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1 Functors and Yoneda’s lemma

1. Prove a slightly more general version of Yoneda’s Lemma – let C be a category, X ∈ C
an object, hX the functor hX(T ) = HomC(T,X), and F : Cop → Sets a functor. Then
Hom(hX , F ) ∼= F (X).

2. Play the game “find the representing object” whenever you get the chance. Determine
if the following functors are representable. If they are, find the representing object.

(a) The functor Topop → Sets taking a topological space X to the set of open subsets
of X.

(b) The functor Topop → Sets taking a topological space X to the set of closed
subsets of X.

(c) The functor Topop → Sets taking a topological space X to the open subsets of
X whose complement is also open.

(d) The functor HausTopop → Sets taking a topological space X to the set of open
subsets of X. (HausTop is the category of Hausdorff topological spaces.)

(e) The functor An−{(0, . . . , 0)} : (Schop)→ (Sets) taking a scheme T to {(f1, . . . , fn) ∈
OT (T )n|the fi do not all simultaneously vanish at the origin}.

(f) The functor (An − {(0, . . . , 0)})/Gm : Schop → Sets taking a scheme T to (An −
{(0, . . . , 0)})(T )/ ∼, where∼ is the equivalence relation (f1, . . . , fn) ∼ (f ′1, . . . , f

′
n)

if there is a unit u ∈ OT (T ) such that f ′i = ufi for each i.

3. Give 3 examples of equivalences of categories that are not isomorphisms of categories.

4. Are the categories

•
��
and •

equivalent?

5. Are the categories

• 66
��

•vv ��
and •

��

equivalent?
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2 Limits, colimits, group objects

1. Let C be a category and let h : C → Fun(Cop,Sets) be the Yoneda embedding. Show
that for any arrows X → Y and Z → Y in C, there is a natural isomorphism

hX×Y Z → hX ×hY
hZ

of functors, where hX ×hY
hZ is the functor

hX ×hY
hZ : W 7→ hX(W )×hY (W ) hZ(W ).

2. Let G be an object of a category C. Show that the functor of points

hG : Cop → Sets

factors through the forgetful functor from groups

Groups

��
hG : Cop //

88

Sets

if and only if G is a group object of C.

3. Let ? be one of Spec k (with k a field) or SpecZ. Let

G =
∐

g∈Z/2Z

?

be the group object corresponding to Z/2Z. Work out explictily the group structure.
In other words, work out the maps in terms of rings, and show that G represents the
sheafification of the functor

Schop → Groups, W 7→ Z/2Z

4. (a) Let n ≥ 1 be an integer and let

GLn : (Sch)op → Sets

be the functor sending a scheme Y to the set GLn(Γ(Y,OY )). Prove that GLn is
a representable functor.

(b) Let X represent the functor GLn. Prove that the group structures on the sets
GLn(Γ(Y,OY )) induce the structure of a group scheme on X. (I.e. use the
previous exercise, noting that there is one detail to check.)

5. Give an example of a category C, a subcategory C ′, and a diagram D : I → C ′ such
that the limit (or colimit, your choice) in C ′ is not the limit in C.
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6. Use the functor of points to define a map A1 → A1 given by the formula z 7→ z2.
Compare this with how one would define such a map with locally ringed spaces.

7. Monomorphisms.

(a) Show that a morphism X → Y is a monomorphism if and only if for every T ∈ C,
the map of sets X(T )→ Y (T ) is injective.

(b) Show that a map of schemes which is injective topologically may not be a monomor-
phism.

(c) Show that a map of schemes which is surjective topologically may not be an
epimorphism.

8. Limits and colimits of sets. Let D : I → Set be a diagram. Show that

(a) lim←−D = {(xi) ∈
∏

i∈I D(i) s.t. ∀i, j ∈ I,∀φ ∈ Hom(i, j), D(φ)(xi) = xj}.
(b) lim−→D =

∐
D(i)/ ∼, where ∼ is given by ∀i, j ∈ I,∀φ ∈ Mor(i, j), xi ∼ D(φ)(xi).

9. Consider the diagram
X

��
Y // Z h //W

Suppose that h is a monomorphism. Show that X×Z Y → X×W Y is an isomorphism.
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3 Étale morphisms and sheaves

1. Think of lots of examples and non examples of étale morphisms, and work out the
details as explicitly as you can.

2. Show that the sheaf axiom of Hartshorne is equivalent to our sheaf axiom.

3. Let C be a category and let D : I → Fun(Cop,Sets) be a diagram.

(a) Show that lim←−D is the functor X 7→ lim←−D(i)(X).

(b) Show that lim−→D is the functor X 7→ lim−→D(i)(X).

4. Let C be a category and let D : I → S̃ch be a diagram, where S̃ch is the subcategory
of sheaves in Fun(Cop,Sets).

(a) Show that lim←−D (in the category of sheaves) is the functor X 7→ lim←−D(i)(X).

(b) Show that lim−→D (in the category of sheaves) is the sheafication of the functor
X 7→ lim−→D(i)(X).

