PROBLEMS ABOUT COUNTABLE SETS

This is a collection of problems from class and from the homework that I would like students to be able to do. For each of these sets, either prove directly that it is countable (i.e., write down a bijection from $\mathbb{Z}_{>0}$), or use the injectivity, surjectivity, or union theorem. I may or may not ask you to prove all of your claims (i.e., I may ask you to write down a bijection, but not to prove that the map you wrote down is a bijection), but in general still expect you to justify every detail unless I request otherwise.

On the exam, I will make it clear what you are allowed to assume (i.e., "Prove that \mathbb{Q} is countable. You may assume that $\mathbb{Z} \times \mathbb{Z}$ is countable."). For this worksheet though, to do any given problem, you may use the result of any previous problem.
(1) Prove that each of the following is countable.
(a) \mathbb{Z}
(b) $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$
(c) \mathbb{Q}
(d) $\mathbb{Z} \times \mathbb{Z}$
(e) $\left\{e^{n} \mid n \in \mathbb{Z}\right\}$
(f) $\mathbb{Q}^{+} \cup\left\{e^{n} \mid n \in \mathbb{Z}\right\}$
(g) $\mathbb{Q} \times \mathbb{Q}$
(h) \mathbb{Q}^{n}
(i) $\mathbb{Q}_{d}=$ set of polynomials of rational coefficients of degree at most d.
(j) \mathbb{Q}
(k) $P_{\mathrm{BD}}(\mathbb{Z})$
(l) $\operatorname{Fun}_{\mathrm{BD}}(\mathbb{Z})$
(m) $\operatorname{Seq}_{\mathrm{BD}}\left(\mathbb{Z}_{>0}\right)$
(n) $\overline{\mathbb{Q}}$

In addition, make sure that you can do the homework problems, especially 6 and 11 of 6.1.

(2) Hints:

(a) \mathbb{Z}; Hint: write down an explicit bijection
(b) $\mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$; Hint: injectivity theorem.
(c) \mathbb{Q}; Hint: Union theorem or surjection theorem.
(d) $\mathbb{Z} \times \mathbb{Z}$; Hint: union theorem or surjection theorem.
(e) $\left\{e^{n} \mid n \in \mathbb{Z}\right\}$; Hint: write down an explicit bijection with \mathbb{Z}
(f) $\mathbb{Q}^{+} \cup\left\{e^{n} \mid n \in \mathbb{Z}\right\}$; Hint: union theorem + injection theorem
(g) $\mathbb{Q} \times \mathbb{Q}$; Hint: union theorem
(h) \mathbb{Q}^{n}; Hint: Union theorem
(i) \mathbb{Q}_{d}; Hint: find a bijection with a set from a previous problem.
(j) \mathbb{Q}; Hint: Union theorem
(k) $P_{\mathrm{BD}}(\mathbb{Z})$; Hint: Union theorem and surjection theorem. This one is just like \mathbb{Q}.
(l) $\operatorname{Fun}_{\mathrm{BD}}(\mathbb{Z})$; Hint: Union theorem
(m) $\operatorname{Seq}_{\mathrm{BD}}\left(\mathbb{Z}_{>0}\right)$; Hint: Union or surjection theorem
(n) $\overline{\mathbb{Q}}$; Hint: union theorem

