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Abstract. Let X be a curve over a number field K with genus g ≥ 2, p a prime of OK

over an unramified rational prime p > 2r, J the Jacobian of X, r = rank J(K), and X a
regular proper model of X at p. Suppose r < g. We prove that #X(K) ≤ #X (Fp) + 2r,
extending the refined version of the Chabauty-Coleman bound to the case of bad reduction.

1. Introduction

Let K be a number field and X/K be a curve (i.e. a smooth geometrically integral 1-

dimensional variety) of genus g ≥ 2 and let p denote a prime which is unramified in K.

Faltings’ [Fal86], Vojta’s [Voj91], and Bombieri’s [Bom90] proofs of the Mordell Conjecture

tell us that X(K) is finite, but all known proofs of the Mordell Conjecture are ineffective, pro-

viding no assistance in determining X(K) explicitly for a specific curve. Chabauty [Cha41],

building on an idea of Skolem [Sko34], gave a proof of the Mordell Conjecture when the

rank r of the Jacobian of X is strictly less than the genus g. Coleman later realized that

Chabauty’s proof could be modified to get an explicit upper bound for #X(K).

Theorem 1.1 ([Col85]). Suppose p > 2g and let p ⊂ OK be a prime of good reduction which

lies above p. Suppose r < g. Then

#X(K) ≤ #X(Fp) + 2g − 2.

Using Proposition 2.8, one can write out weaker, but still explicit (in terms of g and

p), bounds when p ≤ 2g or when p ramifies in K (see any of [Col85], [Sto06], or [LT02]).

In [LT02], the authors ask if one can refine Coleman’s bound when the rank is small (i.e.

r ≤ g − 2). Stoll proved that by choosing, for each residue class, the ‘best’ differential one

can indeed refine the bound.

Theorem 1.2 ([Sto06, Corollary 6.7]). With the hypothesis of Theorem 1.1,

#X(K) ≤ #X(Fp) + 2r.

Let X be a minimal regular proper model of X at p and denote by X sm
p the smooth locus

of Xp. In another direction, McCallum and Poonen use intersection theory on X to derive

Coleman’s bound when p is a prime of bad reduction. Lorenzini and Tucker gave an earlier,

alternative proof which avoids intersection theory.
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Theorem 1.3 ( [LT02, Proposition 1.10], [MP07, Theorem A.5]). Suppose p > 2g and let p

be a prime above p. Let X be a proper regular model of X over OKp. Suppose r < g. Then

#X(K) ≤ #X sm
p (Fp) + 2g − 2.

1.1. Main Result. Michael Stoll asks [Sto06, Remark 6.5] if one can combine the methods

of [Sto06] and [MP07] to generalize Theorem 1.2 to the case when p is a prime of bad

reduction and remarks that Theorem 1.2 is true at least for a hyperelliptic curve. The main

result of this paper is such a generalization.

Theorem 1.4. Let X be a curve over a number field K. Suppose p > 2r + 2 is a prime

which is unramified in K and let p ⊂ OK be a prime above p. Let X be a proper regular

model of X over OKp. Suppose r < g. Then

#X(K) ≤ #X sm
p (Fp) + 2r.

Remark 1.5. The charm of these theorems is that they occasionally allow one to compute

X(K); see [Gra94] for the first such example and Section 5 for another which uses the

the refined bound of Theorem 1.4 at a prime of bad reduction. While these examples are

somewhat special (since the bound of Theorem 1.4 is not sharp in general), there are a

wealth of interesting examples where a more careful analysis of Chabauty’s method allows

one to determine X(K). Worth noting are the works [Bru99] and [PSS07], where the integral

coprime solutions of the generalized Fermat equations x2 + y8 = z3 and x2 + y3 = z7 (both

of which have large, non-trivial solutions) are completely determined by reducing to curves

and using Chabauty methods.

For low genus hyperelliptic curves Chabauty’s method has been made completely explicit

and even implemented in [Magma], so that for a specific curve X(K) can often be determined;

see the survey [Poo02] for a general discussion of computational issues, [MP07, Section 7] for

a discussion of effectivity of Chabauty’s method, and the online documentation [Magma] for

many details. See also also [BS07], where the complementary problem of proving X(K) = Ø

is discussed in detail with impressive experimental data.

Remark 1.6. The p = 2r+2 case of Theorem 1.4 (i.e. p = 2 and r = 0) is [LT02, Proposition

1.10].

