Emory Math 788, Stacks TuTh 11:30 - 12:45

All assignments Last updated: December 1, 2022

Contents

1	Functors and Yoneda's lemma	2
2	Limits, colimits, group objects	3
3	Étale morphisms and sheaves	5
4	Sheaves and topoi	6
5	Comma Category and adjunction	7
6	2-categories	8
7	Additional problems to proofread and incorporate	9

1 Functors and Yoneda's lemma

- 1. Prove a slightly more general version of Yoneda's Lemma let C be a category, $X \in C$ an object, h_X the functor $h_X(T) = Hom_C(T, X)$, and $F: C^{op} \to \mathbf{Sets}$ a functor. Then $Hom(h_X, F) \cong F(X)$.
- 2. Play the game "find the representing object" whenever you get the chance. Determine if the following functors are representable. If they are, find the representing object.
 - (a) The functor Top^{op} \rightarrow **Sets** taking a topological space X to the set of open subsets of X.
 - (b) The functor $\text{Top}^{\text{op}} \to \mathbf{Sets}$ taking a topological space X to the set of closed subsets of X.
 - (c) The functor $\operatorname{Top}^{\operatorname{op}} \to \mathbf{Sets}$ taking a topological space X to the open subsets of X whose complement is also open.
 - (d) The functor **HausTop**^{op} \rightarrow **Sets** taking a topological space X to the set of open subsets of X. (**HausTop** is the category of Hausdorff topological spaces.)
 - (e) The functor $\mathbb{A}^n \{(0, \dots, 0)\}$: (Sch^{op}) \to (Sets) taking a scheme T to $\{(f_1, \dots, f_n) \in \mathcal{O}_T(T)^n | \text{the } f_i \text{ do not all simultaneously vanish at the origin}\}.$
 - (f) The functor $(\mathbb{A}^n \{(0, \ldots, 0)\})/\mathbb{G}_m$: Sch^{op} \to Sets taking a scheme T to $(\mathbb{A}^n \{(0, \ldots, 0)\})(T)/\sim$, where \sim is the equivalence relation $(f_1, \ldots, f_n) \sim (f'_1, \ldots, f'_n)$ if there is a unit $u \in \mathcal{O}_T(T)$ such that $f'_i = uf_i$ for each i.
- 3. Give 3 examples of equivalences of categories that are not isomorphisms of categories.
- 4. Are the categories

equivalent?

5. Are the categories

equivalent?

2 Limits, colimits, group objects

1. Let C be a category and let $h: C \to \operatorname{Fun}(C^{\operatorname{op}}, \operatorname{\mathbf{Sets}})$ be the Yoneda embedding. Show that for any arrows $X \to Y$ and $Z \to Y$ in C, there is a natural isomorphism

$$h_{X \times_Y Z} \to h_X \times_{h_Y} h_Z$$

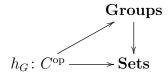
of functors, where $h_X \times_{h_Y} h_Z$ is the functor

$$h_X \times_{h_Y} h_Z \colon W \mapsto h_X(W) \times_{h_Y(W)} h_Z(W)$$

2. Let G be an object of a category C. Show that the functor of points

 $h_G \colon C^{\mathrm{op}} \to \mathbf{Sets}$

factors through the forgetful functor from groups



if and only if G is a group object of C.

3. Let \star be one of Spec k (with k a field) or Spec Z. Let

$$G = \coprod_{\mathbf{g} \in \mathbb{Z}/2\mathbb{Z}} \star$$

be the group object corresponding to $\mathbb{Z}/2\mathbb{Z}$. Work out explicitly the group structure. In other words, work out the maps in terms of rings, and show that G represents the sheafification of the functor

 $\mathbf{Sch}^{\mathrm{op}} \to \mathbf{Groups}, W \mapsto \mathbb{Z}/2\mathbb{Z}$

4. (a) Let $n \ge 1$ be an integer and let

$$\operatorname{GL}_n \colon (\operatorname{\mathbf{Sch}})^{\operatorname{op}} \to \operatorname{\mathbf{Sets}}$$

be the functor sending a scheme Y to the set $\operatorname{GL}_n(\Gamma(Y, \mathcal{O}_Y))$. Prove that GL_n is a representable functor.

- (b) Let X represent the functor GL_n . Prove that the group structures on the sets $\operatorname{GL}_n(\Gamma(Y, \mathcal{O}_Y))$ induce the structure of a group scheme on X. (I.e. use the previous exercise, noting that there is one detail to check.)
- 5. Give an example of a category C, a subcategory C', and a diagram $D: I \to C'$ such that the limit (or colimit, your choice) in C' is not the limit in C.

