Jan 20 Math 250

David Zureick-Brown

January 2022

Definition. Let a and b be integers. We say that a divides b if there exists an integer k such that $b=a k$. In this case, we write $a \mid b$.

Prove that $3 \mid 4^{n}-1$ for all non-negative integers n.
Definition. We say that an integer is prime if $n \neq \pm 1$ and $a \mid n$ implies that $a= \pm 1$ or $\pm n$.

Examples: 7 is prime. To prove this, just try every integer between 1 and 7 , and check whether they divide 7. (This is called "brute force" or proof by computation.)

Example: 6 is not prime. To prove this, give an example of a divisor a which is not ± 1 or $\pm 6 ; a=2$ works.

Why isn't 1 prime? Because we want factorizations to be unique. I.e., $6=2 * 3=3 * 2$. If we allow 1 to be prime, then $6=1 * 2 * 3=1 * 1 * 2 * 3=\ldots$

Problem: for which integers n is $n^{3}-1$ prime? If $n=2, n^{3}-1=8-1=7$, which is prime. If $n=3$, then $3^{3}-1=27-1=26$, which is not prime.

Note: if n is odd, then $n^{3}-1$ is even, so it is not prime (unless it is equal to 2 , because 2 is the only even prime).

