidity
results initiated by Guillemin & Kazhdan, who proved that negatively curved compact Rie-
mannian surfaces are spectrally rigid. There are mainly two directions of generalizations:
Dimension and type of manifold.

Dimension-wise, Croke & Sharafutdinov generalized GK’s result to negatively curved
compact manifolds of arbitrary dimension. In terms of generalizing to a broader class of
manifolds, attention has been drawn to Anosov manifolds, a type of manifolds that possess
good dynamical properties to deal with. So far, Paternain, Salo & Uhlmann showed that
closed Anosov surfaces are spectrally rigid by proving the geodesic ray transform I2 is injec-
tive. What Guillarmou accomplished in this paper is an innovative proof of the injectivity
of Im for any m ≥ 0, which has been an important open problem in integral geometry. We
first provide some definitions that will be helpful in later discussion:

Definition 1. A Riemannian manifold (M, g0) is spectrally rigid if given a smooth defor-
mation gt of g0 such that Spec(−∆gt) = Spec(−∆g0) for all −ε < t < ε, then there exists a
family of diffeomorphisms φt such that gt = φ∗

tg0.

Definition 2. A smooth vector field X on a compact manifold M without boundary is
Anosov if its flow φt has the following property: there exists a continuous flow-invariant
splitting (meaning dφt(Es) = Es and dφt(Eu) = Eu),

TM = E0 ⊕ Es ⊕ Eu

such that E0 = RX is the direction of the flow andEs and Eu are the stable and unstable
bundles, which are defined as follows: there exists C > 0, ν > 0 such that

ξ ∈ Es(y), y ∈M ⇐⇒ ∥dφt(y)(ξ)∥ ≤ Ce−νt ∥ξ∥ for t ≥ 0,

ξ ∈ Eu(y), y ∈M ⇐⇒ ∥dφt(y)(ξ)∥ ≤ Ce−ν|t| ∥ξ∥ for t ≤ 0.

where ∥·∥ is the norm induced by any fixed metric on M . Moreover, if the geodesic flow of
a closed Riemannian manifold (M, g) is Anosov, then we say M is an Anosov manifold.

Remark. Anosov manifolds are natural generalization of negatively curved manifolds from
a dynamical system point of view: All negatively curved compact manifolds are Anosov, but
there are examples of Anosov manifolds with small positive curvature part. Anosov manifolds
also have the following properties:

1. The orbit of a point p ∈M is dense in M for almost all p.
2. The set of closed geodesics is dense in M .
3. The geodesic flow is mixing (stronger than ergodicity).

Definition 3. The geodesic flow on a closed manifold M is ergodic if the only invariant
L2(SM) functions are the constants.

18



Definition 4. A flow φt is mixing with respect to an invariant probability measure dµ if for
all u, v ∈ L2(M)

Ct(u, v) =

∫
M

u(φt(y))v(y) dµ(y)−
∫
M

u(y) dµ(y)

∫
M

v(y) dµ(y)

approaches zero as t→ ∞.

Definition 5. Given a symmetric m-tensor field f = fi1···imdx
i1 ⊗· · ·⊗dxim onM , we define

the corresponding function on SM by

f(x, v) = fi1···imv
i1 · · · vim .

In our case, suppose (M, g) be a closed Anosov surface and G be the set of closed geodesics on
(M, g) parametrized by arc length, then the geodesic ray transform of a symmetric m-tensor
field f on M is defined by

Imf(γ) =

∫ T

0

f(γ(t), γ̇(t)) dt, γ ∈ G has period T.

Remark. Note that if h is a symmetric (m − 1)-tensor field, its inner (symmetrized)
covariant derivative dh is a symmetric m-tensor field defined by dh = σ∇h where σ denotes
the symmetrization and ∇ is the Levi-Civita connection. We see that

dh(x, v) = Xh(x, v)

where X is the geodesic vector field associated with ϕt. This shows that Im(f)(γ) = 0 for
all γ ∈ G if f = dh for some symmetric (m − 1)-tensor field. In particular, we say Im is
s-injective if these are the only elements in ker Im.

Remark. The terminology “s-injective” comes from the fact that any symmetricm-tensor
field f can be decomposed into f = f s+dh where f s is a symmetric m-tensor field with zero
divergence and h is an (m− 1)-tensor. The decomposition f s and dh are called respectively
the solenoidal and potential parts of f . Thus, that Im is s-injective means exactly Im is
injective on the set of solenoidal tensors.

