PROBLEMS ABOUT COUNTABLE SETS

This is a collection of problems from class and from the homework that I would like students to be able to do. For each of these sets, either prove directly that it is countable (i.e., write down a bijection from $\mathbb{Z}_{>0}$), or use the injectivity, surjectivity, or union theorem. I may or may not ask you to prove all of your claims (i.e., I may ask you to write down a bijection, but not to prove that the map you wrote down is a bijection), but in general still expect you to justify every detail unless I request otherwise.

On the exam, I will make it clear what you are allowed to assume (i.e., "Prove that \mathbb{Q} is countable. You may assume that $\mathbb{Z} \times \mathbb{Z}$ is countable."). For this worksheet though, to do any given problem, you may use the result of any previous problem.

(1) Prove that each of the following is countable.

(a) \mathbb{Z} (b) $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ (c) \mathbb{Q} (d) $\mathbb{Z} \times \mathbb{Z}$ (e) $\{e^n | n \in \mathbb{Z}\}$ (f) $\mathbb{Q}^+ \cup \{e^n | n \in \mathbb{Z}\}$ (g) $\mathbb{Q} \times \mathbb{Q}$ (h) \mathbb{Q}^n (i) \mathbb{Q}_d = set of polynomials of rational coefficients of degree at most d. (j) \mathbb{Q} (k) $P_{\text{BD}}(\mathbb{Z})$ (l) $\text{Fun}_{\text{BD}}(\mathbb{Z})$ (l) $\text{Fun}_{\text{BD}}(\mathbb{Z})$ (m) $\underbrace{\text{Seq}}_{\text{BD}}(\mathbb{Z}_{>0})$ (n) $\overline{\mathbb{Q}}$

In addition, make sure that you can do the homework problems, especially 6 and 11 of 6.1.

(2) **Hints**:

- (a) \mathbb{Z} ; Hint: write down an explicit bijection
- (b) $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$; Hint: injectivity theorem.
- (c) \mathbb{Q} ; Hint: Union theorem or surjection theorem.
- (d) $\mathbb{Z} \times \mathbb{Z}$; Hint: union theorem or surjection theorem.
- (e) $\{e^n | n \in \mathbb{Z}\}$; Hint: write down an explicit bijection with \mathbb{Z}
- (f) $\mathbb{Q}^+ \cup \{e^n | n \in \mathbb{Z}\}$; Hint: union theorem + injection theorem
- (g) $\mathbb{Q} \times \mathbb{Q}$; Hint: union theorem
- (h) \mathbb{Q}^n ; Hint: Union theorem
- (i) \mathbb{Q}_d ; Hint: find a bijection with a set from a previous problem.
- (j) \mathbb{Q} ; Hint: Union theorem
- (k) $P_{BD}(\mathbb{Z})$; Hint: Union theorem and surjection theorem. This one is just like \mathbb{Q} .
- (l) $\operatorname{Fun}_{\operatorname{BD}}(\mathbb{Z})$; Hint: Union theorem
- (m) $\operatorname{Seq}_{BD}(\mathbb{Z}_{>0})$; Hint: Union or surjection theorem
- (n) $\overline{\mathbb{Q}}$; Hint: union theorem