THE CHABAUTY-COLEMAN BOUND AT A PRIME OF BAD REDUCTION

DAVID BROWN

ABSTRACT. Let X be a curve over a number field K with genus $g \ge 2$, \mathfrak{p} a prime of \mathcal{O}_K over an unramified rational prime p > 2r, J the Jacobian of X, $r = \operatorname{rank} J(K)$, and \mathscr{X} a regular proper model of X at \mathfrak{p} . Suppose r < g. We prove that $\#X(K) \le \#\mathscr{X}(\mathbb{F}_p) + 2r$, extending the refined version of the Chabauty-Coleman bound to the case of bad reduction.

1. INTRODUCTION

Let K be a number field and X/K be a curve (i.e. a smooth geometrically integral 1dimensional variety) of genus $g \ge 2$ and let p denote a prime which is unramified in K. Faltings' [Fal86], Vojta's [Voj91], and Bombieri's [Bom90] proofs of the Mordell Conjecture tell us that X(K) is finite, but all known proofs of the Mordell Conjecture are ineffective, providing no assistance in determining X(K) explicitly for a specific curve. Chabauty [Cha41], building on an idea of Skolem [Sko34], gave a proof of the Mordell Conjecture when the rank r of the Jacobian of X is strictly less than the genus g. Coleman later realized that Chabauty's proof could be modified to get an explicit upper bound for #X(K).

Theorem 1.1 ([Col85]). Suppose p > 2g and let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime of good reduction which lies above p. Suppose r < g. Then

$$\#X(K) \le \#X(\mathbb{F}_p) + 2g - 2$$

Using Proposition 2.8, one can write out weaker, but still explicit (in terms of g and p), bounds when $p \leq 2g$ or when p ramifies in K (see any of [Col85], [Sto06], or [LT02]). In [LT02], the authors ask if one can refine Coleman's bound when the rank is small (i.e. $r \leq g - 2$). Stoll proved that by choosing, for each residue class, the 'best' differential one can indeed refine the bound.

Theorem 1.2 ([Sto06, Corollary 6.7]). With the hypothesis of Theorem 1.1,

$$\#X(K) \le \#X(\mathbb{F}_{\mathfrak{p}}) + 2r.$$

Let \mathscr{X} be a minimal regular proper model of X at \mathfrak{p} and denote by $\mathscr{X}_{\mathfrak{p}}^{sm}$ the smooth locus of $\mathscr{X}_{\mathfrak{p}}$. In another direction, McCallum and Poonen use intersection theory on \mathscr{X} to derive Coleman's bound when \mathfrak{p} is a prime of bad reduction. Lorenzini and Tucker gave an earlier, alternative proof which avoids intersection theory.

Date: March 15, 2008.

This research was supported by a National Defense Science and Engineering Graduate Fellowship.

Theorem 1.3 ([LT02, Proposition 1.10], [MP07, Theorem A.5]). Suppose p > 2g and let \mathfrak{p} be a prime above p. Let \mathscr{X} be a proper regular model of X over $\mathcal{O}_{K_{\mathfrak{p}}}$. Suppose r < g. Then

$$#X(K) \le #\mathscr{X}_{\mathfrak{p}}^{sm}(\mathbb{F}_{\mathfrak{p}}) + 2g - 2.$$

1.1. Main Result. Michael Stoll asks [Sto06, Remark 6.5] if one can combine the methods of [Sto06] and [MP07] to generalize Theorem 1.2 to the case when p is a prime of bad reduction and remarks that Theorem 1.2 is true at least for a hyperelliptic curve. The main result of this paper is such a generalization.

Theorem 1.4. Let X be a curve over a number field K. Suppose p > 2r + 2 is a prime which is unramified in K and let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime above p. Let \mathscr{X} be a proper regular model of X over $\mathcal{O}_{K_{\mathfrak{p}}}$. Suppose r < g. Then

$$#X(K) \le #\mathscr{X}_{\mathfrak{p}}^{sm}(\mathbb{F}_{\mathfrak{p}}) + 2r.$$

Remark 1.5. The charm of these theorems is that they occasionally allow one to compute X(K); see [Gra94] for the first such example and Section 5 for another which uses the the refined bound of Theorem 1.4 at a prime of bad reduction. While these examples are somewhat special (since the bound of Theorem 1.4 is not sharp in general), there are a wealth of interesting examples where a more careful analysis of Chabauty's method allows one to determine X(K). Worth noting are the works [Bru99] and [PSS07], where the integral coprime solutions of the generalized Fermat equations $x^2 + y^8 = z^3$ and $x^2 + y^3 = z^7$ (both of which have large, non-trivial solutions) are completely determined by reducing to curves and using Chabauty methods.