The general idea in both Paternain-Salo-Uhlmann and Guillarmou originates from GK.
Recall that Roughly speaking, we are looking at the linearization,

gt = φ∗
tg0 + tġ +O(t2).

where ġ is defined as ġ = dg
dt
|t=0. To show rigidity, it suffices to show ġ is “trivial” for any

isospectral deformation gt. It is hard to conclude anything from the definition of ġ directly;
instead, we consider the geodesic ray transform I2(ġ), which ġ is considered as a C∞ function
over the cosphere bundle SM , i.e.

I2(ġ)(γ) =

∫ T

0

ġ(γ, γ̇) dt, γ ∈ G has period T
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It is relatively easy to show that I2(ġ) = 0 using the fact that the lengths of closed
geodesics are a spectral invariant, after which showing spectral rigidity is reduced to showing
the s-injectivity of the geodesic ray transform I2. Here the notion of a trivial ġ is clear; that
is, ġ = dh for some 1-tensor field h.

The first step to prove the s-injectivity of Im is to consider a transport equation (or coho-
mological equation). By Livsic-type theorems, given Im(f)(γ) = 0 for all closed geodesics γ,
there exists a smooth function u : SM → R such that Xu = f . Thus, to show f is trivial, it
suffices to show the projection V Xu = 0 where V is the vertical vector field on the cosphere
bundle SM . GK and PSU showed this by essentially obtaining estimates from the Pestov
identity,

∥XV u∥2 − (KV u, V u) + ∥Xu∥2 − ∥V Xu∥2 = 0.

where K is the Gaussian curvature of the surface. For Guillemin-Kazhdan, the estimate is
easily obtained from the negative curvature assumption. As for the Anosov case, PSU work
directly with the operator P = XV and show the surjectivity of I∗1 , which allows them to
derive injectivity conclusion on Im.

On the other hand, the innovative part of Guillarmou’s paper is, instead of working
directly with the geodesic ray transform, to introduce an well-behaved intermediate operator
Π that approximates Im (resembling the proof of the inverse function theorem). At the
end, the easier-to-analyze properties of Π are carried to Im using tools from the theory of
anisotropic Sobolev spaces. Such a roundabout allows Guillarmou to obtain the following
important result:

Theorem 7. On a Riemannian surface with Anosov geodesic flow, for all m ≥ 0 we have
ker Im ∩ kerD∗ = 0 and kerΠπ∗

m ∩ kerD∗ = 0.
The operator Π : Hs(M) → Hr(M), ∀s > 0,∀r < 0 can be defined as follows: Given

a smooth invariant probability measure dµ and assume the geodesic flow is mixing with
respect to this measure, then Π is defined in a distributional sense as a weak limit of damped
correlations

⟨Πf, ψ⟩ = lim
λ→0+

∫
R
e−λ|t|⟨f ◦ φt, ψ⟩L2 dt, f, ψ ∈ C∞(M)

if ⟨f, 1⟩ = 0. Here the correlation function ⟨f◦φt, ψ⟩L2 converges to equilibrium exponentially
for geodesic flow φt of negative curvature, so the definition of the pairing makes sense. In
fact, the motivation for Π comes from the attempt to define integral operator along all
geodesics (not just closed geodesics, which are discrete, in the definition of Im), formally as

Πf(x) =

∫
R
f ◦ φt(x) dt

Nevertheless, the operator Π has a bunch of desired properties:

1. range(Π) is of infinite dimension and is dense in the space of invariant distributions,
I := {w ∈ C−∞(M), Xw = 0}.

2. Π is self-adjoint as a map from Hs(M) to H−s(M) for any s > 0 and satisfies

XΠf = 0, ∀f ∈ Hs(M), and ΠXf = 0, ∀f ∈ Hs+1(M).
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Appendix

Remark. David pointed out that the operator Π is roughly speaking a reconstruction of
the spectral measure of −iX by the Stone’s formula, justifying the use of the notation Π:

1

2

(
P[α,β] + P(α,β)

)
=

∫ b

a

dΠ(λ)

where dΠ is the operator valued measure defined as

dΠ(λ) =
1

2πi
lim
ε→0

(
(A− λ− iε)−1 − (A− λ+ iε)−1

)
dλ.

and PI is the spectral projector associated to the self-adjoint operator A and is defined as
PI = χI(A) by functional calculus for self-adjoint operators.

