MATH 250 HANDOUT 5-INDUCTION WARMUP

1. We want to prove, by induction, that, for every positive integer n,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2} .
$$

a) What is the open statement " $P(n)$ "?

$$
\mathrm{P}(\mathrm{n})=
$$

b) What is the statement " $P(1)$ "? Why is $P(1)$ true?

$$
P(1)=
$$

c) What is the inductive step? Write out your assumption, your desired conclusion, and the inductive step (i.e., the proof that $P(n-1) \Rightarrow P(n))$.

Assume that

We want to show that
(Inductive step)
2. Let a_{n} be a sequence such that $a_{1}=1$ and $a_{n}=n a_{n-1}$. We want to prove, by induction, that, for every positive integer n,

$$
a_{n}=n!=n(n-1)(n-2) \cdots 2 \cdot 1 .
$$

a) What is the open statement " $P(n)$ "?

$$
\mathrm{P}(\mathrm{n})=
$$

b) What is the statement " $P(1)$ "? Why is $P(1)$ true?

$$
\mathrm{P}(1)=
$$

c) What is the inductive step? Write out your assumption, your desired conclusion, and the inductive step (i.e., the proof that $P(n-1) \Rightarrow P(n)$).

Assume that

We want to show that
(Inductive step)
3. We want to prove, by induction, that, for every positive integer n,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

a) What is the open statement " $P(n)$ "?

$$
\mathrm{P}(\mathrm{n})=
$$

b) What is the statement " $P(1)$ "? Why is $P(1)$ true?

$$
\mathrm{P}(1)=
$$

c) What is the inductive step? Write out your assumption, your desired conclusion, and the inductive step (i.e., the proof that $P(n-1) \Rightarrow P(n))$.

Assume that

We want to show that
(Inductive step)
4. Prove, by induction, that $2^{n+1} \geq n^{2}$ for every integer n. (For this problem, you will have to first check $P(1)$ and $P(2)$.)