For low genus hyperelliptic curves Chabauty's method has been made completely explicit and even implemented in [Magma], so that for a specific curve X(K) can often be determined; see the survey [Poo02] for a general discussion of computational issues, [MP07, Section 7] for a discussion of effectivity of Chabauty's method, and the online documentation [Magma] for many details. See also also [BS07], where the complementary problem of proving $X(K) = \emptyset$ is discussed in detail with impressive experimental data.

Remark 1.6. The p = 2r + 2 case of Theorem 1.4 (i.e. p = 2 and r = 0) is [LT02, Proposition 1.10].

This paper is structured as follows. In Section 2 we review the method of Chabauty and Coleman. In Section 3 we present the main argument used to bound #X(K). In Section 4 we prove a technical proposition, necessary for the main argument, which generalizes Clifford's theorem about special divisors on curves to the case of non-reduced, reducible curves. Finally, in Section 5 we give two examples where the refined bound can be used to determine X(K).

2. The Method of Chabauty and Coleman

In this section we recall the method of Chabauty and Coleman. See [MP07] for many references and a more detailed account.

Let K be a number field with valuation v normalized so that the value group is \mathbb{Z} . Fix a prime p and a prime \mathfrak{p} of K above p. For a scheme Y over K let $Y_{\mathfrak{p}}$ be the extension of scalars $Y \times_K K_{\mathfrak{p}}$, where $K_{\mathfrak{p}}$ is the completion of K at \mathfrak{p} . For a scheme Y over a field denote by Y^{sm} its smooth locus. Let X be a smooth projective geometrically integral curve of genus $g \geq 2$ over K with Jacobian J; let $r = \operatorname{rank} J(K)$. Suppose that there exists a rational point $P \in X(K)$ (otherwise the conclusion of Theorem 1.4 is trivially true) and let $\iota : X \to J$ be the embedding given by $Q \mapsto [Q - P]$.

2.1. Models and Residue Classes. Let \mathscr{X} be a proper regular model of $X_{\mathfrak{p}}$ over $\mathcal{O}_{K_{\mathfrak{p}}}$ and denote its special fiber by $\mathscr{X}_{\mathfrak{p}}$.

(2.1)
$$\begin{aligned} \mathscr{X}_{\mathfrak{p}} & \longrightarrow \mathscr{X} & \stackrel{i}{\longleftarrow} & X_{\mathfrak{p}} \\ & \downarrow^{\pi_{\mathfrak{p}}} & \downarrow^{\pi} & \downarrow^{\pi_{K_{\mathfrak{p}}}} \\ & \operatorname{Spec} \mathbb{F}_{\mathfrak{p}} & \longrightarrow \operatorname{Spec} \mathcal{O}_{K_{\mathfrak{p}}} & \longleftarrow \operatorname{Spec} K_{\mathfrak{p}} \end{aligned}$$

Since \mathscr{X} is proper, the valuative criterion gives a reduction map

(2.2)
$$r: X_{\mathfrak{p}}(K_{\mathfrak{p}}) = \mathscr{X}(\mathcal{O}_{K_{\mathfrak{p}}}) \to \mathscr{X}(\mathbb{F}_{\mathfrak{p}}).$$

Alternatively, r is given by smearing any $K_{\mathfrak{p}}$ -point of $\mathcal{X}_{\mathfrak{p}}$ to an $\mathcal{O}_{K_{\mathfrak{p}}}$ -point of \mathscr{X} and then intersecting with the special fiber $\mathscr{X}_{\mathfrak{p}}$; i.e. $r(P) = \overline{\{P\}} \cap \mathscr{X}_{\mathfrak{p}}$. Since \mathscr{X} is regular, the image is contained in $\mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}})$; by Hensel's lemma we have equality.

