////////////////////////////////////////////////////////////////// // This code shows that all Number Fields unramified away from // {2,3} are two torsion fields of elliptic curves. // // This computations are relevant for the `level lowering at 2' // remark the paper "Primitive Integral Solutions to x^2 + y^3 // = z^{10}' by David Brown // // Computations were done using Magma, version V2.13-6 ////////////////////////////////////////////////////////////////// P := PolynomialRing(Rationals()); ////////////////////////////////////////////////////////////////// // Computed the following using sage // J = JonesDatabase() // J.unramified_outside([2,3]) ////////////////////////////////////////////////////////////////// f := [x^3 - 3*x + 1, x^3 - 2, x^3 + 3*x - 2, x^3 - 3, x^3 - 3*x - 4, x^3 - 3*x - 10, x^3 - 12, x^3 - 6, x^3 - 9*x - 6]; K := [NumberField(g) : g in f]; ////////////////////////////////////////////////////////////////// // This gets all elliptic curves of conductor dividing 12^3 ////////////////////////////////////////////////////////////////// D := CremonaDatabase(); e := {@@}; for a in [0..3] do for b in [0..6] do e := e join {@E : E in EllipticCurves(D,2^a*3^b)@}; end for; end for; g := {@ HyperellipticPolynomials( WeierstrassModel(E)) : E in e@};; ////////////////////////////////////////////////////////////////// // For each number field k in K, this searches for an elliptic // curve with two torsion field isomorphic to k // // (It returns that all 9 k in K are two torsion fields.) ////////////////////////////////////////////////////////////////// K_low := [k : k in K | exists{f : f in g | IsIrreducible(f) and IsIsomorphic(k,NumberField(f))}]; ////////////////////////////////////////////////////////////////// // This picks out a single E for each k in K ////////////////////////////////////////////////////////////////// pairs := {@@}; for k in K do bool := exists(t){f : f in g | IsIrreducible(f) and IsIsomorphic(k,NumberField(f))}; pairs := pairs join {}; end for;