STACKS HW4 - SHEAVES AND TOPOI

- (1) Let T be a topos. Define a topology τ on T by declaring a morphism $F' \to F$ to be a covering if it is a surjection of sheaves. (This is called the canonical topology.)
 - (a) Show that the canonical topology is a topology.
 - (b) Show that the associated topos is equivalent to T.
 - (c) Show that the canonical topology is the largest topology preserving the topos; i.e., prove that if $p: X' \to X$ is a morphism and if every sheaf F in T satisfies the sheaf axiom with respect to p, then p is an epimorphism in T.
- (2) Define a site C to be subcanonical if for every object $X \in C$, h_X is a sheaf. (So, for instance, the etale site of a scheme is subcanonical.) Give an example of a site C which is not subcanonical.
- (3) Let $X' \to X$ be an étale surjection of affine schemes and let Y be a scheme. Show that the 'first sheaf axiom' is satisfied, i.e., that the map

$$h_Y(X) \to h_Y(X')$$

is injective. (Assume that we already know this for Y affine.)

(4) Let $F: C \to D$ and $G: D \to C$ be a pair of functors. We say that F is *left adjoint* to G if there is an isomorphism of (bi)-functors

 $\operatorname{Hom}(F(-), -) \cong \operatorname{Hom}(-, G(-)).$

Let C' be a category and let C be a subcategory. Denote by i the inclusion $C \to C'$, and suppose that i has a left adjoint $a: C' \to C$. (For instance, a could be sheafification.) Let $D: I \to C$ be a diagram.

Prove that $a(\varinjlim i \circ D) = \varinjlim D$