MATH 250 HANDOUT 15 - BINARY OPERATIONS

(1) Which of these are binary operations? Which are commutative/associative, which have an identity element, and for which does every element have an inverse?

(a) $\mathbb{Z} \times \mathbb{Z} \xrightarrow{+} \mathbb{Z}$.

(b) $\mathbb{R} \times \mathbb{R} \xrightarrow{i} \mathbb{R}$. (c) $\mathbb{R} \times \mathbb{R} \xrightarrow{i} \mathbb{R}$. (d) $\mathbb{R}^* \times \mathbb{R}^* \xrightarrow{i} \mathbb{R}^*$ (where $\mathbb{R}^* = \mathbb{R} - \{0\}$.) (e) $Fun(B, B) \times Fun(B, B) \xrightarrow{\circ} Fun(B, B)$. (f) $\mathbb{Z} \times \mathbb{Z} \xrightarrow{\star} \mathbb{Z}$ (where $a \star b = a + b + 1$). (g) $\mathbb{Z} \times \mathbb{Z} \xrightarrow{\star} \mathbb{Z}$ (where $a \star b = 2a + b$). (h) $P(A) \times P(A) \xrightarrow{\cap} P(A)$. (i) $P(A) \times P(A) \xrightarrow{\cup} P(A)$. (j) $\mathbb{R} \cup \{\infty\} \times \mathbb{R} \cup \{\infty\} \xrightarrow{\oplus} \mathbb{R} \cup \{\infty\}$ (where $a \oplus b = \max(a, b)$.) (k) $\mathbb{R} \cup \{\infty\} \times \mathbb{R} \cup \{\infty\} \xrightarrow{\oplus} \mathbb{R} \cup \{\infty\}$ (where $a \oplus b = \min(a, b)$.) (l) $\{0, 1\} \times \{0, 1\} \xrightarrow{\star} \{0, 1\}$ (where $0 \star 0 = 0, 0 \star 1 = 1, 1 \star 0 = 0, 1 \star 1 = 0$). Answers (please circle):

(a)	commutative	associative	identity	inverses
(b)	commutative	associative	identity	inverses
(c)	commutative	associative	identity	inverses
(d)	commutative	associative	identity	inverses
(e)	commutative	associative	identity	inverses
(f)	commutative	associative	identity	inverses
(g)	commutative	associative	identity	inverses
(h)	commutative	associative	identity	inverses
(i)	commutative	associative	identity	inverses
(j)	commutative	associative	identity	inverses

- (k) commutative associative identity inverses
- (2) Try to think of 3 more examples of binary operations.