Definition 2.3. For $\widetilde{Q} \in \mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}})$ we define the residue class $D_{\widetilde{Q}}$ to be the preimage $r^{-1}(\widetilde{Q})$ of \widetilde{Q} under the reduction map (2.2).

Definition 2.4. Scale $\omega \in H^0(X_{\mathfrak{p}}, \Omega^1_{X_{\mathfrak{p}}/K_{\mathfrak{p}}})$ by $t \in K_{\mathfrak{p}}^{\times}$ so that the reduction $\widetilde{\omega}$ of $t\omega$ to the component of $\mathscr{X}_{\mathfrak{p}}$ containing \widetilde{Q} is non-zero. We define

$$n(\omega, \widetilde{Q}) = \operatorname{ord}_{\widetilde{O}} \widetilde{\omega}.$$

2.2. *p*-adic Integration. For an introduction to integration on a *p*-adic curve see [MP07, Sections 4 and 5]. For $\omega \in H^0(X_{\mathfrak{p}}, \Omega^1_{X_{\mathfrak{p}}/K_{\mathfrak{p}}})$ let $\eta_{\omega} \colon X(K_{\mathfrak{p}}) \to K_{\mathfrak{p}}$ be the function $Q \mapsto \int_P^Q \omega$. The following proposition summarizes relevant results of [LT02, Section 1].

Proposition 2.5. Let $\widetilde{Q} \in \mathscr{X}_{\mathfrak{p}}^{sm}(\mathbb{F}_{\mathfrak{p}})$ and $Q \in D_{\widetilde{Q}}$. Let $u \in \mathcal{O}_{\mathscr{X},Q}$ such that the restriction to $\mathcal{O}_{\mathscr{X}_{\mathfrak{p}},\widetilde{Q}}$ is a uniformizer. Then the following are true.

(1) The function u defines a bijection

$$D_{\widetilde{Q}} \xrightarrow{\sim} \mathfrak{p}\mathcal{O}_{K_{\mathfrak{p}}}$$

- (2) There exists $I_{\omega,Q}(t) \in K_{\mathfrak{p}}[[t]]$ which enjoys the following properties:
 - (i) For $Q' \in D_{\widetilde{Q}}$, $\eta_{\omega}(Q') = I_{\omega,Q}(u(Q')) + \eta_{\omega}(Q)$.
 - (ii) $w(t) := I_{\omega,Q}(t)' \in \mathcal{O}_{K_{\mathfrak{p}}}[[t]].$
 - (iii) If we write $w(t) = \sum_{i=0}^{\infty} a_i t^i$, then

$$\min\left\{i\colon v(a_i)=0\right\}=n(\omega,Q)$$

The starting point of Chabauty's method is the following proposition.

Proposition 2.6 ([Sto06], Section 6). Denote by $V_{\mathfrak{p}}$ the vector space of all $\omega \in H^0(X_{\mathfrak{p}}, \Omega^1_{X_{\mathfrak{p}}/K_{\mathfrak{p}}})$ such that $\eta_{\omega}(Q) = 0$ for all $Q \in X(K)$. Then dim $V_{\mathfrak{p}} \ge g - r$.

2.3. Newton Polygons. We now will use Newton polygons to bound the number of zeroes of $I_{\omega,Q}(t)$ with $t \in \mathfrak{pO}_{K_p}$. Following [Sto06, Section 6], we let e = v(p) be the absolute ramification index of K_p and make the following definitions (where v_p is the valuation of \mathbb{Q}_p).

Definition 2.7. We set

$$\nu(Q) = \# \left\{ t \in \mathfrak{p}\mathcal{O}_{K_\mathfrak{p}} \text{ such that } I_{\omega,Q}(t) = 0 \right\}$$

and

$$\delta(v,n) = \max\{d \ge 0 \mid n+d+1 - v(n+d+1) \le n+1 - v(n+1)\}$$

= max{ $d \ge 0 \mid e v_p(n+1) + d \le e v_p(n+d+1)$ }.

The key proposition is [Sto06, Proposition 6.3] where a Newton polygon argument gives the following bound.