Yiran also mentioned that the goal of considering the resolvent R±(λ) = (−X ± λ)−1 is
to, as we will see later, examine what happens when λ → 0+, which is roughly the inverse
X−1.

It is also pointed out by Guillarmou that the intermediate operator Π is an analog of the
normal operator I∗0I0 in the study of boundary rigidity problems on manifolds with boundary.
Here I0 denotes the geodesic X-ray transform over C∞(SM).

It is an interesting phenomenon that normal operator of the form A∗A is used exten-
sively in reconstruction/inverse problems. We include a brief survey of inverting the Radon
transform on R3 to illustrate this common feature. For the sake of brevity, we assume all
functions below belong to the Schwartz space S(R3).

Definition 1. The Radon Transform of a function f ∈ S(R3) is defined by

R(f)(t, γ) =

∫
Pt,γ

f

where the plane Pt,γ for some unit vector γ ∈ S2 and t ∈ R is defined as,

Pt,γ = {x ∈ R3 : x · γ = t}.

Given unit vectors e1, e2 so that {γ, e1, e2} is an orthonormal coordinate of R3, then the
integral over Pt,γ is realized (independent of coordinates) as∫

Pt,γ

f =

∫
R2

f(tγ + u1e1 + u2e2) du1 du2

In particular, ∫
R

(∫
Pt,γ

f

)
dt =

∫
R3

f(x) dx.

The question is can we reconstruct f if we know everything about R(f), namely its
integral value over all planes Pt,γ ⊂ R3? The answer is affirmative and takes a particularly
elegant form in R3.
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Theorem 2. The Radon transform R is injective on S(R3). Moreover, for any f ∈ S(R3),

f = −∆(R∗R(f))

8π2
.

where the dual Radon transform is defined as

R∗(F )(x) =

∫
S2
F (x · γ, γ) dσ(γ).

Exercise: Show that ⟨Rf, F ⟩L2(R×S2) = ⟨f,R∗F ⟩L2(R3) for F ∈ S(R× S2), f ∈ S(R3).

Proof. We first show the injectivity of R by examining the relation between Radon and
Fourier transforms. In particular, we claim that (Rf)(t, γ) ∈ S(R) as a function of t:
Indeed, since f(tγ+u) ∈ S(R3), for every positive integer N , there exists constants AN such
that

(1 + |u|)N(1 + |t|N)|f(tγ + u)| ≤ AN

This shows

(1 + |t|N)(Rf)(t, γ) ≤ AN

∫
R2

1

(1 + |u|)N
du

which converges when N ≥ 3. By a similar estimates on the derivatives of Rf , we see
that Rf ∈ S(R). Moreover, we have the following relation R̂f(s, γ) = f̂(sγ): Indeed, by
definition,

R̂f(s, γ) =
∫
R

(∫
Pt,γ

f

)
e−2πist dt

=

∫
R

∫
R2

f(tγ + u)e−2πist du dt

=

∫
R

∫
R2

f(tγ + u)e−2πisγ·(tγ+u) du dt

=

∫
R3

f(x)e−2πisγ·x dx

where the third equality follows because γ · u = 0 and |γ| = 1. Now the injectivity is an
immediate consequence of the above relation applying to f − g. Moreover, with the above
relation, we are ready to prove the reconstruction formula. By Fourier inversion formula,

(Rf)(t, γ) =
∫
R
f̂(sγ)e2πist ds

By the definition of R∗,

(R∗Rf)(x) =
∫
S2
f̂(sγ)e2πis(γ·x) ds dσ(γ).
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Since ∆(e2πis(γ·x)) = −4π2s2e2πis(γ·x), we have

(∆R∗Rf)(x) = −4π2

∫
R

∫
S2
f̂(sγ)e2πis(γ·x)s2 ds dσ(γ)

= −8π2

∫
R+

∫
S2
f̂(sγ)e2πis(γ·x)s2 ds dσ(γ)

= f(x)

where the last equality follows again by Fourier inversion on S(R3).