6. Use the functor of points to define a map $\mathbb{A}^1 \to \mathbb{A}^1$ given by the formula $z \mapsto z^2$. Compare this with how one would define such a map with locally ringed spaces.

7. Monomorphisms.

- (a) Show that a morphism $X \to Y$ is a monomorphism if and only if for every $T \in C$, the map of sets $X(T) \to Y(T)$ is injective.
- (b) Show that a map of schemes which is injective topologically may not be a monomorphism.
- (c) Show that a map of schemes which is surjective topologically may not be an epimorphism.
- 8. Limits and colimits of sets. Let $D: I \to Set$ be a diagram. Show that
 - (a) $\lim D = \{(x_i) \in \prod_{i \in I} D(i) \text{ s.t. } \forall i, j \in I, \forall \phi \in \operatorname{Hom}(i, j), D(\phi)(x_i) = x_j\}.$
 - (b) $\varinjlim D = \coprod D(i) / \sim$, where \sim is given by $\forall i, j \in I, \forall \phi \in \operatorname{Mor}(i, j), x_i \sim D(\phi)(x_i)$.
- 9. Consider the diagram

$$Y \longrightarrow Z \xrightarrow{h} W$$

x 7

Suppose that h is a monomorphism. Show that $X \times_Z Y \to X \times_W Y$ is an isomorphism.

3 Étale morphisms and sheaves

- 1. Think of lots of examples and non examples of étale morphisms, and work out the details as explicitly as you can.
- 2. Show that the sheaf axiom of Hartshorne is equivalent to our sheaf axiom.
- 3. Let C be a category and let $D: I \to \operatorname{Fun}(C^{op}, \operatorname{\mathbf{Sets}})$ be a diagram.
 - (a) Show that $\lim D$ is the functor $X \mapsto \lim D(i)(X)$.
 - (b) Show that $\varinjlim D$ is the functor $X \mapsto \varinjlim D(i)(X)$.
- 4. Let C be a category and let $D: I \to \widetilde{\mathbf{Sch}}$ be a diagram, where $\widetilde{\mathbf{Sch}}$ is the subcategory of sheaves in Fun (C^{op}, \mathbf{Sets}) .
 - (a) Show that $\lim D$ (in the category of sheaves) is the functor $X \mapsto \lim D(i)(X)$.
 - (b) Show that $\lim_{i \to \infty} D$ (in the category of sheaves) is the *sheafication* of the functor $X \mapsto \lim_{i \to \infty} D(i)(X)$.
- 5. Let F be a sheaf, F' be a presheaf, and $f: F' \to F$ be an injection (as presheaves). Show that the sheafication of F' is isomorphic to F if and only if every section of F is locally in the image of f.

4 Sheaves and topoi

- 1. Let T be a topos. Define a topology τ on T by declaring a morphism $F' \to F$ to be a covering if it is a surjection of sheaves. (This is called the canonical topology.)
 - (a) Show that the canonical topology is a topology.
 - (b) Show that the associated topos is equivalent to T.
 - (c) Show that the canonical topology is the largest topology preserving the topos; i.e., prove that if $p: X' \to X$ is a morphism and if every sheaf F in T satisfies the sheaf axiom with respect to p, then p is a surjection of sheaves in T.
- 2. Define a site C to be subcanonical if for every object $X \in C$, h_X is a sheaf. (So, for instance, the etale site of a scheme is subcanonical.) Give an example of a site C which is not subcanonical.
- 3. Let $X' \to X$ be an étale surjection of affine schemes and let Y be a scheme. Show that the 'first sheaf axiom' is satisfied, i.e., that the map

$$h_Y(X) \to h_Y(X')$$

is injective. (Assume that we already know this for Y affine.)

4. Let $F: C \to D$ and $G: D \to C$ be a pair of functors. We say that F is *left adjoint* to G if there is an isomorphism of (bi)-functors

$$\operatorname{Hom}(F(-), -) \cong \operatorname{Hom}(-, G(-)).$$

Let C' be a category and let C be a subcategory. Denote by i the inclusion $C \to C'$, and suppose that i has a left adjoint $a: C' \to C$. (For instance, a could be sheafification.) Let $D: I \to C$ be a diagram.