This paper is structured as follows. In Section 2 we review the method of Chabauty and

Coleman. In Section 3 we present the main argument used to bound #X(K). In Section

4 we prove a technical proposition, necessary for the main argument, which generalizes

Clifford’s theorem about special divisors on curves to the case of non-reduced, reducible

curves. Finally, in Section 5 we give two examples where the refined bound can be used to

determine X(K).

2. The Method of Chabauty and Coleman

In this section we recall the method of Chabauty and Coleman. See [MP07] for many

references and a more detailed account.
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Let K be a number field with valuation v normalized so that the value group is Z. Fix

a prime p and a prime p of K above p. For a scheme Y over K let Yp be the extension of

scalars Y ×K Kp, where Kp is the completion of K at p. For a scheme Y over a field denote

by Y sm its smooth locus. Let X be a smooth projective geometrically integral curve of genus

g ≥ 2 over K with Jacobian J ; let r = rank J(K). Suppose that there exists a rational point

P ∈ X(K) (otherwise the conclusion of Theorem 1.4 is trivially true) and let ι : X → J be

the embedding given by Q 7→ [Q− P ].

2.1. Models and Residue Classes. Let X be a proper regular model of Xp over OKp and

denote its special fiber by Xp.

(2.1) Xp
//

πp

��

X

π

��

Xp
ioo

πKp

��
Spec Fp

// SpecOKp Spec Kp
oo

Since X is proper, the valuative criterion gives a reduction map

(2.2) r : Xp(Kp) = X (OKp) → X (Fp).

Alternatively, r is given by smearing any Kp-point of Xp to an OKp-point of X and then

intersecting with the special fiber Xp; i.e. r(P ) = {P} ∩Xp. Since X is regular, the image

is contained in X sm
p (Fp); by Hensel’s lemma we have equality.

Definition 2.3. For Q̃ ∈ X sm
p (Fp) we define the residue class D eQ to be the preimage r−1

(
Q̃

)
of Q̃ under the reduction map (2.2).

Definition 2.4. Scale ω ∈ H0
(
Xp, Ω

1
Xp/Kp

)
by t ∈ K×

p so that the reduction ω̃ of tω to the

component of Xp containing Q̃ is non-zero. We define

n
(
ω, Q̃

)
= ord eQ ω̃.

2.2. p-adic Integration. For an introduction to integration on a p-adic curve see [MP07,

Sections 4 and 5]. For ω ∈ H0
(
Xp, Ω

1
Xp/Kp

)
let ηω : X(Kp) → Kp be the function Q 7→

∫ Q

P
ω.

The following proposition summarizes relevant results of [LT02, Section 1].

Proposition 2.5. Let Q̃ ∈ X sm
p (Fp) and Q ∈ D eQ. Let u ∈ OX ,Q such that the restriction

to OXp, eQ is a uniformizer. Then the following are true.

(1) The function u defines a bijection

D eQ →̃ pOKp .

(2) There exists Iω,Q(t) ∈ Kp[[t]] which enjoys the following properties:

(i) For Q′ ∈ D eQ, ηω(Q′) = Iω,Q(u(Q′)) + ηω(Q).

(ii) w(t) := Iω,Q(t)′ ∈ OKp [[t]].

(iii) If we write w(t) =
∑∞

i=0 ait
i, then

min {i : v(ai) = 0} = n(ω, Q̃).
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The starting point of Chabauty’s method is the following proposition.

Proposition 2.6 ([Sto06], Section 6). Denote by Vp the vector space of all ω ∈ H0
(
Xp, Ω

1
Xp/Kp

)
such that ηω(Q) = 0 for all Q ∈ X(K). Then dim Vp ≥ g − r.

2.3. Newton Polygons. We now will use Newton polygons to bound the number of zeroes

of Iω,Q(t) with t ∈ pOKp . Following [Sto06, Section 6], we let e = v(p) be the absolute

ramification index of Kp and make the following definitions (where vp is the valuation of

Qp).

Definition 2.7. We set

ν(Q) = #
{
t ∈ pOKp such that Iω,Q(t) = 0

}
and

δ(v, n) = max{d ≥ 0 | n + d + 1− v(n + d + 1) ≤ n + 1− v(n + 1)}
= max{d ≥ 0 | e vp(n + 1) + d ≤ e vp(n + d + 1)} .

The key proposition is [Sto06, Proposition 6.3] where a Newton polygon argument gives

the following bound.

Proposition 2.8. We have the bound

ν(Q) ≤ 1 + n
(
ω, Q̃

)
+ δ

(
v, n

(
ω, Q̃

))
.

Furthermore, suppose e < p−1. Then δ(v, n) ≤ e bn/(p−e−1)c. In particular, if p > n+e+1,

then δ(v, n) = 0.