5. Let F be a sheaf, F ′ be a presheaf, and f : F ′ → F be an injection (as presheaves).
Show that the sheafication of F ′ is isomorphic to F if and only if every section of F is
locally in the image of f .
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4 Sheaves and topoi

1. Let T be a topos. Define a topology τ on T by declaring a morphism F ′ → F to be a
covering if it is a surjection of sheaves. (This is called the canonical topology.)

(a) Show that the canonical topology is a topology.

(b) Show that the associated topos is equivalent to T .

(c) Show that the canonical topology is the largest topology preserving the topos;
i.e., prove that if p : X ′ → X is a morphism and if every sheaf F in T satisfies the
sheaf axiom with respect to p, then p is a surjection of sheaves in T .

2. Define a site C to be subcanonical if for every object X ∈ C, hX is a sheaf. (So, for
instance, the etale site of a scheme is subcanonical.) Give an example of a site C which
is not subcanonical.

3. Let X ′ → X be an étale surjection of affine schemes and let Y be a scheme. Show that
the ‘first sheaf axiom’ is satisfied, i.e., that the map

hY (X)→ hY (X ′)

is injective. (Assume that we already know this for Y affine.)

4. Let F : C → D and G : D → C be a pair of functors. We say that F is left adjoint to
G if there is an isomorphism of (bi)-functors

Hom(F (−),−) ∼= Hom(−, G(−)).

Let C ′ be a category and let C be a subcategory. Denote by i the inclusion C → C ′, and
suppose that i has a left adjoint a : C ′ → C. (For instance, a could be sheafification.)
Let D : I → C be a diagram.

Prove that a(lim−→ i ◦D) = lim−→D
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5 Comma Category and adjunction

1. Let C be a site, and let X be an object in C. Recall that the comma category C/X
inherits the structure of a site. Assume that C is subcanonical (which means that for
every X ∈ C, hX is a sheaf).

(a) Show that there is an equivalence of categories between Sh(C/X) and Sh(C)/hX .

(b) Show that j∗ : Sh(C) → Sh(C)/hX , given by F 7→ (F × hX
p2−→ hX) commutes

with finite limits and has a right adjoint j∗. (Describe j∗ explicitly.)
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6 2-categories

1. Let C and D be categories and calculate very explicitly the 2-limit of the diagram

C ////
//
D (6.0.1)

2. Show that a morphism X → Y of categories is a monomorphism (i.e., fully faithful) iff
the diagonal is an equivalence.

3. Let C be a site and let X ′ → X be a covering in C. Show that the category Sh(X ′ →
X) is equivalent to the 2-limit of the diagram

X̃ ′ //// X̃ ′′ ////
//
X̃ ′′′ (6.0.2)

4. Let D → C be a fibred category. Show that the maps D(V )→ D(U) defined in class
are functors, and that, for a pair of maps U → V → W , the composition of the functors
D(W )→ D(V )→ D(U) is isomorphic to D(W )→ D(U).

5. Prove the 2-Yoneda lemma.

6. Let X → Sch be a fibered category. Show that if the fibers are setoids, then X
is equivalent to Sch/F for some functor F . Show that in this case F is a sheaf iff
X → Sch is a stack.
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7 Additional problems to proofread and incorporate

1. Let C be a category. F be a functor. Show that the diagonal is representable iff every
map X → F , with X ∈ C, is representable.

2. Show that hX and “X(R) are isomorphic functors.

3. Show that the sheaf axiom of Hartshorne is equivalent to our sheaf axiom using co-
products.

4. Show that the “locally isomorphic Zariski topology” and the usual Zariski topology
give the same topos.

5. Disjoin unions vs open sets.

6. Verify that p−1 and p∗ of a sheaf is a sheaf.

7. Let F be a presheaf and let p : X ′ → X and q : Y ′ → Y be two morphisms such F
satisfies the sheaf axiom with respect to every base change of p and q. Prove that F
satisfies the sheaf with respect to p× q : X ′ × Y ′ → X → Y .

8. Adjoint functor is fully faithful if and only if the unit (or counit) is an isomorphism.
(Hint: Yoneda’s lemma.)

9. Diagonal.

(a) Prove that that the diagonal is an isomorphism if and only if f is etale.

10. A functor on Xzar with an open cover by schemes is a scheme.

11. Show, explicitly, that the map [G/G]ps → ? is an equivalence of categories.

12. Stackify the stack BGm by hand.

13. Let R→ X ×X be an equivalence relation. Show that the diagonal
a

: X → X ×X..

14. Let C be a site. Let T ∈ C, and let X, Y ∈ C/T . Define a functor Hom(X, Y ) by

T ′ 7→ HomT ′(X ×T T
′, Y ×T T

′)

(a) Show that Hom(X, Y ) is a sheaf.

(b) Let C = Aff be the category of affine schemes with the Zariski topology and let
X = Y = A1. Show that Hom(A1,A1) is not representable by an affine scheme.

(c) Let C = Sch with the Zariski topology and let X = Y = A1. Show that
Hom(A1,A1) is not representable by a scheme.

(d) Let C = Sch with the étale topology and let X = Y = A1. Show that
Hom(A1,A1) is not representable by an algebraic space.
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