STACKS HW3 - ÉTALE MORPHISMS AND SHEAVES

- (1) Think of lots of examples and non examples of étale morphisms, and work out the details as explicitly as you can.
- (2) Show that the sheaf axiom of Hartshorne is equivalent to our sheaf axiom.
- (3) Let C be a category and let $D: I \to \operatorname{Fun}(C^{op}, \operatorname{\mathbf{Sets}})$ be a diagram.
 - (a) Show that $\lim D$ is the functor $X \mapsto \lim D(i)(X)$.
 - (b) Show that $\lim_{X \to \infty} D$ is the functor $X \mapsto \lim_{X \to \infty} D(i)(X)$.
- (4) Let C be a category and let $D: I \to \mathbf{Sch}$ be a diagram, where \mathbf{Sch} is the subcategory of sheaves in Fun(C^{op}, \mathbf{Sets}).
 - (a) Show that $\underline{\lim} D$ (in the category of sheaves) is the functor $X \mapsto \underline{\lim} D(i)(X)$.
 - (b) Show that $\lim_{i \to \infty} D$ (in the category of sheaves) is the *sheafication* of the functor $X \mapsto \lim_{i \to \infty} D(i)(X)$.
- (5) Let F be a sheaf, F' be a presheaf, and $f: F' \to F$ be an injection (as presheaves). Show that the sheafication of F' is isomorphic to F if and only if every section of F is locally in the image of f.