3. Bounding #X(K)

We bound #X(K) as follows. For each Q̃ ∈ X sm
p (Fp), #

(
X(K) ∩ D eQ)

≤ ν(Q). For

nonzero ω ∈ Vp (see Definition 2.6) summing the bound of Proposition 2.8 over the residue

classes of each smooth point gives

#X(K) ≤ #X sm
p (Fp) +

∑
eQ∈X sm

p (Fp)

(
n
(
ω, Q̃

)
+ δ

(
v, n

(
ω, Q̃

)))
.

To use this we need to bound ∑
eQ∈X sm

p (Fp)

n
(
ω, Q̃

)
.

As in the good reduction case of [Col85], Riemann-Roch gives, for a fixed ω, the preliminary

bound ∑
eQ∈X sm

p (Fp)

n
(
ω, Q̃

)
= deg div ω = 2g − 2.

If p > 2g + e − 1, then in particular p > n(ω, Q̃) + e + 1 for every Q̃ and Proposition 2.8

reveals that δ(v, n(ω, Q̃)) = 0, recovering the bound of Theorem 1.3

#X(K) ≤ #X sm
p (Fp) + 2g − 2.
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The idea of [Sto06] is to use a different differential ω eQ for each residue class to get a better

bound. Stoll does this for the good reduction case [Sto06, Theorem 6.4] and what prevents

his method from working in generality is that the reduction map

(3.1) ρ : P
(
H0

(
Xp, Ω

1
))
→ P

(
H0

(
Xp, Ω

1
))

is well behaved only when X is smooth. The main content of this paper is that if one replaces

the sheaf of differentials with the canonical sheaf then one can recover Stoll’s argument

3.1. Main argument. For a map f : Y → Z we denote by ωf the relative dualizing sheaf.

Recall the setup of (2.1). Here we describe the appropriate generalization of the above

reduction map (3.1). Since π is flat [Liu06, p. 347], base change for relative dualizing

sheaves [Liu06, Theorem 6.4.9] gives i∗ωπ ' ωπKp
' Ω1

Xp/Kp
. One gets an inclusion of global

sections

H0(X , ωπ)
φ // H0(X , ωπ)⊗OKp

Kp H0
(
Xp, Ω

1
Xp/Kp

)
.

A subspace V ⊂ H0
(
Xp, Ω

1
Xp/Kp

)
pulls back to a submodule VOKp

:= φ−1(V ) ⊂ H0(X , ωπ).

Now let V = Vp (see Definition 2.6), and for any Q̃ ∈ X sm
p (Fp) let

n eQ := min
{
n
(
ω, Q̃

) ∣∣ ω ∈ V
}
.

Then Proposition 2.8 becomes

ν(Q̃) ≤ 1 + n eQ + δ
(
v, n eQ)

and thus

#X(K) ≤ #X sm
p (Fp) +

∑
eQ∈X sm

p (Fp)

(
n eQ + δ(v, n eQ)

)
.

We accordingly set

(3.2) D =
∑

eQ∈X sm
p (F)

n eQQ̃,

and since
∑

n eQ = deg D, the goal is to bound deg D.

Definition 3.3. Let k be a field and let C
π−→ Spec k be a proper geometrically connected

curve whose irreducible components have dimension one. Define the function f : Z≥0 →
Z≥0 ∪ {∞} by

f(r) := max{deg D|D is special and dimk H0 (C, ωπ ⊗OC(−D)) ≥ pa − r},

where ωπ is the relative dualizing sheaf of π and pa is the arithmetic genus of C. See

Definition 4.3 for the definition of special.

Lemma 3.4. For D defined in (3.2), deg D ≤ f(r).
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Proof. Set Vs := VOKp
⊗OKp

Fp. Since VKp is saturated, the composition Vs → H0 (X , ωπ)⊗OKp

Fp → H0 (Xp, ωp) is an injection and

dimFp Vs = dimKp Vp ≥ g − r = pa − r.

For ω ∈ VOKp
denote by ω̄ its image in Vs. By construction,

Vs ⊂ H0(Xp, ωp ⊗OXp(−D)) ⊂ H0 (Xp, ωp) .

Indeed, let div ω be the Cartier divisor associated to ω and let Hω be the horizonal part of

div ω. Then

ω ∈ H0(X , ωπ ⊗OX (−Hω)),

and since

(ωπ ⊗OX (−Hω))⊗OKp
Fp ⊂ ωp ⊗OXp(−D),

we have

ω̄ ∈ H0(Xp, ωp ⊗OXp(−D)).

