STACKS HW1 - FUNCTORS

- (1) Prove a slightly more general version of Yoneda's Lemma let C be a category, $X \in C$ an object, h_X the functor $h_X(T) = Hom_C(T, X)$, and $F: C^{op} \to$ **Sets** a functor. Then $Hom(h_X, F) \cong F(X)$.
- (2) Play the game "find the representing object" whenever you get the chance. Determine if the following functors are representable. If they are, find the representing object.
 - (a) The functor Top^{op} \rightarrow **Sets** taking a topological space X to the set of open subsets of X.
 - (b) The functor $\text{Top}^{\text{op}} \to \mathbf{Sets}$ taking a topological space X to the set of closed subsets of X.
 - (c) The functor Top^{op} \rightarrow Sets taking a topological space X to the open subsets of X whose complement is also open.
 - (d) The functor **HausTop**^{op} \rightarrow **Sets** taking a topological space X to the set of open subsets of X. (**HausTop** is the category of Hausdorff topological spaces.)
 - (e) The functor $\mathbb{A}^n \{(0, \dots, 0)\}$: (Sch^{op}) \to (Sets) taking a scheme T to $\{(f_1, \dots, f_n) \in \mathcal{O}_T(T)^n | \text{the } f_i \text{ do not all simultaneously vanish at the origin}\}.$
 - (f) The functor $(\mathbb{A}^n \{(0, \ldots, 0)\})/\mathbb{G}_m$: Sch^{op} \to Sets taking a scheme T to $(\mathbb{A}^n \{(0, \ldots, 0)\})(T)/\sim$, where \sim is the equivalence relation $(f_1, \ldots, f_n) \sim (f'_1, \ldots, f'_n)$ if there is a unit $u \in \mathcal{O}_T(T)$ such that $f'_i = uf_i$ for each i.
- (3) Give 3 examples of equivalences of categories that are not isomorphisms of categories.
- (4) Are the categories

• and •

equivalent?

(5) Are the categories

equivalent?