Question 1. Why are the dimensions of the stable and the unstable bundles the same?

We have the following exercise problem from Introduction to the Modern Theory of Dy-
namical Systems by Katok and Hasselblatt [6.4.3]: Let (M,ω) be a symplectic manifold,
U ⊂M open, and f : U →M a symplectic diffeomorphism. Let Λ ⊂ U be a hyperbolic set
for f . Prove that dimE+ = dimE− for all x ∈ Λ, E±

x are Lagrangian subspaces of TxM and
that W s(x) and W u(x) are Lagrangian submanifolds of M . In the case of dimM = 2 and
dimSM = 3, we automatically have dimEs = dimEu = dimRX = 1.

Question 2. Are there any nontrivial elementary examples of Anosov manifolds that are
not negatively curved?

Yes, there are compact surfaces in R3 with Anosov geodesic flow. We refer to the paper
“Anosov geodesic flows for embedded surfaces” by Donnay, Victor J. & Pugh, Charles C.
for an interesting construction.

In particular, they proved for a compact, connected oriented surface M of genus g, let S
denote the set of Riemannian metrics g0 onM for which there exists an isometric imbedding
of (M, g0) into R3, then if the genus of M is sufficiently large, then one (and hence an open
subset) of metrics g0 ∈ S must have Anosov geodesic flow. Roughly speaking, such surfaces
look like a spherical shell with many holes drilled through them. See picture.

Last but not the least, we mention a beautiful proof to the fact that there are no negatively
curved compact embedded surfaces in R3: Let M be such a surface, then M being compact
implies M is bounded. Let Sr ⊂ R3 be a sphere with radius r centered at zero osculating
M at at least one point p. Since the curvature of Sr at p is 1

r2
> 0, by continuity M has

nonpositive curvature at p as well.
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2022.6.14 Guillarmou Invariant Distribution Continued (Guangqiu)
Recall from last time we are on the way to show the s-injectivity of the geodesic ray

transform over divergence free symmetric cotensor of order m on Anosov surfaces. The key
insight in the paper is the use of an intermediate operator Π : C∞(SM) → C−∞(SM), which
we will define in details for today’s talk. The goal is to show the desired properties of Πm

(modified Π defined on C∞(SM)). We start by recalling the definition:

Definition 1. (X-ray transform on symmetric cotensors) Let C∞(M,⊗m
S T

∗M) denote the
space of symmetric cotensor on M of order m, then there is a natural pullback map π∗

m :
C∞(M,⊗m

S T
∗M) → C∞(SM) such that

(π∗
mf)(x, v) = ⟨f(x),⊗mv⟩.

Define the X-ray transform on symmetric cotensors Im as

Im(f)(γ) :=

∫ T

0

⟨f(γ(t)),⊗mγ̇(t)⟩ dt

where γ is a closed geodesic onM and γ̇(t) is its time derivative. We saw from last time ker Im
contains all f ∈ C∞(M,⊗m

S T
∗M) of the form f = Dh for some h ∈ C∞(M,⊗m−1

S T ∗M).
Thus, let D = σ∇ denotes the symmetrized covariant derivative, then D∗ = −τD is in fact
the divergence operator. Then the s-injectivity of Im is equivalent to ker Im ∩ kerD∗ = 0.

The operator Π

Now we define the operator Π through the resolvent operators R+(λ) = (−X + λ)−1

and R−(λ) = (−X − λ)−1 where λ ∈ R and X is the geodesic vector field generated by
the geodesic flow φt : SM → SM . Let dµ be a smooth invariant measure on SM with
respect to φt (there is natural choice dµ for Anosov flow φt). Then integration by part shows
⟨Xu, v⟩L2(SM,dµ) = −⟨u,Xv⟩L2(SM,dµ) for all u, v ∈ C∞(SM).

