
HOMEWORK FOR SPRING 2016 ALGEBRAIC TOPOLOGY

Last Modified January 14, 2019

Some notes on homework:

(1) If I modify a problem, I will leave a colored footnote with the date and a comment. 1

(2) There won’t be any official office hours. I will usually be around TuWTh, usually
not around on Monday, and sometimes around on Fri.

(3) There are hints in the latex comments. (Just change the extension of this URL to
.tex)

(4) I will assign lots of problems. It is best look at all of them, spend some time thinking
about each problem, and pick a few to think through in a lot of detail.

Some notes on class + lectures:

(1) Expectations: Taken from Tony Varilly’s syllabus: “In my experience as a student,
most people do not follow all the details of a Math lecture in real time. During
lecture, you should expect to witness the big picture of what’s going on. You should
pay attention to the lecturer’s advice on what is important and what isn’t. A lecturer
spends a long time thinking on how to deliver a presentation of an immense amount
of material; they do not expect you to follow every step, but they do expect you to
go home and fill in the gaps in your understanding.”

(2) Please do all of the following.
(a) After each class, review all of the lecture notes.
(b) Before the next class, briefly review again. (Make sure that you come to each

lecture knowing at least the definitions and statements from the last lecture.)
(c) Sit down at least once on your own to attempt the homework.
(d) Meet with other students at least once to discuss homework.

1December 31: Like this.
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1. HW 1

(1) In class, we proved that a continuous bijection X → Y is a homeomorphism if X
is compact and Y is Hausdorff. Show (by giving examples, with proof) that if we
weaken either hypothesis, then this statement is false. Make sure that you know how
to prove each fact that we used in our proof (e.g., that the continuous image of a
compact space is compact; that a closed subspace of a compact space is compact,
etc.).

(2) Fill in the missing details in the proofs of basic properties of homotopy from the first
two lectures.

(3) Prove that πi(X) is abelian for i ≥ 2.
(4) Let G be a topological group. Prove that π1(G) is abelian.
(5) Prove that if f : X → Y is a (possibly unbased) homotopy equivalence, then the

induced map f∗ : πn(X, x) → πn(Y, f(x)) is an isomorphism. (I.e fill in the missing
detail from lecture 3.)

(6) Prove that the quasi-circle (see Hatcher 1.3, exercise 7) is weakly contractible but
not contractible.

(7) Finish the (sketch of a) proof from class that πk(Sn) = 0 for 0 < k < n.
(8) Prove that π1(R2 −Q2) is uncountable.
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2. HW 2

(1) Compute πi of RPn\{x0} for i ≤ n (where x0 is any point). What familiar space
is RPn\{x0} homotopy equivalent to? What is the map πi(RPn\{x0}) → πi(RPn)?
Compute the action of π1(RP2) on π2(RP2).

(2) Compute πi of X = S1 ∨ Sn for 1 < i < n. (∨ means “wedge product”.) Show that
the inclusion S1 → X induces an isomorphism on π1. Compute the action of π1 on
πn.

(3) Do each of the following problems.
(a) Compute π1 of the complement of a circle embedded in R3 as the unknot (i.e.

as the usual circle in the xy plane).
(b) Let Σn,m be a n-holed torus with m points removed. Compute πk(Σ1,1). (Hint:

What familiar space is Σ1,1 homotopy equivalent to?)
(c) Compute πk of SL2(R).
(d) Compute the fundamental group of the subspace S ⊂ M3(R) of 3 × 3 matrices

with rank 1.
(4) Application of topology to free groups.

(a) Let Xn be C with n points removed. Compute π1(Xn, x0).
(b) Compute the universal covering space of S1 ∨ S1.
(c) Prove that Fn (the free group on n generators) is a subgroup of F2.
(d) Prove that every subgroup of a free group is free.
(e) Prove that Fn contains a subgroup that is not finitely generated.
(f) Let G ⊂ Fn be a subgorup of index j. G is free; how many generators does it

have?
(5) Show that for every finitely generated abelian group G there is a manifold M with

fundamental group G and that for every finitely generated group G there is a topo-
logical space M with fundamental group G.

