MATH 250 HANDOUT 14 - COMPOSITIONS AND INJECTIVITY/SURJECTIVITY

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=\frac{1}{1+x^{2}}$ and let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the function $g(x)=e^{x}$.
(a) What is $g \circ f(0)$?
(b) What is $f \circ g(0)$?
(c) Give a formula for $f \circ g$ and $g \circ f$.
(2) Let $f: \mathbb{R} \rightarrow \mathbb{Z}$ be the function $f(x)=\lfloor x\rfloor$ (i.e., round x down to the nearest integer) and let $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be the function $g(n)=$ 'the number of distinct prime factors of n '. (So $g(0)=g(1)=0, g(4)=1, g(6)=2)$)
(a) What is $g \circ f(\pi)$?
(b) What is $g \circ f(91.1023124)$?
(c) Is $g \circ f$ injective? Surjective?
(3) Let $f: \mathbb{Z} \rightarrow P(\mathbb{Z})$ be the function $f(n)=n$ and let $g: P(\mathbb{Z}) \rightarrow P(\mathbb{Z})$ be the function $g(S)=S \cap\{1\}$.
(a) What is $g \circ f(0)$?
(b) What is $g \circ f(1)$?
(c) Give a formula for $g \circ f$.
(4) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Prove or disprove each of the following:
(a) If f and g are injections, then $g f$ is an injection.
(b) If f and g are surjections, then $g f$ is a surjection.
(c) If f and g are bijections, then $g f$ is a bijection.
(d) If $g f$ is an injection, then f and g are injections.
(e) If $g f$ is a surjection, then f and g are surjections.
(f) If $g f$ is a bijection, then f and g are bijections.
(g) If $g f$ is an injection, then f is an injection.
(h) If $g f$ is an injection, then g is an injection.
(i) If $g f$ is a surjection, then f is a surjection.
(j) If $g f$ is a surjection, then g is a surjection.
(k) If $g f$ is a bijection, then f is a bijection.
(l) If $g f$ is a bijection, then g is a bijection.
(m) If $g f$ is an injection and g is invertible, then f is an injection.