By Stone’s theorem on one-parameter unitary group, the generator −iX of the uni-
tary operator etX : L2(SM) → L2(SM) defined by (etXf)(y) = f(φt(y)) is self-adjoint on
L2(SM, dµ). It follows from the spectral theorem that SpecL2(−iX) ⊂ R. The resolvents
R+(λ) = (−X + λ)−1 and R−(λ) = (−X − λ)−1 for Re(λ) > 0 are well-defined and can be
recovered by taking the Laplace transform of the unitary group etX , namely

R+(λ)f(y) =

∫ ∞

0

e−λtetX(f(y)) dt =

∫ ∞

0

e−λtf(φt(y)) dt.

and

R−(λ)f(y) =

∫ ∞

0

e−λue−uX(f(y)) dt = −
∫ 0

−∞
eλtf(φt(y)) dt

Moreover, the spectral projector 1[a,b](−iX) and 1(a,b)(−iX) can be expressed in terms of
the resolvent

1

2

(
1[a,b](−iX) + 1(a,b)(−iX)

)
=

1

2π
lim
ε→0+

∫ b

a

(R+(iλ+ ε)−R−(−iλ+ ε)) dλ (4)
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Since X is skew-adjoint, we have (−X−λ)∗ = (X−λ) = −(−X+λ) on C∞(SM), which
implies they satisfy

R−(λ)
∗ = −R+(λ) (5)

on L2(SM) for Re(λ) > 0. By a theorem of Faure-Sjöstrand, the Schwartz kernel of the
resolvent operator R−(λ) : C

∞(SM) → C−∞(SM) admits a meromorphic extension to C as
an element in C−∞(SM ×SM) with poles of finite multiplicity as a bounded operator. The
next theorem which relates mixing of the geodesic flow to the poles of R±(λ) is the key in
defining and analyzing the operator Π.

Theorem 2. Let X be a smooth Anosov vector field on a compact manifold M and let dµ
be an invariant measure with respect to the flow of X. Then the flow is mixing if and only if
the only pole of R±(λ) on the line iR is λ = 0 and it is a simple pole with residue ±(1⊗ 1).

The proof is not very involved and is based on estimates using the mixing properties and
the spectral projector identity (4). Using the theorem together with (5), we can write the
Laurent expansion of R±(λ) at λ = 0 as

R+(λ) =
1⊗ 1

λ
+R0 +O(λ), R−(λ) = −1⊗ 1

λ
−R∗

0 +O(λ). (6)

where R0, R
∗
0 : H

s(SM) → H−s(SM) are bounded (The existence of R0 and R
∗
0 is guaranteed

by Faure-Sjöstrand). Then the bounded self-adjoint operator Π : Hs(SM) → H−s(SM) for
all s > 0 is defined as

Π := R0 +R∗
0

and satisfies the following properties

1. Ran (Π) is of infinite dimension and is dense in the space of invariant distributions
I := {w ∈ C−∞(SM) : Xw = 0}.

2. For all f ∈ Hs(SM), XΠf = 0.

3. For all f ∈ Hs+1(SM) such that Xf ∈ Hs(SM), ΠXf = 0.

4. If f ∈ Hs(SM) with ⟨f, 1⟩ = 0, then f ∈ kerΠ if and only if there exists a solution
Hs(SM) to the cohomological equation Xu = f , and u is unique modulo constants.

The boundedness of Π comes from the boundedness of R0 and R∗
0. Moreover, properties

2 & 3 are obtained from manipulating equation (6), namely

Id = (−X + λ)R+(λ) = 1⊗ 1−XR0 +O(λ),

Id = (−X − λ)R−(λ) = 1⊗ 1 +XR∗
0 +O(λ)

Taking λ→ 0 gives

−XR0 = Id− 1⊗ 1 = −R0X, XR∗
0 = Id− 1⊗ 1 = R∗

0X.
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Therefore,
XΠf = X(R0 +R∗

0)f = (1⊗ 1− Id)(f) + (Id− 1⊗ 1)(f) = 0

Similarly, we have ΠXf = 0 for all f ∈ Hs+1(SM) such that Xf ∈ Hs(SM).

We mention without proving that property 4 follows from the theory of anisotropic
Sobolev space and propagation of singularities. As for property 1, the infinite dimensionality
of Ran (Π) follows from, for each closed geodesic γ, taking a smooth function f supported
in an arbitrarily small tubular neighborhood (open band) which f = 1 on γ and ⟨f, 1⟩ = 0.
Such an f is not in kerΠ, for otherwise Πf = 0 would imply by property 4 that Xu = f for
some u ∈ C∞(SM) and hence

∫
γ
f = 0, a contradiction.

