MATH 250 HANDOUT 16 - EQUIVALENCE RELATIONS

(1) Which of the following are equivalence relations? (Which are reflexive, symmetric, or transitive?)
(a) Let S be the collection of all sets and say that $A \sim B$ if there is a bijection from A to B.
(b) Let S be the collection of all sets and say that $A \sim B$ if there is a surjection from A to B.
(c) Let S be the collection of all sets and say that $A \sim B$ if there is an injection from A to B.
(d) Let S be the collection of all sets and say that $A \sim B$ if $A \cap B$ is empty.
(e) Let x and y be real numbers and define $x \sim y$ if $x-y \in \mathbb{Q}$.
(f) Let x and y be real numbers and define $x \sim y$ if $x=1$ or $y=1$.
(g) Let x and y be real numbers and define $x \sim y$ if $x=1$ or $y=-1$.
(h) Let $\mathbb{Q}[x]$ be the set of polynomials with rational coefficients. Say that $f \sim g$ if their derivatives are equal.
(i) Say that $f \sim g \in F u n(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that $a<0<b$ and such that $f(x)=g(x)$ for all $x \in(a, b)$.
(j) Say that $f \sim g \in \operatorname{Fun}(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that $a<b$ and $f(x)=g(x)$ for all $x \in(a, b)$.
(k) Say that $f \sim g \in \operatorname{Fun}(\mathbb{R}, \mathbb{R})$ are equivalent if there exists an interval (a, b) such that $f(x)=g(x)$ for all $x \in(a, b)$.
(l) Say that two power series f and g are related if all but finitely many of their coefficients are the same.
(m) Say that two power series f and g are related if at least one of their coefficients are the same.
(n) Say that two power series f and g are related if $f-g$ is a polynomial.

Answers (please circle):
(a) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(b) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(c) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(d) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(e) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(f) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(g) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(h) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(i) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(j) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$
(k) $\mathrm{R} \quad \mathrm{S} \quad \mathrm{T}$

