Jan 11 Math 250

DZB and class

January 2022

Definition. We say that an integer n is even if there exists an integer m such that $n=2 m$.

Examples. Is 6 even? Let's check the definition. Is there an integer m such that $6=2 m$? Sure. If $m=3$, then $6=2 m$. So 6 is even.

What about $n=7$? Well, if $7=2 m$, then $m=7 / 2=3.5$, which is not an integer.

What about $n=-8$? Sure. $-8=2(-4)$. Since -4 is an integer, -8 is even.
What about 0 ? Is 0 even? Can we solve the equation $0=2 m$ for m ? Yes: $m=0$ is a solution. So 0 is even.
(A "lemma" is usually a "small" piece of math. A theorem is a big piece. This is subjective.)

Lemma. Let a and b be integers. Suppose that a and b are both even. Then $a+b$ is also even.

Proof. Since a is even, there exists an integer m such that $a=2 m$. Since b is even, there exists an integer n such that $b=2 n$. Then, $a+b=2 m+2 n$. By the distributive property of multiplication and addition, $a+b=2(m+n)$. Since $m+n$ is an integer, we conclude that $a+b$ is even.

Note. The reason we can conclude that $a+b$ is even is that we verified the definition of even on the previous line.

Put math between dollar signs.
$\mathrm{a}+\mathrm{b}$ vs $a+b$
This appears inline $\int_{0}^{\infty} e^{-x^{2}} d x$. To 'display' the equation, use double dollar signs

$$
\int_{0}^{\infty} e^{-x^{2}} d x
$$

$\alpha \beta \gamma \Gamma \sum \times \oplus \otimes \bigoplus$

The structure of proofs. The 'proof technique' of the "even + even $=$ even" proof is a 'direct proof'.

There are four steps

1. Find your hypotheses and assume them.
2. Write out what your hypotheses mean; i.e., write out the definitions of everything. (I.e., unwind.)
3. Think of something; usually, manipulate the definitions
4. Conclude. (Verify the definitions of the thing you want to prove.)
I.e., Assume, Unwind, Manipulate, Conclude (AUMC)

Definition. Let a and b be integers. We say that a is a multiple of b if there exists some integer c such that $a=b c$. In this case, we say that b divides a, and write $b \mid a$.

Lemma. Suppose that a and b are even integers. Then $a b$ is a multiple of 4.

Proof. Since a is even, there exists an integer m such that $a=2 m$. Since b is even, there exists an integer n such that $b=2 n$. Then $a b=(2 m)(2 n)=4(m n)$. (Since multiplication commutes.) Since $m n$ is an integer, $a b$ is a multiple of 4 .