By adjunction the restriction of Hω to Xp is an effective canonical divisor H such that

H −D is effective, and since X is regular, Supp D ⊂ Supp H ⊂ X sm
p . We conclude that D

is special, so by definition of f , we have deg D ≤ f(r). �

Lemma 3.5. Suppose r < pa. Then f(r) ≤ 2r.

The case of good reduction is [Sto06, Lemma 3.1]. The proof of the general case is

postponed to the next section. Theorem 1.4 immediately follows.

Remark 3.6. For C smooth, f(r) = 2r if and only if C is hyperelliptic, and one can often

carve a better bound out of the geometry of C; see [Sto06, Section 3]. It would be interesting

to understand when f(r) < 2r in the case that C is not smooth; for instance a smooth genus

3 plane quartic C with rank JC = 1 and smooth special fiber has f(1) = 1, but if the special

fiber of its regular proper minimal model is irreducible with an ordinary double point (so

that its normalization has genus 2 and is thus hyperelliptic), then f(1) = 2. The situation

is more delicate when C has multiple components.

4. Clifford’s theorem for Singular Curves

Here we prove Lemma 3.5. The key point is to generalize Clifford’s theorem [Har77,

Chapter IV, Theorem 5.4] to singular curves. To this end, let k denote a field and define a

curve to be a geometrically connected projective algebraic variety over k whose irreducible

components are of dimension 1. Throughout we fix a curve C
π−→ k such that the relative

dualizing sheaf ωπ is invertible (in our application this holds because C is a curve inside a

regular surface).

Remark 4.1. By [Liu06, Remark 7.1.20], any invertible sheaf of OC-modules is a subsheaf of

KC , the sheaf of stalks of meromorphic functions on C [Liu06, Definition 7.1.13]. Thus, the

injection [Liu06, Proposition 7.1.18 (b)]

CaCl(C) → Pic(C)
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is an isomorphism.

Definition 4.2. Let ω be the relative dualizing sheaf of C
π−→ Spec k. We define a canonical

divisor to be any Cartier divisor K such that OC(K) ∼= ω. By Remark 4.1 there exists a

canonical divisor K.

Definition 4.3. Recall that a Cartier divisor D is effective if D can be represented by

{(Ui, fi)} with fi ∈ OC(Ui). We call D special if there exists an effective canonical divisor

K such that Supp K ⊂ Csm and K −D is effective.

Lemma 4.4. Let E be an effective Cartier divisor on C such that Supp E ⊂ Csm. Then the

set of pairs of effective Cartier divisors (D, D′) such that D + D′ = E is finite.

Proof. Since Supp D∪Supp D′ ⊂ Supp E ⊂ Csm the result follows from the analogous result

for Weil Divisors. �

Definition 4.5. For a vector space V define P(V ) to be the projective space
(
V −{0}

)
/k∗.

For a Cartier divisor D define the complete linear system |D| by

|D| := P(H0(C,OC(D))).

Note that dim |D| = dimk H0(C,OC(D))− 1.

Remark 4.6. When C is smooth, any non-zero f ∈ |D| is meromorphic and defines an

equivalence of Cartier divisors D ∼ E. In general f may vanish along a component (see

Remark 4.8). When f is meromorphic we will sometimes refer to its class in |D| by E.

Lemma 4.7. Let D and D′ be effective Cartier divisors on a curve C defined over a field k.

Suppose Supp(D) and Supp(D′) are contained in Csm. Then

dim |D|+ dim |D′| ≤ dim |D + D′|.

Proof. The bilinear map

H0(C,OC(D))×H0(C,OC(D′)) → H0(C,OC(D + D′))

given by (f, f ′) 7→ ff ′ induces a rational map of varieties

φ : |D| × |D′| 99K |D + D′|.

Indeed, φ is defined at the point (D, D′) (i.e. at the pair of functions (1, 1)) so extends to

a rational map. We claim that φ−1(D + D′) is finite. Suppose φ((f, f ′)) = D + D′. By

definition this means that ff ′ = c for some non-zero constant c ∈ k. We conclude that f

and f ′ do not vanish along any component of C; in particular they define equivalences of

Cartier divisors D ∼ E and D′ ∼ E ′ and the claim follows from Lemma 4.4. Finally,

dim(|D| × |D′|) = dim φ(|D| × |D′|) ≤ dim |D + D′|

where the first equality is [Har77, Exercise II.3.22(b)]. �
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Remark 4.8. In contrast to the proof of [Har77, Chapter IV, Theorem 5.4], the map φ

of Lemma 4.7 may not be finite to one. For example, let X be the projective closure of