(6) Let X and Y be path connected and locally path connected.
(a) Show that if π1(X) is finite then every map X → S1 is null-homotopic.
(b) Show that if X is homotopy equivalent to Y then their universal covering spaces

are also homotopy equivalent.
(7) More π1 problems.

(a) Construct a simply-connected covering space of the space X ⊂ R3 that is the
union of a sphere and a diameter. Do the same when X is a union of a sphere
and a circle intersecting it in two points.

(b) Compute π1 of the complement of the two planes x = y = 0 and z = w = 0 in
R4 = C2.

(c) Use Van Kampen’s theorem to calculate π1(S
n).

(d) Use Van Kampen’s theorem to calculate π1 of the Klein bottle.
(8) More π1 problems.

(a) Compute π1(Σ2,0). Give an example of a degree 2 connected covering space over
Σ2,0. Harder: do the same for π1(Σn,m).

(b) Compute π1 of the complement of a circle embedded in R3 as the trefoil knot.
Conclude that the trefoil knot is not equivalent to the unknot.
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3. HW 3

(1) Recall that [S1, X] is Maps(S1, X) mod unbased homotopy. Suppose that X is path
connected.
(a) Prove that [S1, X] has a group structure.
(b) Prove that [S1, X] is abelian.

(More difficult is to show that [S1, X] ∼= πab
1 .)

(2) Hatcher section 0, #23: Show that a CW complex is contractible if it is the union
of two contractible subcomplexes whose intersection is also contractible.. Show that
this isn’t true for non-CW complexes.

(3) Hatcher section 1.1, #18. (Effect of attaching cells to π1, and some easy applications.)
(4) Hatcher, section 1.2, #6. (More on attaching cells.)
(5) Hatcher section 4 #6. (Covering spaces and pairs.)
(6) Hatcher section 4, #8. (Exactness at the tail of the homotopy LES.)
(7) Hatcher section 4, #9. (π0 for pairs.)
(8) Show that for a (pointed) triad (X,A,B) (i.e., x0 ∈ B ⊂ A ⊂ X), there is a long

exact sequence

· · · → πn(A,B)→ πn(X,B)→ πn(X,A)→ πn−1(A,B)→ · · ·
(9) Show that RPn has a CW-structure.

(10) Hatcher section 3D, #2.
(11) Hatcher Appendix A, #3.
(12) (a) Prove the fundamental theorem of algebra using the Brauer fixed point theorem.

(b) Prove that Rn ∼= Rm if and only if n = m.
(13) Prove the Borsuk-Ulam theorem.
(14) Prove the ham sandwich theorem. (Warmup: prove that any region in Rn can be

sliced into two regions of equal area.)

Fun problems, not to be turned in.

(1) Hatcher, section 1.2, #4. (Compute π1 of the complement of n lines through the
origin in R3.)
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4. HW 4

Homology. Read the introduction to Chapter 2.

(1) Prove that a short exact sequence of chain complexes induces a long exact sequence
on homology.

(2) Compute the simplicial homology of Σ2 and Σ1,1.
(3) Compute the homology of RP3.
(4) Compute the homology of Sn.
(5) Hatcher, section 2.1, exercise 8. (Simplicial Homology of tetrahedra arrangements.)
(6) Hatcher, section 2.1, exercise 11. (Retract implies injectivitiy on Hn.)
(7) Hatcher, section 2.1, exercise 12. Show that chain homotopy of chain maps is an

equivalence relation. Also show that composition of chain maps induces a well-defined
map on equivalence classes.

(8) For n ∈ Z≥1, compute the simplicial homology of the space obtained by taking three
copies of Dn and identifying their boundaries with each other. (You choose the
∆-structure.)

(9) Prove carefully that if 0→ Zn1 → Zn2 → → Znk → 0 is exact, then
∑k

i=1(−1)ini =
0. As a corollary, prove that if Γ is a graph on Σg, then the Euler characteristic
χ(Γ) := number of faces - edges + vertices is 2− 2g.