Since Anosov manifolds have countably many disjoint closed geodesics γk, let {fk} with
disjoint supports so that

∫
γj
fk = δjk. By property 4 of the operator Π again, we have

dim span {Πfk : k ≤ N} = N for any N > 0. This shows dimRan (Π) = ∞.

Moreover, the density of Ran (Π) in the space of invariant distribution I can be obtained
by looking at the restriction into H−s(SM) for each s > 0. Let

I−s := {w ∈ H−s(SM) : Xw = 0},

then the closure in H−s(SM) of Ran (Π|Hs) := {Πf ∈ H−s(SM) : f ∈ Hs(SM)} is I−s.

Relation between Π and Im

Now we see the relation between the X-ray transform Im and the operator Π: Given
f ∈ C∞(SM) such that Imf = 0, then by Livsic theorem, there exists u ∈ C∞(SM) such
that Xu = f , which implies Πf = ΠXu = 0 by property 2. Thus, ker Im ⊂ kerΠ.

To study kerΠ, we look at it acting on symmetric m-tensors. In particular, we define the
operator Πm : C∞(M,⊗m

S T
∗M) → C−∞(M,⊗m

S T
∗M) as

Πm := πm∗Ππ
∗
m

where πm∗ : C−∞(SM) → C−∞(M,⊗m
S T

∗M) is the push-forward induced by π∗
m on distri-

butions, namely
⟨πm∗u, ψ⟩ = ⟨u, π∗

mψ⟩g

Since the case for all m > 0 is rather complicated and similar to the case when m = 0, we
only present the results for m = 0, namely Π0 : C

∞(M) → C−∞(M). We have the following
theorem characterizing Π0 and kerΠ0:

Theorem 3. If (M, g) has Anosov geodesic flow, the operator Π0 is an elliptic self-adjoint
pseudo-differential operator of order −1, with principal symbol

σ(Π0)(x, ξ) = Cn|ξ|−1
gx
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where Cn is a non-zero constant depending only on n. As a consequence, the kernel kerΠ0 :=
{f ∈ C−∞(M) : Π0f = 0} is finite dimensional and its elements are smooth.

The proof involves a detailed examination using microlocal analysis and pseudo-differential
calculus, which we will not go into. However, it worth mentioning that the finite dimension-
ality of kerΠ0 comes from the ellipticity.

In the case when m = 0, we can show further that kerΠπ∗
0 : C−∞(M) → C−∞(SM) is

trivial, which directly implies the injectivity of I0. The difficulty comes in when m ̸= 0, in
which case we can only show kerΠπ∗

m : C−∞(M,⊗m
S T ∗M) ∩ kerD∗ → C−∞(SM) is finite

dimensional.
However, the finite dimensionality of Ππ∗

m is still sufficient to get a key ingredient of
showing s-injectivity of Im: The existence of invariant distributions with prescribed push-
forward πm∗, namely for each f ∈ Hs(M,⊗m

S T
∗M) ∩ kerD∗ with ⟨f, k⟩L2 = 0 for all k ∈

kerΠπ∗
m ∩ kerD∗, there exists w ∈ C−∞(SM) such that Xw = 0 and πm∗w = f .

Once we have the existence of such invariant distribution, we obtain the s-injectivity: For
any f ∈ C∞(M,⊗m

S T
∗M) with Im(f) = 0, then by Livsic theorem there exists u ∈ C∞(SM)

such that Xu = π∗
mf . By the GK Fourier decomposition method on the sphere bundle, we

get further u = π∗
m−1q for some q ∈ C∞(M,⊗m−1

S T ∗M), or equivalently f = Dq, which
implies f ∈ kerD∗. (think more about the existence of prescribed pushforward)

Appendix.

Stone’s Theorem on One-parameter Unitary Groups Let (Ut)t∈R be a strongly con-
tinuous one-parameter unitary group. Then there exists a unique operator A : DA → H,
that is self-adjoint on DA and such that Ut = eitA for all t ∈ R. The domain of A is defined
by

DA =

{
ψ ∈ H : lim

ε→0

−i
ε
(Uε(ψ)− ψ) exists

}
Conversely, let A : DA → H be a self-adjoint operator on DA ⊂ H. Then the one-parameter
family Ut of unitary operators defined by Ut := eitA for all t ∈ R is a strongly continuous
one-parameter group.