Proposition 2.8. We have the bound

$$\nu(Q) \le 1 + n(\omega, \widetilde{Q}) + \delta(v, n(\omega, \widetilde{Q})).$$

Furthermore, suppose e < p-1. Then $\delta(v, n) \le e \lfloor n/(p-e-1) \rfloor$. In particular, if p > n+e+1, then $\delta(v, n) = 0$.

3. Bounding #X(K)

We bound #X(K) as follows. For each $\widetilde{Q} \in \mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}}), \ \#(X(K) \cap D_{\widetilde{Q}}) \leq \nu(Q)$. For nonzero $\omega \in V_{\mathfrak{p}}$ (see Definition 2.6) summing the bound of Proposition 2.8 over the residue classes of each smooth point gives

$$\#X(K) \le \#\mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}}) + \sum_{\widetilde{Q} \in \mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}})} \left(n\left(\omega, \widetilde{Q}\right) + \delta\left(v, n\left(\omega, \widetilde{Q}\right)\right) \right).$$

To use this we need to bound

$$\sum_{\widetilde{Q}\in\mathscr{X}^{\mathrm{sm}}_{\mathfrak{p}}(\mathbb{F}_{\mathfrak{p}})}n\big(\omega,\widetilde{Q}\big)$$

As in the good reduction case of [Col85], Riemann-Roch gives, for a fixed ω , the preliminary bound

$$\sum_{\widetilde{Q}\in\mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}})} n(\omega,\widetilde{Q}) = \deg \operatorname{div} \omega = 2g - 2.$$

If p > 2g + e - 1, then in particular $p > n(\omega, \tilde{Q}) + e + 1$ for every \tilde{Q} and Proposition 2.8 reveals that $\delta(v, n(\omega, \tilde{Q})) = 0$, recovering the bound of Theorem 1.3

$$#X(K) \le #\mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}}) + 2g - 2.$$

The idea of [Sto06] is to use a different differential $\omega_{\tilde{Q}}$ for each residue class to get a better bound. Stoll does this for the good reduction case [Sto06, Theorem 6.4] and what prevents his method from working in generality is that the reduction map

(3.1)
$$\rho \colon \mathbb{P}(H^0(X_{\mathfrak{p}},\Omega^1)) \to \mathbb{P}(H^0(\mathscr{X}_{\mathfrak{p}},\Omega^1))$$

is well behaved only when \mathscr{X} is smooth. The main content of this paper is that if one replaces the sheaf of differentials with the canonical sheaf then one can recover Stoll's argument

3.1. Main argument. For a map $f: Y \to Z$ we denote by ω_f the relative dualizing sheaf. Recall the setup of (2.1). Here we describe the appropriate generalization of the above reduction map (3.1). Since π is flat [Liu06, p. 347], base change for relative dualizing sheaves [Liu06, Theorem 6.4.9] gives $i^*\omega_{\pi} \simeq \omega_{\pi_{K_p}} \simeq \Omega^1_{X_p/K_p}$. One gets an inclusion of global sections

$$H^{0}(\mathscr{X},\omega_{\pi}) \xrightarrow{\phi} H^{0}(\mathscr{X},\omega_{\pi}) \otimes_{\mathcal{O}_{K_{\mathfrak{p}}}} K_{\mathfrak{p}} = H^{0}(X_{\mathfrak{p}},\Omega^{1}_{X_{\mathfrak{p}}/K_{\mathfrak{p}}})$$

A subspace $V \subset H^0(X_{\mathfrak{p}}, \Omega^1_{X_{\mathfrak{p}}/K_{\mathfrak{p}}})$ pulls back to a submodule $V_{\mathcal{O}_{K_{\mathfrak{p}}}} := \phi^{-1}(V) \subset H^0(\mathscr{X}, \omega_{\pi})$. Now let $V = V_{\mathfrak{p}}$ (see Definition 2.6), and for any $\widetilde{Q} \in \mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F}_{\mathfrak{p}})$ let

$$n_{\widetilde{Q}} := \min \left\{ n\left(\omega, \widetilde{Q}\right) \, \big| \, \omega \in V \right\}.$$

