MATH 250 HANDOUT 4 - UNIQUE FACTORIZATION

(1) Prove that $\log _{10} 7$ is irrational.
(2) Let $b \in \mathbb{Z}_{\geq 1}$. Prove that $\log _{b} 3 / \log _{b} 2$ is irrational.
(3) Show that if p is a prime and $p \mid a^{n}$, then $p^{n} \mid a^{n}$.
(4) Prove that $\sqrt{3}$ is irrational.
(5) Prove that $\sqrt[5]{5}$ is irrational.
(6) Prove that the equation

$$
\left(x^{2}-y^{2}\right)\left(x^{2}-4 y^{2}\right)=7
$$

has no solutions with $x, y \in \mathbb{Z}$.
(7) Show that for every integer $n, n^{3}+2 n$ and $n^{4}+3 n^{2}+1$ have no common prime factors.
(8) Prove that there are infinitely many primes of the form $6 n+1$ or there are infinitely many primes of the form $6 n+5$.
(9) Prove that there are infinitely many primes of the form $6 n+5$.
(10) Try to prove that there are infinitely many primes of the form $6 n+1$. What goes wrong in the argument from the previous problem?
(11) Prove that there is only one positive integer n such that

$$
2^{8}+2^{11}+2^{n}=48^{2}+2^{n}
$$

is a perfect square.
(12) Prove that if $\mathrm{n} \geq 2$, then $\sqrt[n]{n}$ is irrational. Hint: use that if $n>2$, then $2^{n}>n$.

Examples and counterexamples

Many of the following problems are stated as 'prove or disprove'. For such problems, work a few examples to see if you think the statement is true. Then either try to give a proof, or give a counterexample.
(1) Give an example of four positive integers such that any three of them have a common divisor greater than 1 , although only ± 1 divide all four of them.
(2) Find the smallest positive integer such that $n / 2$ is a square and $n / 3$ is a cube.
(3) Let n be a positive integer. Prove or disprove: $n, n+2$ and $n+4$ cannot all be prime.
(4) Suppose that $a \mid b^{n}$. Prove or disprove: $a \mid b$.
(5) Suppose that $a \mid b c$. Prove or disprove: $a \mid b c$.
(6) Prove or disprove: let $a, b \in \mathbb{Z}_{\geq 1}$. Then $\log _{a} b$ is irrational.
(7) Prove or disprove: let p_{1}, \ldots, p_{n} be prime numbers. Then $p_{1} \cdots p_{n}+1$ is prime.
(8) Prove or disprove: there are no integer solutions to the equation

$$
x^{2}-y^{2}=2^{3}
$$

