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Faltings' theorem

Theorem (Faltings)

Let C be a smooth curve over Q with genus at least 2. Then C(Q) is
finite.

For g > 2, y? = x?6T! 41 has only finitely many solutions with x,y € Q.
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@ Given C, compute C(Q) exactly.
@ Compute bounds on #C(Q).

Conjecture (Uniformity)

There exists a constant N(g) such that every smooth curve of genus g
over Q has at most N(g) rational points.

This would follow from standard conjectures (e.g. Lang’s conjecture, the
higher dimensional analogue of Faltings' theorem).

i
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Coleman’s bound

Theorem (Coleman)

Let X be a curve of genus g and let r = rankz, Jacx(Q). Suppose p > 2g
is a prime of good reduction. Suppose r < g. Then

#X(Q) < #X(Fp) +2g — 2.

@ A modified statement holds for p < 2g or for K # Q.

@ Note: this does not prove uniformity (since the first good p might be
large).
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Stoll's bound

Theorem (Stoll)

Let X be a curve of genus g and let r = ranky, Jacx(Q). Suppose p > 2g
is a prime of good reduction. Suppose r < g. Then

#X(Q) < #X(Fp) + 2r.
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Bad reduction bound

Theorem (Lorenzini-Tucker, McCallum-Poonen)

Let X be a curve of genus g and let r = ranky, Jacx(Q). Suppose p > 2g
is a prime. Suppose r < g.

Let 2" be a regular proper model of C. Then

#X(Q) < #2°(Fp) +2g — 2.

A recent improvement due to Stoll gives a uniform bound if r < g — 3.
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Theorem (ZB-Katz)

Let X be a curve of genus g and let r = ranky, Jacx(Q). Suppose p > 2g
is a prime. Let 2" be a regular proper model of C. Suppose r < g. Then

#X(Q) < #2°"(Fp) + 2r.
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Example (hyperelliptic curve with cuspidal reduction)

—2-11-19-173-y? = (x—50)(x — 9)(x — 3)(x + 13)(x® + 2x%> + 3x + 4)

= x(x +1)(x + 2)(x + 3)(x + 4)* mod 5.

Analysis
Q@ X(Q) contains
{00, (50,0, (9,0), (3,0), (—13,0), (25, 20247920), (25, —20247920)}

Q #257(Fs) =5
Q 7<#X(Q) <#2Z5"(Fs)+2-1=7

This determines X(Q)
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Non-example

y2 =x%45

=x% mod 5.

@ X(Q) > {oot, 007}
@ 27*"(Fs) = {oo™, 007, £(L, £1), £(2, £2), £(3, £3%), £(4, £4),}
© 2< #X(Q) < #25"(Fs) +2-1=20
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Note: no point can reduce to (0, 0).
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=x% mod5

\/
[

Now: (0,5) reduces to (0,0). Local equation looks like xy = 52
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=x% mod5

/

Blow up. Local equation looks like xy =5
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=x% mod5

Blow up. Local equation looks like xy = 53
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=x% mod5

Blow up. Local equation looks like xy =5
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Chabauty’s method

(p-adic integration) There exists V C H%(Xg,, ) with
dimg, V' > g — r such that,

Q
/ w=20 VP, Q € X(Q),w e V
P

(Coleman, via Newton Polygons) Number of zeroes in a residue
class Dp is < 1+ np, where np = # (divw N Dp)

(Riemann-Roch) > np =2g — 2.
(Coleman’s bound) > pcx (1 + np) = #X(Fp) +2g — 2.
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Example (from McCallum-Poonen’s survey paper)

X:y? =x%4+8x% +22x* +22x3 +5x% 4 6x + 1

O Points reducing to @ = (0,1) are given by

x= p-t, wheret €Z,

y= Vx64+8x>+22x4 +22x34+5x2+6x+1=1+x>+---

Pt t
(0,1) Y 0
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Stoll's idea: use multiple w

(Coleman, via Newton Polygons) Number of zeroes of [win a
residue class Dp is < 1+ np, where np = # (divw N Dp)

Let np = mingecy # (divw N Dp)
(Example) r < g —2, wi, wp € V

(sto"’s bound) Z ;7\[; S 2r. (Recall dim o V>g-—r)
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Stoll’s bound; proof.

Let D = > npP. Wanted: deg D < 2r

(Clifford) If H(Xz,, K — D) # 0 then
dim H°(Xg,, D) < %deg D' +1
(D'=K - D)
%deg(K — D) +1>dim H°(Xg,, K — D)

(Assumption)
dim H°(Xg,, K — D) > g — r

(Recall dim o V>g—r)
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Complications when X is singular

@ w € H°(X, Q) may vanish along components of X,
Q le HO(XFP, K — D) # 0 # D is special.
@ rank(K — D) # dim H°(Xg,, K — D) — 1

The relationship between dim H(X,, K — D) and deg D is less
transparent and does not follow from geometric techniques.
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Rank of a divisor

Q (D)= —-1if |D] is empty.
@ r(D) > 0if |D| is nonempty
@ r(D) > k if |[D — E| is nonempty for any effective E with deg E = k. )

O If X is smooth, then r(D) = dim H°(X, D) — 1.
@ If X is has multiple components, then r(D) # dim H°(X, D) — 1.

Ingredients of Stoll's proof only use formal properties of r(D).
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Formal ingredients of Stoll's proof

(Clifford) r(K — D) < % deg(K — D)

(Large rank) r(K—-D)>g—r—1

(Recall, V C HO(X@p,Qi),dim@p Vv > g — r)
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Semistable case

Idea: any section s € H9(X, D) can be scaled to not vanish on a
component (but may now have zeroes or poles at other components.)

Divisors on graphs:
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Divisors on graphs

Definition

For D € Divl, raum(D) > k if |D — E| is non-empty for every effective E
of degree k.

Theorem (Baker, Norine)

Riemann-Roch for ry m.
Clifford’s theorem for ry,m.

Specialization: r,,,(D) > r(D).
Formal corollary: X(Q) < #X°™(F,) + 2r (for X totally degenerate).
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General case (not totally degenerate) — abelian rank

Problems when g(I') < g(X). (E.g. rank can increase after reduction.)

Definition (Abelian rank r,p)

After winning winning the chip firing game, we additionally require that
the resulting divisor is equivalent to an effective divisor on that component.

Theorem (Katz-ZB)
Clifford’s theorem holds for r,y,

Specialization: r,,(K — D) > g —r.
Formal corollary X(Q) < #X°™(F,,) + 2r (for semistable curves.)

v
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