Then Proposition 2.8 becomes

$$\nu(\widetilde{Q}) \le 1 + n_{\widetilde{Q}} + \delta\left(v, n_{\widetilde{Q}}\right)$$

and thus

$$\#X(K) \leq \#\mathscr{X}^{\mathrm{sm}}_{\mathfrak{p}}(\mathbb{F}_{\mathfrak{p}}) + \sum_{\widetilde{Q} \in \mathscr{X}^{\mathrm{sm}}_{\mathfrak{p}}(\mathbb{F}_{\mathfrak{p}})} \left(n_{\widetilde{Q}} + \delta(v, n_{\widetilde{Q}}) \right).$$

We accordingly set

(3.2)
$$D = \sum_{\widetilde{Q} \in \mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}(\mathbb{F})} n_{\widetilde{Q}} \widetilde{Q}$$

and since $\sum n_{\tilde{Q}} = \deg D$, the goal is to bound deg D.

Definition 3.3. Let k be a field and let $C \xrightarrow{\pi} \operatorname{Spec} k$ be a proper geometrically connected curve whose irreducible components have dimension one. Define the function $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0} \cup \{\infty\}$ by

$$f(r) := \max\{\deg D | D \text{ is special and } \dim_k H^0(C, \omega_\pi \otimes \mathcal{O}_C(-D)) \ge p_a - r\},\$$

where ω_{π} is the relative dualizing sheaf of π and p_a is the arithmetic genus of C. See Definition 4.3 for the definition of special.

Lemma 3.4. For D defined in (3.2), deg $D \leq f(r)$.

Proof. Set $V_s := V_{\mathcal{O}_{K_{\mathfrak{p}}}} \otimes_{\mathcal{O}_{K_{\mathfrak{p}}}} \mathbb{F}_{\mathfrak{p}}$. Since $V_{K_{\mathfrak{p}}}$ is saturated, the composition $V_s \to H^0(\mathscr{X}, \omega_{\pi}) \otimes_{\mathcal{O}_{K_{\mathfrak{p}}}} \mathbb{F}_p \to H^0(\mathscr{X}, \omega_{\mathfrak{p}})$ is an injection and

$$\dim_{\mathbb{F}_p} V_s = \dim_{K_p} V_p \ge g - r = p_a - r.$$

For $\omega \in V_{\mathcal{O}_{K_{\mathfrak{p}}}}$ denote by $\bar{\omega}$ its image in V_s . By construction,

$$V_s \subset H^0(\mathscr{X}_{\mathfrak{p}}, \omega_{\mathfrak{p}} \otimes \mathcal{O}_{\mathscr{X}_{\mathfrak{p}}}(-D)) \subset H^0(\mathscr{X}_{\mathfrak{p}}, \omega_{\mathfrak{p}}).$$

Indeed, let div ω be the Cartier divisor associated to ω and let H_{ω} be the horizonal part of div ω . Then

$$\omega \in H^0(\mathscr{X}, \omega_\pi \otimes \mathcal{O}_{\mathscr{X}}(-H_\omega)),$$

and since

$$(\omega_{\pi} \otimes \mathcal{O}_{\mathscr{X}}(-H_{\omega})) \otimes_{\mathcal{O}_{K_{\mathfrak{p}}}} \mathbb{F}_{\mathfrak{p}} \subset \omega_{\mathfrak{p}} \otimes \mathcal{O}_{\mathscr{X}_{\mathfrak{p}}}(-D),$$

we have

$$\bar{\omega} \in H^0(\mathscr{X}_{\mathfrak{p}}, \omega_{\mathfrak{p}} \otimes \mathcal{O}_{\mathscr{X}_{\mathfrak{p}}}(-D)).$$

By adjunction the restriction of H_{ω} to $\mathscr{X}_{\mathfrak{p}}$ is an effective canonical divisor H such that H - D is effective, and since \mathscr{X} is regular, $\operatorname{Supp} D \subset \operatorname{Supp} H \subset \mathscr{X}_{\mathfrak{p}}^{\mathrm{sm}}$. We conclude that D is special, so by definition of f, we have deg $D \leq f(r)$.

Lemma 3.5. Suppose $r < p_a$. Then $f(r) \leq 2r$.

The case of good reduction is [Sto06, Lemma 3.1]. The proof of the general case is postponed to the next section. Theorem 1.4 immediately follows.