Resolvent Functional Calculus The Hille-Yosida theorem relates the resolvent through a
Laplace transform to an integral over the one-parameter group generated by A. In particular,
if A is self-adjoint and U(t) is the associated one-parameter group of unitary operators, then
the resolvent of iA can be recovered as the Laplace transform

R(z; iA) = (iA− z)−1 =

∫ ∞

0

e−ztU(t) dt.

Schwartz Kernel Theorem Let X and Y be open sets in Rn. Every distribution k ∈
D′(X × Y ) defines a continuous linear map K : D(Y ) → D′(X) such that

⟨k, u× v⟩ = ⟨Kv, u⟩
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for every u ∈ D(X), v ∈ D(Y ). Conversely, for every such continuous linear map K, there
exists a unique distribution k ∈ D′(X×Y ) such that the above equality holds. In particular,
we call the distribution k the kernel of the map K.

Fredholm Operator Given Banach spaces X and Y , a bounded linear operator T : X → Y
is Fredholm if range(T ) is closed, dim kerT <∞, and dim cokerT <∞. Moreover, the index
of a Fredholm operator is the integer

indT := dimkerT − dim cokerT

where the cokernel coker(T ) = Y/range(T ).
A useful characterization of Fredholm operators goes as follow: A bounded operator

T : X → Y is Fredholm if and only if it is invertible modulo compact operators, i.e. there
exists a compact operator S : Y → X such that IdX −ST and IdY − TS are compact on X
and Y respectively.

Moreover, the set of Fredholm operators from X to Y is open in the Banach space
L(X, Y ) of bounded linear operator, equipped with the operator norm, and the index is
locally constant.

Exercise 1. Define the symmetric derivative operator D := σ ◦ ∇ : C∞(M ;SmT ∗M) →
C∞(M ;Sm+1T ∗M), then the divergence operator is its formal adjoint given by D∗f :=
−Tr(∇f).

Proof. Given a linear differential operator L : Γ(E) → Γ(F ) where E and F are vector
bundles over the Riemannian manifold M , then L admits a formal adjoint L∗ : Γ(F ) →
Γ(E) defined by ∫

M

⟨Lf, g⟩ dVg =
∫
M

⟨f, L∗g⟩ dVg

where f ∈ Γ(E) and g ∈ Γ(F ) are compactly supported. In our case, that the formal adjoint
of D = σ ◦∇ is indeed the divergence operator follows from an integration by part formula,
i.e. If ω is any k-tensor field and η any k + 1-tensor field,∫

M

⟨∇ω, η⟩ dV = −
∫
M

⟨ω,Tr(∇g)⟩ dV +

∫
∂M

⟨ω ⊗N, η⟩ dṼ

where the pairing ⟨·, ·⟩ is with respect to the musical isomorphisms and N is the outward
normal vector on ∂M .

In the case of closed manifold M , the last term on the right hand side above vanishes
automatically; in the general case of manifold with boundary, the term still vanishes because
in the definition of formal adjoint, testing functions are taken to be compactly supported.

Exercise 2. With the operator D defined as above, show that for each f ∈ Ck(M ;SmT ∗M),
we have π∗

m+1Df = Xπ∗
mf where X is the geodesic vector field.
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Proof. We first note that for any m-tensor g on the Riemannian manifold M , we have
π∗
mg = π∗

mσg: Indeed, let g = gi1···imdx
i1 ⊗ · · · ⊗ dxim and σg = gi1···imdx

i1 · · · dxim where

dxi1 · · · dxim =
1

m!

∑
σ∈Sm

dxiσ(1) ⊗ · · · ⊗ dxiσ(m)

Then for any (x, v) ∈ SM ,

π∗
m(σg)(x, v) = gi1···im(x)

(
1

m!

