MATH 250 HANDOUT 11 - INDEXED UNIONS AND INTERSECTIONS, PROOFS

- (1) **Proofs.**
 - (a) Let d be an integer. Compute $\bigcup_{i=1}^{\infty} d^i \mathbb{Z}$ and $\bigcap_{i=1}^{\infty} d^i \mathbb{Z}$; give a proof that your computation is correct.
 - (b) Compute $\bigcup_{i=1}^{\infty} (1, i^2)$ and $\bigcap_{i=1}^{\infty} (1, i^2)$; give a proof that your computation is correct.
 - (c) Compute $\bigcup_{i=1}^{\infty}(-i,i)$ and $\bigcap_{i=1}^{\infty}(-i,i)$; give a proof that your computation is correct.
 - (d) Prove that

$$\overline{\bigcup_{i\in\mathbb{Z}_{\geq 1}}A_i}=\bigcap_{i\in\mathbb{Z}_{\geq 1}}\overline{A}_i$$

(e) Prove that

$$A \cup \bigcap_{i \in \mathbb{Z}_{\geq 1}} B_i = \bigcap_{i \in \mathbb{Z}_{\geq 1}} (A \cup B_i).$$

(f) Suppose that for every $i, A \subset A_i$. Prove that

$$A \subset \bigcap_{i=1}^{\infty} A_i.$$

- (g) Let $\mathbb{Q}_{\leq d} = \{a/b : a, b \in \{-d, \dots, d\}$ and $b \neq 0\}$. Prove that $\mathbb{Q} = \bigcup_{d=1}^{\infty} \mathbb{Q}_{\leq d}$.
- (h) Let $\mathbb{Q}[x]$ be the set of polynomials with rational coefficients, and let $\mathbb{Q}[x]_d$ be the set of polynomials with rational coefficients of degree at most d. Prove that $\mathbb{Q}[x] = \bigcup_{d=0}^{\infty} \mathbb{Q}[x]_d$.
- (2) Other Index Sets
 - (a) Compute $\bigcap_{S \in \mathbb{P}(A) \{\emptyset\}} S$ and $\bigcup_{S \in \mathbb{P}(A)} S$; give a proof that your computation is correct.
 - (b) Prove that $\bigcup_{n \in \mathbb{Z}} (\mathbb{Z} \times \{n\}) = \mathbb{Z} \times \mathbb{Z}$.

Unrelated Challenge problem: Let $S_n = \{1, \ldots, n\}$ and let $S_0 = \emptyset$. Prove that $|P(S_n)| = 2^n$.