MATH 250 HANDOUT 16 - EQUIVALENCE RELATIONS

- (1) Which of the following are equivalence relations? (Which are reflexive, symmetric, or transitive?)
 - (a) Let S be the collection of all sets and say that $A \sim B$ if there is a bijection from A to B.
 - (b) Let S be the collection of all sets and say that $A \sim B$ if there is a surjection from A to B.
 - (c) Let S be the collection of all sets and say that $A \sim B$ if there is an injection from A to B.
 - (d) Let S be the collection of all sets and say that $A \sim B$ if $A \cap B$ is empty.
 - (e) Let x and y be real numbers and define $x \sim y$ if $x y \in \mathbb{Q}$.
 - (f) Let x and y be rational numbers and define $x \sim y$ if $x y \in \mathbb{Q}_{\geq 0}$.

(g)

- (h) Let x and y be integers and define $x \sim y$ if $x y \in d\mathbb{Z}$.
- (i) Let x and y be real numbers and define $x \sim y$ if x = 1 or y = 1.
- (j) Let x and y be real numbers and define $x \sim y$ if x = 1 or y = -1.
- (k) Let $\mathbb{Q}[x]$ be the set of polynomials with rational coefficients. Say that $f \sim g$ if their derivatives are equal.
- (1) Say that $f \sim g \in Fun(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that a < 0 < b and such that f(x) = g(x) for all $x \in (a, b)$.
- (m) Say that $f \sim g \in Fun(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that a < b and f(x) = g(x) for all $x \in (a, b)$.
- (n) Say that $f \sim g \in Fun(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that f(x) = g(x) for all $x \in (a, b)$.
- (o) Say that two power series f and g are related if all but finitely many of their coefficients are the same.
- (p) Say that two power series f and g are related if at least one of their coefficients are the same.
- (q) Say that two power series f and g are related if f g is a polynomial. Answers (please circle):
- (a) R S T
- (b) R S T
- (c) R S T
- (d) R S T
- (e) R S T
- (f) R S T

- (g) R S T
- (h) R S T
- (i) R S T
- (j) R S T
- (k) R S T