MATH 250 HANDOUT 16 - BINARY OPERATIONS

- (1) Which of these are binary operations? Which are commutative/associative, which have an identity element, and for which does every element have an inverse?
 - (a) $\mathbb{Z} \times \mathbb{Z} \xrightarrow{+} \mathbb{Z}$.
 - (b) $\mathbb{R} \times \mathbb{R} \xrightarrow{\cdot} \mathbb{R}$.
 - (c) $\mathbb{R} \times \mathbb{R} \xrightarrow{/} \mathbb{R}$.
 - (d) $\mathbb{R}^* \times \mathbb{R}^* \xrightarrow{/} \mathbb{R}^*$ (where $\mathbb{R}^* = \mathbb{R} \{0\}$.)
 - (e) $Fun(B, B) \times Fun(B, B) \xrightarrow{\circ} Fun(B, B)$.
 - (f) $\mathbb{Z} \times \mathbb{Z} \xrightarrow{\star} \mathbb{Z}$ (where $a \star b = a + b + 1$.
 - (g) $\mathbb{Z} \times \mathbb{Z} \xrightarrow{\star} \mathbb{Z}$ (where $a \star b = 2a + b$.
 - (h) $P(A) \times P(A) \xrightarrow{\cap} P(A)$.
 - (i) $P(A) \times P(A) \xrightarrow{\cup} P(A)$.
 - (j) $\mathbb{R} \cup \{\infty\} \times \mathbb{R} \cup \{\infty\} \xrightarrow{\oplus} \mathbb{R} \cup \{\infty\} \text{ (where } a \oplus b = \max(a, b).)$
 - (k) $\{0,1\} \times \{0,1\} \xrightarrow{\star} \{0,1\}$ (where $0 \star 0 = 0, 0 \star 1 = 1, 1 \star 0 = 0, 1 \star 1 = 0$). Answers (please circle):
 - (a) commutative associative identity inverses
 - (b) commutative associative identity inverses
 - (c) commutative associative identity inverses
 - (d) commutative associative identity inverses
 - (e) commutative associative identity inverses
 - (f) commutative associative identity inverses
 - (g) commutative associative identity inverses
 - (h) commutative associative identity inverses
 - (i) commutative associative identity inverses
 - (j) commutative associative identity inverses
 - (k) commutative associative identity inverses

(2) Try to think of 3 more examples of binary operations.