Harmonic Series

Guangqiu Liang

July 2019

Claim.

$$
\sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

Lemma. Suppose A, B, C, \ldots, D, E is a finite geometric progression of $n+1$ terms with common ratio r and let S denote its sum, then

$$
S=\frac{A^{2}-B E}{A-B}
$$

Proof. By definition,

$$
\frac{A}{B}=\frac{A}{A r}=\frac{A\left(1+r+\ldots+r^{n-1}\right)}{A r\left(1+r+\ldots+r^{n-1}\right)}=\frac{A+B+C+\ldots+D}{B+C+\ldots+D+E}=\frac{S-E}{S-A}
$$

Solving for S gives the desired result.
Proof. Given any $N \in \mathbb{N}$, we want to show that the partial sum eventually exceeds N. We proceed by showing that we can always remove a finite string of consecutive terms whose sum is 1 or more, independent of where we start.

For the sake of contradiction, we assume there exists an index a such that the sum

$$
\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a+2}+\ldots<1
$$

But notice the denominators $a, a+1, a+2, \ldots$ form an arithmetic progression. Now let's consider a geometric progression beginning with the same first two terms, namely $a, a+$ $1, C, D, \ldots, K$ where we can choose $K \geq a^{2}$ because the common ratio is greater than 1 . Then a simple comparison shows that $C>a+2, D>a+3, \ldots$. Thus, we have

$$
\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a+2}+\ldots>\frac{1}{a}+\frac{1}{a+1}+\frac{1}{C}+\frac{1}{D}+\ldots+\frac{1}{K}
$$

where the expression on the left has the same finite number of terms as that on the right. Now summing the geometric progression on the right with the seventeenth-century-fashion lemma we proved above gives,

$$
\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a+2}+\ldots>\frac{\frac{1}{a^{2}}-\frac{1}{a+1}\left(\frac{1}{K}\right)}{\frac{1}{a}-\frac{1}{a+1}} \geq \frac{\frac{1}{a^{2}}-\frac{1}{(a+1) a^{2}}}{\frac{1}{a}-\frac{1}{a+1}}=1
$$

a contradiction. Thus, collecting N such strings gives a desired partial sum.

Remark: This little cute but surprisingly elegant argument comes from Jakob Bernoulli (1654-1705) where only elementary summation and comparison are used. Interested readers can discover more details in the book "The Calculus Gallery" by William Dunham.