Remark 3.6. For C smooth, f(r) = 2r if and only if C is hyperelliptic, and one can often carve a better bound out of the geometry of C; see [Sto06, Section 3]. It would be interesting to understand when f(r) < 2r in the case that C is not smooth; for instance a smooth genus 3 plane quartic C with rank $J_C = 1$ and smooth special fiber has f(1) = 1, but if the special fiber of its regular proper minimal model is irreducible with an ordinary double point (so that its normalization has genus 2 and is thus hyperelliptic), then f(1) = 2. The situation is more delicate when C has multiple components.

4. CLIFFORD'S THEOREM FOR SINGULAR CURVES

Here we prove Lemma 3.5. The key point is to generalize Clifford's theorem [Har77, Chapter IV, Theorem 5.4] to singular curves. To this end, let k denote a field and define a curve to be a geometrically connected projective algebraic variety over k whose irreducible components are of dimension 1. Throughout we fix a curve $C \xrightarrow{\pi} k$ such that the relative dualizing sheaf ω_{π} is invertible (in our application this holds because C is a curve inside a regular surface).

Remark 4.1. By [Liu06, Remark 7.1.20], any invertible sheaf of \mathcal{O}_C -modules is a subsheaf of \mathscr{K}_C , the sheaf of stalks of meromorphic functions on C [Liu06, Definition 7.1.13]. Thus, the injection [Liu06, Proposition 7.1.18 (b)]

$$\operatorname{CaCl}(C) \xrightarrow[6]{} \operatorname{Pic}(C)$$

is an isomorphism.

Definition 4.2. Let ω be the relative dualizing sheaf of $C \xrightarrow{\pi} \text{Spec } k$. We define a canonical divisor to be any Cartier divisor K such that $\mathcal{O}_C(K) \cong \omega$. By Remark 4.1 there exists a canonical divisor K.

Definition 4.3. Recall that a Cartier divisor D is effective if D can be represented by $\{(U_i, f_i)\}$ with $f_i \in \mathcal{O}_C(U_i)$. We call D special if there exists an effective canonical divisor K such that Supp $K \subset C^{\text{sm}}$ and K - D is effective.

Lemma 4.4. Let E be an effective Cartier divisor on C such that $\text{Supp } E \subset C^{sm}$. Then the set of pairs of effective Cartier divisors (D, D') such that D + D' = E is finite.

Proof. Since Supp $D \cup$ Supp $D' \subset$ Supp $E \subset C^{sm}$ the result follows from the analogous result for Weil Divisors.

Definition 4.5. For a vector space V define $\mathbb{P}(V)$ to be the projective space $(V - \{0\})/k^*$. For a Cartier divisor D define the complete linear system |D| by

$$|D| := \mathbb{P}(H^0(C, \mathcal{O}_C(D))).$$

Note that dim $|D| = \dim_k H^0(C, \mathcal{O}_C(D)) - 1.$

Remark 4.6. When C is smooth, any non-zero $f \in |D|$ is meromorphic and defines an equivalence of Cartier divisors $D \sim E$. In general f may vanish along a component (see Remark 4.8). When f is meromorphic we will sometimes refer to its class in |D| by E.

Lemma 4.7. Let D and D' be effective Cartier divisors on a curve C defined over a field k. Suppose Supp(D) and Supp(D') are contained in C^{sm} . Then

$$\dim |D| + \dim |D'| \le \dim |D + D'|.$$

Proof. The bilinear map

$$H^0(C, \mathcal{O}_C(D)) \times H^0(C, \mathcal{O}_C(D')) \to H^0(C, \mathcal{O}_C(D+D'))$$

given by $(f, f') \mapsto ff'$ induces a rational map of varieties

$$\phi \colon |D| \times |D'| \dashrightarrow |D + D'|.$$

Indeed, ϕ is defined at the point (D, D') (i.e. at the pair of functions (1, 1)) so extends to a rational map. We claim that $\phi^{-1}(D + D')$ is finite. Suppose $\phi((f, f')) = D + D'$. By definition this means that ff' = c for some non-zero constant $c \in k$. We conclude that fand f' do not vanish along any component of C; in particular they define equivalences of Cartier divisors $D \sim E$ and $D' \sim E'$ and the claim follows from Lemma 4.4. Finally,

$$\dim(|D| \times |D'|) = \dim \phi(|D| \times |D'|) \le \dim |D + D'|$$

where the first equality is [Har77, Exercise II.3.22(b)].