(10) Show that the data of a simplicial set is the same as the data of a ∆ complex.
Show that there is a functor from simplicial sets to topological spaces. Let ∆ be the
category with underlying set of objects Z≥0 and morphisms Hom(i, j) the set of order
preserving injections {0, . . . , i} → {0, . . . , j}. Show that a simplicial set is the same
as a functor ∆→ Set. Show that ∆(S•) is a simplicial complex.

(11) Prove the five lemma and the snake lemma. Do Hatcher section 2.1, problem 14.
(12) If σ : ∆n → X, define σ : ∆n → X by

σ(t0, · · · , tn) := σ(tn, · · · , t0).
Define T : Cn(X)→ Cn(X) by T (σ) := (−1)n(n+1)/2σ.
(a) Show that T is a chain map.
(b) Show (without constructing it explicitly) that there exists a chain homotopy

from T to the identity.
(13) Let X and Y be compact surfaces, and let f : X → Y be a degree d branched

cover. Let r denote the sum of the orders of the ramification points in X. Prove the
Riemann-Hurwitz formula

χ(X) = dχ(Y )− r
(Branched cover means that locally f looks like a power map; i.e., for every p ∈ X,

there are identifications of neighborhoods of p and f(p) with C identifying p and
f(p) with 0, such that under these identifications, f(z) = zn near the origin for
some positive integer n. So if n = 1 then f is a local homeomorphism at p, while
if n > 1 then p is called a ramification point of order n − 1, and f(p) is a branch
point. Over the complement of the branch points, f is a covering, and d is its degree.
Ordinarily one requires X and Y to be oriented and the above identifications to be
orientation-preserving, but that it is not necessary for this problem.)
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5. HW 5

Relative homology and Degree.

(1) Hatcher section 2.1, problems 14, 17(b), 18, 27.

Mayer-Vietoris sequence.

(1) Compute the homology of the space obtained by taking three copies of Dn and
identifying their boundaries with each other.

(2) Compute the homology of a genus g surface with n disjoint discs removed.

(3) Let A =

[
a b
c d

]
; this induces a self-homeomorphism φA of R2/Z2 = S1 × S1 . Let

Y be the 3-manifold obtained by taking two copies of S1 × D2 and identifying the
boundary tori via A . Compute the homology of Y , in terms of A.

For example, if A is the identity matrix, then Y = S1 × S2 ; if A =

[
0 −1
1 0

]
then Y ∼= S3.
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6. HW 6

In some of the following prboblems, you are asked to compute homology and cohomology
with coefficients in a general commutative ring A. If you aren’t comfortable doing that then
do separate computations for A = Z, A = Q, and A = F2. (And if you aren’t comfortable
doing that then just do the computation for A = Z.)

(1) Hatcher section 3.2 exercises 4, 10, 11.
(2) Hatcher section 3.3 exercises 5, 7. 3.
(3) Let Σg denote the compact orientable surface of genus g . Show that if g < h, then

any map f : Σg → Σh has degree zero.
(4) Let A be an n × n matrix with integer entries. Then A induces a map Rn/Zn →

Rn/Zn.
(a) Show that under the obvious identification H1(T n;Z) ∼= Zn, the pullback

φ∗ : H1(T n;Z)→ H1(T n;Z)

is equal to the transpose of A.
(b) Show that the degree of φ equals the determinant of A.

(5) Let X be the oriented surface of genus 2 (the 2-holed torus). Compute the homology
and cohomology of X with coefficients in a commutative ring A.

(6) Compute the homology and cohomology of RP3 with coefficients in a commutative
ring A.

(7) Compute the homology and cohomology of S3 with coefficients in a commutative
rings A.

(8) Suppose that X is a retract of Y .
(a) (Hatcher, 2.1, #11) Show that Hn(X,A)→ Hn(Y,A) is injective.
(b) Show that Hn(Y,A)→ Hn(X,A) is surjective.

(9) Compute the cellular homology of RPn and RPn/RPm with coefficients in Z.
(10) Hatcher, 2.2, #10
(11) Hatcher, 2.2, #11
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