Prove that $a(\varinjlim i \circ D) = \varinjlim D$

5 Comma Category and adjunction

- 1. Let C be a site, and let X be an object in C. Recall that the comma category C/X inherits the structure of a site. Assume that C is subcanonical (which means that for every $X \in C$, h_X is a sheaf).
 - (a) Show that there is an equivalence of categories between Sh(C/X) and $Sh(C)/h_X$.
 - (b) Show that $j^* \colon Sh(C) \to Sh(C)/h_X$, given by $F \mapsto (F \times h_X \xrightarrow{p_2} h_X)$ commutes with finite limits and has a right adjoint j_* . (Describe j_* explicitly.)

6 2-categories

1. Let C and D be categories and calculate very explicitly the 2-limit of the diagram

$$C \Longrightarrow D$$
 (6.0.1)

- 2. Show that a morphism $\mathcal{X} \to \mathcal{Y}$ of categories is a monomorphism (i.e., fully faithful) iff the diagonal is an equivalence.
- 3. Let C be a site and let $X' \to X$ be a covering in C. Show that the category $Sh(X' \to X)$ is equivalent to the 2-limit of the diagram

$$\widetilde{X'} \Longrightarrow \widetilde{X''} \Longrightarrow \widetilde{X'''} \tag{6.0.2}$$

- 4. Let $D \to C$ be a fibred category. Show that the maps $D(V) \to D(U)$ defined in class are functors, and that, for a pair of maps $U \to V \to W$, the composition of the functors $D(W) \to D(V) \to D(U)$ is isomorphic to $D(W) \to D(U)$.
- 5. Prove the 2-Yoneda lemma.
- 6. Let $\mathcal{X} \to \mathbf{Sch}$ be a fibered category. Show that if the fibers are setoids, then \mathcal{X} is equivalent to $\mathbf{Sch}_{/F}$ for some functor F. Show that in this case F is a sheaf iff $\mathcal{X} \to \mathbf{Sch}$ is a stack.

7 Additional problems to proofread and incorporate

- 1. Let C be a category. F be a functor. Show that the diagonal is representable iff every map $X \to F$, with $X \in C$, is representable.
- 2. Show that h_X and "X(R) are isomorphic functors.
- 3. Show that the sheaf axiom of Hartshorne is equivalent to our sheaf axiom using coproducts.
- 4. Show that the "locally isomorphic Zariski topology" and the usual Zariski topology give the same topos.
- 5. Disjoin unions vs open sets.
- 6. Verify that p^{-1} and p_* of a sheaf is a sheaf.
- 7. Let F be a presheaf and let $p: X' \to X$ and $q: Y' \to Y$ be two morphisms such F satisfies the sheaf axiom with respect to every base change of p and q. Prove that F satisfies the sheaf with respect to $p \times q: X' \times Y' \to X \to Y$.
- 8. Adjoint functor is fully faithful if and only if the unit (or counit) is an isomorphism. (Hint: Yoneda's lemma.)

9. Diagonal.

- (a) Prove that that the diagonal is an isomorphism if and only if f is etale.
- 10. A functor on X_{zar} with an open cover by schemes is a scheme.
- 11. Show, explicitly, that the map $[G/G]^{ps} \to \star$ is an equivalence of categories.
- 12. Stackify the stack $B_{\mathbb{G}_m}$ by hand.
- 13. Let $R \to X \times X$ be an equivalence relation. Show that the diagonal $\Delta : X \to X \times X$.
- 14. Let C be a site. Let $T \in C$, and let $X, Y \in C/T$. Define a functor $\underline{\text{Hom}}(X, Y)$ by

$$T' \mapsto \operatorname{Hom}_{T'}(X \times_T T', Y \times_T T')$$

- (a) Show that $\underline{\text{Hom}}(X, Y)$ is a sheaf.
- (b) Let C = Aff be the category of affine schemes with the Zariski topology and let $X = Y = \mathbb{A}^1$. Show that $\underline{Hom}(\mathbb{A}^1, \mathbb{A}^1)$ is not representable by an affine scheme.
- (c) Let $C = \mathbf{Sch}$ with the Zariski topology and let $X = Y = \mathbb{A}^1$. Show that $\underline{\mathrm{Hom}}(\mathbb{A}^1, \mathbb{A}^1)$ is not representable by a scheme.
- (d) Let $C = \mathbf{Sch}$ with the étale topology and let $X = Y = \mathbb{A}^1$. Show that $\underline{\mathrm{Hom}}(\mathbb{A}^1, \mathbb{A}^1)$ is not representable by an algebraic space.