Remark 4.8. In contrast to the proof of [Har77, Chapter IV, Theorem 5.4], the map ϕ of Lemma 4.7 may not be finite to one. For example, let X be the projective closure of $Y = \operatorname{Spec} k[x, y]/(xy)$ inside of \mathbb{P}^2 and denote the points at infinity of the x and y axes by ∞_x and ∞_y . The effective Cartier divisor $D = \{(X, x^2 + y^2)\} + 2\infty_x + 2\infty_y$ can be written as the sum of two effective Cartier divisors in infinitely many ways. Indeed, for $\lambda \in \overline{k}^{\times}$, let D_{λ} be the Cartier divisor $\{(X, \lambda x + \lambda^{-1}y)\} + \infty_x + \infty_y$. Then $D_{\lambda} + D_{\lambda^{-1}} = D$, and for $\lambda \neq \pm \lambda'$, D_{λ} and $D_{\lambda'}$ are distinct divisors. Thus the map $\phi: |\infty_x + \infty_y| \times |\infty_x + \infty_y| = - \rightarrow |2\infty_x + 2\infty_y|$ is not quasi-finite.

Remark 4.9. Similarly, if Supp *E* is not contained in C^{sm} then the map ϕ of Lemma (4.7) may not be defined everywhere. Let *X* be as in Remark 4.8 and denote the closures of the *x* and *y* axes by X_x and X_y . Define meromorphic functions $f_x \in |\infty_x|$ as the identity on X_x and 0 on X_y and $f_y \in |\infty_y|$ as the identity on X_y and zero on X_x . Then the map $|\infty_x| \times |\infty_y| \dashrightarrow |\infty_x + \infty_y|$ is not defined at the pair (f_x, f_y) since $f_x f_y = 0$.

Theorem 4.10. (Clifford's Theorem) Let D be a special Cartier divisor on a curve C defined over a field k. Then

$$\dim |D| \le \frac{1}{2} \deg D.$$

Proof. Let K be a canonical divisor. By Serre duality [Liu06, Remark 6.4.30]

$$\dim |K| = \dim H^0(C, \omega) - 1 = \dim H^1(C, \mathcal{O}_C) - 1 = p_a - 1,$$

where $p_a := 1 - \chi(\mathcal{O}_C)$ is the arithmetic genus of C. Adding the inequalities

 $\dim |D| + \dim |K - D| \le \dim |K| = p_a - 1$ (by Lemma 4.7) $\dim |D| - \dim |K - D| = \deg D + 1 - p_a$ (by Riemann-Roch [Liu06, Theorem 7.3.26]) gives the result.

We conclude with the proof of Lemma 3.5.

Proof of Lemma 3.5. We have

$$p_{a} - r \leq \dim_{k} H^{0}(C, \omega \otimes \mathcal{O}_{C}(-D)) \qquad \text{(by Definition 3.3)}$$
$$= \dim_{k} H^{0}(C, \mathcal{O}_{C}(D)) - \deg D + p_{a} - 1 \qquad \text{(by Riemann-Roch)}$$
$$\leq p_{a} - \frac{1}{2} \deg D \qquad \text{(by Theorem 4.10)}$$

and simplifying gives the result.

5. An Example

Example 5.1. Here we give an example of a hyperelliptic curve with bad reduction where the refined bound of Theorem 1.4 is sharp. Let X be the smooth genus 3 hyperelliptic curve with affine piece

$$-2 \cdot 11 \cdot 19 \cdot 173 \cdot y^2 = (x - 50)(x - 9)(x - 3)(x + 13)(x^3 + 2x^2 + 3x + 4).$$

This curve has bad reduction at the prime 5 and its regular proper minimal model \mathscr{X} over \mathbb{Z}_5 is given by the same equation as the above Weierstrass model. A descent calculation using Magma's TwoSelmerGroup function shows that its Jacobian has rank 1. A point count reveals that $7 \leq \#X(\mathbb{Q})$ and $\mathscr{X}_5^{\mathrm{sm}}(\mathbb{F}_5) = 5$. Theorem 1.4 reads

$$7 \le \# X(\mathbb{Q}) \le \# \mathscr{X}_5^{\mathrm{sm}}(\mathbb{F}_5) + 2 = 7,$$

which determines $X(\mathbb{Q})$.