Y = Spec k[x, y]/(xy) inside of P2 and denote the points at infinity of the x and y axes by

∞x and ∞y. The effective Cartier divisor D = {(X, x2 +y2)}+2∞x +2∞y can be written as

the sum of two effective Cartier divisors in infinitely many ways. Indeed, for λ ∈ k
×
, let Dλ

be the Cartier divisor {(X, λx+λ−1y)}+∞x +∞y. Then Dλ +Dλ−1 = D, and for λ 6= ±λ′,

Dλ and Dλ′ are distinct divisors. Thus the map φ : |∞x +∞y|× |∞x +∞y| 99K |2∞x +2∞y|
is not quasi-finite.

Remark 4.9. Similarly, if Supp E is not contained in Csm then the map φ of Lemma (4.7)

may not be defined everywhere. Let X be as in Remark 4.8 and denote the closures of

the x and y axes by Xx and Xy. Define meromorphic functions fx ∈ |∞x| as the identity

on Xx and 0 on Xy and fy ∈ |∞y| as the identity on Xy and zero on Xx. Then the map

|∞x| × |∞y| 99K |∞x +∞y| is not defined at the pair (fx, fy) since fxfy = 0.

Theorem 4.10. (Clifford’s Theorem) Let D be a special Cartier divisor on a curve C defined

over a field k. Then

dim |D| ≤ 1

2
deg D.

Proof. Let K be a canonical divisor. By Serre duality [Liu06, Remark 6.4.30]

dim |K| = dim H0(C, ω)− 1 = dim H1(C,OC)− 1 = pa − 1,

where pa := 1− χ(OC) is the arithmetic genus of C. Adding the inequalities

dim |D|+ dim |K −D| ≤ dim |K| = pa − 1 (by Lemma 4.7)

dim |D| − dim |K −D| = deg D + 1− pa (by Riemann-Roch [Liu06, Theorem 7.3.26])

gives the result. �

We conclude with the proof of Lemma 3.5.

Proof of Lemma 3.5. We have

pa − r ≤ dimk H0(C, ω ⊗OC(−D)) (by Definition 3.3)

= dimk H0(C,OC(D))− deg D + pa − 1 (by Riemann-Roch)

≤ pa −
1

2
deg D (by Theorem 4.10)

and simplifying gives the result. �

5. An Example

Example 5.1. Here we give an example of a hyperelliptic curve with bad reduction where

the refined bound of Theorem 1.4 is sharp. Let X be the smooth genus 3 hyperelliptic curve

with affine piece

−2 · 11 · 19 · 173 · y2 = (x− 50)(x− 9)(x− 3)(x + 13)(x3 + 2x2 + 3x + 4).
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This curve has bad reduction at the prime 5 and its regular proper minimal model X over

Z5 is given by the same equation as the above Weierstrass model. A descent calculation

using Magma’s TwoSelmerGroup function shows that its Jacobian has rank 1. A point count

reveals that 7 ≤ #X(Q) and X sm
5 (F5) = 5. Theorem 1.4 reads

7 ≤ #X(Q) ≤ #X sm
5 (F5) + 2 = 7,

which determines X(Q).

Let J be the Jacobian of X. Then J is absolutely simple. Indeed, J has good reduction

at 13 and for i ∈ {1, . . . , 30} a computation reveals that the characteristic polynomial of

Frobenius for JF13i
is irreducible. By an argument analogous to [PS97, Proposition 14.4] (see

also [Sto08, Lemma 3]) we conclude that JF13 (and hence J) is absolutely simple.

One can check that 5 is the only prime at which the Chabauty-Coleman bound is sharp.

Thus, one can use neither a map to a curve of smaller genus nor the Chabauty-Coleman

bound at a prime of good reduction to determine X(Q).

Acknowledgments

I thank Bjorn Poonen and Anton Geraschenko for many useful conversations and Michael

Stoll for helpful comments on an earlier draft. Computations for the example were done

using the software Magma [Magma].

References

[Bom90] Enrico Bombieri, The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17
(1990), no. 4, 615–640. MR 1093712 (92a:11072) ↑1

[Bru99] Nils Bruin, The Diophantine equations x2 ± y4 = ±z6 and x2 + y8 = z3, Compositio Math. 118
(1999), no. 3, 305–321. MR 1711307 (2001d:11035) ↑1.5

[BS07] Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment (2007).
Preprint, to appear in Experimental Mathematics. ↑1.5

[Cha41] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C.
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