∑
σ∈Sm

viσ(1) · · · viσ(m)

)
= gi1···im(x)v

i1 · · · vim = π∗
mg(x, v)

where the second to last equality follows because viσ(1) , . . . , viσ(m) are simply real numbers,
so rearranging order does not change their products. Hence, for our claim, it suffices to show
π∗
m+1(∇f) = Xπ∗

mf .
For any (x0, v) ∈ SM , we introduce normal coordinates (x1, x2, . . . , xn) of x0, the geodesic

vector field then takes the form:

X(x0,v) =
n∑

k=1

vk
∂

∂xk

Let f = fi1···imdx
i1 · · · dxim be a symmetric m-tensor on M , then

π∗
mf(x0, v) = fi1···im(x0)v

i1 · · · vim

and

∇f(x0) =
n∑

im+1=1

∂fi1···im(x0)

∂xim+1
dxi1 · · · dxim ⊗ dxm+1

Together we have

Xπ∗
mf(x0, v) =

n∑
im+1=1

∂fi1···im(x0)

∂xim+1
vi1 · · · vim · vim+1 = π∗

m+1(∇f)(x0, v)
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2022.6.21 Guillarmou & Lefeuvre, Marked Length Spectrum, 2019 (Haozhe)
Today we examine the last paper in the series, which gives the first local marked length

spectrum rigidity result on Anosov manifolds of all dimensions. The main theorem states
that the marked length spectrum of a Riemannian manifold of Anosov geodesic flow and
non-positive curvature locally determines the metric, in the sense that two close enough
metrics with the same marked length spectrum are isometric.

We will see that the proof mainly uses the analysis of the operator Π from the last paper
of the first author together with some derivative estimates. We start with the definitions of
the length spectrum and marked length spectrum:

Definition 1. Let (M, g) be a Riemannian manifold of Anosov geodesic flow, then the set
of lengths (counting multiplicities) of closed geodesics is discrete and is called the length
spectrum of g.

Moreover, let C denote the set of free-homotopy classes of M , or equivalently the set
of conjugacy classes of the fundamental group π1(M). For a compact negatively curved
Riemannian manifold (M, g), it is well known that for each c ∈ C, there is a unique closed
geodesic γc of g in the class c. Hence, we can add a marking to each element of the length
spectrum and obtain the marked length spectrum:

Definition 2. The marked length spectrum of a compact negatively curved Riemannian
manifold (M, g) is a map Lg : C → R+ defined as Lg(c) = ℓg(γc) where γc is the unique
closed geodesic corresponding to c and ℓg(γc) the length of γc with respect to g.

It worth mentioning that on compact negatively curved Riemannian manifolds, the Lapla-
cian spectrum determines the length spectrum, but not necessarily vice versa. However, it
is known in the case of hyperbolic surfaces that they do determine each other.

The marked length spectrum as a map certainly contains more information than its image,
i.e. the length spectrum. For instance, Sunada’s construction of non-isometric isospectral
manifolds breaks the marked length spectrum but not the length spectrum.

Since Vigeras has constructed examples of non-isometric hyperbolic surfaces with the
same length (or equivalently the same Laplacian) spectrum, rigidity questions are better
raised in the setting of the marked length spectrum. For instance, the following long-standing
conjecture by Burns-Katok is widely believed to be true:

Conjecture 3. If g and g0 are two negatively curved metrics on a closed manifold M , and
if they have the same marked length spectrum, then they are isometric.

The difficulty of approaching this problem lies in the non-linearity (with respect to g)
of the marked length spectrum Lg, and results have been few and centered around the case
when dimM = 2. The best result by Croke-Fathi-Feldman has shown the conjecture for g
having non-positive curvature and g0 having no conjugate points. Here we provide a diagram
which shows the relations of the different assumptions we have run into:
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Naturally, attention has been given to the linearized problem with the linearized operator
dLg, which by a straightforward computation is precisely the geodesic X-ray transform
I2, whose injectivity and microlocal properties for Anosov surfaces has been examined by
Guillarmou in the last paper. What remains is a few smoothness estimates which gurantees
the local rigidity.

Theorem 4. Let L : Ug0 → ℓ∞(C) be the g0-normalized marked length spectrum and defined
as

L(g)(c) := Lg(c)

Lg0(c)

where Ug0 is a CN(M ;S2
+T

∗M) neighborhood of the metric g0. Then L is C2 near g0 with
the C3(M ;S2

+T
∗M) topology. In particular, there is a neighborhood Ug0 ⊂ C3(M ;S2

+T
∗M)

of g0 and C = C(g0) > 0 such that for all g ∈ Ug0 ,

∥L(g)− 1− dLg0(g − g0)∥ℓ∞(C) ≤ C ∥g − g0∥2C3(M)

(unfinished...) 3

3Last updated: 7/18/2022
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