MATH 250 HANDOUT 11 - INDEXED UNIONS AND INTERSECTIONS, PROOFS

(1) Proofs.
(a) Let d be an integer. Compute $\bigcup_{i=1}^{\infty} d^{i} \mathbb{Z}$ and $\bigcap_{i=1}^{\infty} d^{i} \mathbb{Z}$; give a proof that your computation is correct.
(b) Compute $\bigcup_{i=1}^{\infty}\left(1, i^{2}\right)$ and $\bigcap_{i=1}^{\infty}\left(1, i^{2}\right)$; give a proof that your computation is correct.
(c) Compute $\bigcup_{i=1}^{\infty}(-i, i)$ and $\bigcap_{i=1}^{\infty}(-i, i)$; give a proof that your computation is correct.
(d) Prove that

$$
\overline{\bigcup_{i \in \mathbb{Z} \geq 1}} A_{i}=\bigcap_{i \in \mathbb{Z} \geq 1} \bar{A}_{i}
$$

(e) Prove that

$$
A \cup \bigcap_{i \in \mathbb{Z} \geq 1} B_{i}=\bigcap_{i \in \mathbb{Z} \geq 1}\left(A \cup B_{i}\right) .
$$

(f) Suppose that for every $i, A \subset A_{i}$. Prove that

$$
A \subset \bigcap_{i=1}^{\infty} A_{i} .
$$

(g) Let $\mathbb{Q}_{\leq d}=\{a / b: a, b \in\{-d, \ldots, d\}$ and $b \neq 0\}$. Prove that $\mathbb{Q}=\bigcup_{d=1}^{\infty} \mathbb{Q}_{\leq d}$.
(h) Let $\mathbb{Q}[x]$ be the set of polynomials with rational coefficients, and let $\mathbb{Q}[x]_{d}$ be the set of polynomials with rational coefficients of degree at most d. Prove that $\mathbb{Q}[x]=\bigcup_{d=0}^{\infty} \mathbb{Q}[x]_{d}$.

(2) Other Index Sets

(a) Compute $\bigcap_{S \in \mathbb{P}(A)-\{\emptyset\}} S$ and $\bigcup_{S \in \mathbb{P}(A)} S$; give a proof that your computation is correct.
(b) Prove that $\bigcup_{n \in \mathbb{Z}}(\mathbb{Z} \times\{n\})=\mathbb{Z} \times \mathbb{Z}$.

Unrelated Challenge problem: Let $S_{n}=\{1, \ldots, n\}$ and let $S_{0}=\emptyset$. Prove that $\left|P\left(S_{n}\right)\right|=2^{n}$.