Let J be the Jacobian of X. Then J is absolutely simple. Indeed, J has good reduction at 13 and for $i \in \{1, \ldots, 30\}$ a computation reveals that the characteristic polynomial of Frobenius for $J_{\mathbb{F}_{13i}}$ is irreducible. By an argument analogous to [PS97, Proposition 14.4] (see also [Sto08, Lemma 3]) we conclude that $J_{\mathbb{F}_{13}}$ (and hence J) is absolutely simple.

One can check that 5 is the only prime at which the Chabauty-Coleman bound is sharp. Thus, one can use neither a map to a curve of smaller genus nor the Chabauty-Coleman bound at a prime of good reduction to determine $X(\mathbb{Q})$.

Acknowledgments

I thank Bjorn Poonen and Anton Geraschenko for many useful conversations and Michael Stoll for helpful comments on an earlier draft. Computations for the example were done using the software Magma [Magma].

References

- [Bom90] Enrico Bombieri, The Mordell conjecture revisited, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), no. 4, 615–640. MR 1093712 (92a:11072) ↑1
- [Bru99] Nils Bruin, The Diophantine equations $x^2 \pm y^4 = \pm z^6$ and $x^2 + y^8 = z^3$, Compositio Math. 118 (1999), no. 3, 305–321. MR 1711307 (2001d:11035) $\uparrow 1.5$
- [BS07] Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment (2007). Preprint, to appear in Experimental Mathematics. ↑1.5
- [Cha41] Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l'unité, C.
 R. Acad. Sci. Paris 212 (1941,) 882–885 (French). MR 0004484 (3,14d) ↑1
- [Col85] Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. MR 808103 (87f:11043) ↑1.1, 1, 3
- [Fal86] Gerd Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, pp. 9–27. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz. MR 861971 ↑1
- [Gra94] David Grant, A curve for which Coleman's effective Chabauty bound is sharp, Proc. Amer. Math. Soc. 122 (1994), no. 1, 317–319. MR 1242084 (94k:14019) ↑1.5
- [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116) ↑4, 4, 4.8
- [Liu06] Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2006. Translated from the French by Reinie Erné; Oxford Science Publications. ↑3.1, 4.1, 4
- [LT02] Dino Lorenzini and Thomas J. Tucker, Thue equations and the method of Chabauty-Coleman, Invent. Math. 148 (2002), no. 1, 47–77. MR 1892843 (2003d:11088) ↑1, 1.3, 1.6, 2.2

- [Magma] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. Computational algebra and number theory (London, 1993). Magma is available at http://magma.maths.usyd.edu.au/magma/ .MR1484478 ↑1.5, 5
- [Poo02] Bjorn Poonen, Computing rational points on curves, Number theory for the millennium, III (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, pp. 149–172. MR 1956273 (2003k:11105) ↑1.5
- [MP07] William McCallum and Bjorn Poonen, On the Method of Chabauty and Coleman (2007), available at "http://math.berkeley.edu/~poonen/papers/chabauty.pdf". ↑1.3, 1.1, 1.5, 2, 2.2
- [PSS07] Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of X(7) and primitive solutions to $x^2 + y^3 = z^7$, Duke Math. J. **137** (2007), no. 1, 103–158. MR 2309145 \uparrow 1.5
- [PS97] Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369 (98k:11087) ↑5.1
- [Sko34] Th. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen, 8. Scand. Mat. Kongr. (1934), 163-169. ↑1
- [Sto08] Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials (2008), available at "http: //www.faculty.iu-bremen.de/mstoll/papers/Xdyn06.pdf". ↑5.1
- [Sto06] _____, Independence of rational points on twists of a given curve, Compos. Math. 142 (2006), no. 5, 1201–1214. MR 2264661 ↑1, 1.2, 1.1, 2.6, 2.3, 2.3, 3, 3.1, 3.6
- [Voj91] Paul Vojta, Siegel's theorem in the compact case, Ann. of Math. (2) 133 (1991), no. 3, 509–548.
 MR 1109352 (93d:11065) ↑1

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840, USA *E-mail address*: brownda@math.berkeley.edu *URL*: http://math.berkeley.edu/~brownda/