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2 1 Moduli of Surfaces and the semi-stable reduction theorem

1 Moduli of Surfaces and the semi-stable reduction
theorem

Speaker: Fred.

Today the goal is to give the framework of the moduli space of surfaces.

Setup for the Moduli of surfaces.

We usually mean of general type up to birational equivalence (instead of up to isomor-
phism as in the case of curves).

Idea: Take a minimal model. This is smooth and unique (since we are in dimension
2). Unfortunately the canonical divisor wy is nef but not ample.

Idea: Instead take the canonical model.
e This is still unique in the birational equivalence class.
e wx is ample (by definition).

e [t is no longer smooth, but we at least know what type of singularities it can
have - it can have at worst rational double points.

So the moduli functor we should think about is ‘canonically polarised surfaces with
rational double points’; i.e. we study the functor

F(B) := { proper flat morphisms 2~ — B such that the geometric fibers have

at worst rational double points and wx is ample }/ ~

where ~ means isomorphisms respecting wx up to pulling back line bundles from the
base.

Definition 1.1. The analogue of g for curves is the Hilbert polynomial
h(n) = x(wg")
and we study M,,. o

For the purposes of Riemann-Roch we want to know K2 and x = x(Ox), which is
the same data as h(n).

Proposition 1.2. M}, s

(1) Bounded: can pluricanonically embed all the surfaces into a single PN (not
obvious).
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(2) Locally closed: in particular we get a locally closed subset % of the Hilbert
scheme of pluricanonically embedded surfaces.

(3) Separated: the valuative criterion holds. This implies the lemma that the PG L
action on U is proper and has finite stabilizers.

Proof. For references see
o Viehweg, Moduli of Manifolds.
e Matsusaka’s ‘big theorem’, Matsusaka-Mumford.
[

Remark 1.3. Now the idea is that you use GIT to check stability. This was done by
Gieseker in 1977. This means that you can take the GIT quotient, and thus you get a
coarse moduli space for Mj. Furthermore you will get a quasi-projective scheme. ¢

@ Warning 1.4. In general the GIT part won’t hold for compactifications. 4

Remark 1.5. Even the stack is not smooth; a smooth surface can be obstructed. Thus
the obstruction to smoothness is not that we have rational double points.

Indeed, the obstruction group for a surface is just H?(0s) (s is the tangent bundle).
This can be non-zero. This example is somewhat involved and can be found in Sernesi,
Deformations. (The point will be that you can understand the deformations of the
blow up.) o

Compactification.

Idea: We use the semi-stable reduction theore to check the valuative criterion of

properness.
The following theorem is in KKMS-D.

Theorem 1.6 (Semi-stable reduction). Let 2" — B be a surface with B a non-singular
curve, O € B, and 2" smooth over B — {O}. Then

(%'/l
\‘
X — X

L,

B/L}B

where g is finite, g71(0) — {0}, f is proper and birational, 2" is smooth, and the new
special fiber is reduced, with simple normal crossings.
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In the case of curves, we can get special fibers like (see pictures in handwritten
notes). You can get a curve intersecting a P!, and blowing down gives you a stable
model. Blowing down —1 curves gives you the minimal regular proper model, and
blowing down —2-curves gives you the relative canonical model of the total space.
Similarly, given the minimal model program in dimension three, we can try the same.

Remark 1.7. This process gives us semi log canonical singularities. If you don’t know
what this is define it in this way. o

We have been proving that a functor is proper but haven’t defined that functor yet.

Problem 1.8. Semi-log canonical implies Cohen-McCauley, and so we have a canon-
ical sheaf w, but it may not be invertible. o

To solve this we introduce more terminology.

Definition 1.9. Set wgcv] = (w_‘?;N ) *_ Then ng(v] is invertible for some N and we
define the index of a surface X to be the smallest such V. o

Finally we can make the definition:

Definition 1.10. We say that a surface is a stable surface of index N if X has semi-log
canonical singularities and ng(v] is ample (and of index N). We define M} to be the
moduli functor of stable surfaces of index N with Hilbert polynomial h. o

Strictly speaking this is the wrong definition.

Warning 1.11. The total space need not be Q-Gorenstein. The solution is to
just require this explicitly. a

Question 1.12. Do reflexive powers commute with base change? If not then you get
two different definitions of this functor. o

Proposition 1.13. MY is
e Bounded (Kollar, ... Singular..., 1980’s).

e Locally closed (Hassett-Kovacs) (% C the Hilbert scheme of pluri-canonical
embedded stable surfaces of index N ).

e Separated (at least the uniqueness of the relative canonical model). As before
we get a lemma that the PGL action on % is proper and has finite stabilizers.

Now we can’t use GIT, so we diverge from what we did before. Lets at least
form the quotient as an algebraic space. This will then be the coarse moduli space
for the stack. The condition of properness and finite stabilizers tells us this by the
Artin/Mumford /Popp theorem.



1 Moduli of Surfaces and the semi-stable reduction theorem 5

Remark 1.14. You also need to check that points have no infinitesmal automorphisms
to get that the stack is Deligne-Mumford. The scheme cover is the versal deformation
space (this is just a different way to construct this stack). o

Question 1.15. Is M}¥ compact? Is it a scheme? o
Theorem 1.16. M} is complete (and hence proper).
Proof. Here’s an outline:

Semi-stable reduction.

Take the relative canonical model of the total space.

Prove that this gives you semi-log canonical singularities.

Control the index of the new special fiber.
O

Most of this is due to Kollar and Shepard-Baron, but without the index part.
Recently, we have the

Theorem 1.17 (Alexeev). Given a fized K? and x, there exists N such that for all
semi-log canonical surfaces with such K* and x, index(X)|N.

We could talk about this paper. Now we have a proper algebraic space. Finally,
apply Kollar’s Ampleness Criterion (Kollar, Projectivity) to get an ample line bundle
on M}, making it into a projective algebraic space, which is then a projective scheme.

Remark 1.18. MY

e is not smooth;
e is not irreducible (at least analytically locally at the versal deformation space);

e the irreducible components are not known (i.e. what are the stable surfaces you
are adding)

So there are lots of things to do in this seminar.
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2 Stable reductions for Surfaces

Today’s speaker is Maksym Fedorchuk.

What we will do today is give a few definitions, a few proofs, and a few examples.
One example will explain why we need Q-Gorenstein in the definition of Mj,.

We begin with the moduli space of canonically polarized surfaces (i.e. the canonical
class is ample and it has at most rational double points as singularities) Mj,. We defined
the moduli functor as

M;, : Sch — {% 5 B : geometric fibers are surfaces with at most rational double points and w4 /B 18

Everything is Q-Gorenstein so we have a well-defined canonical divisor.

Remark 2.1. (1) M, has a coarse moduli space which is a quasi-projective scheme
(Gieselar).

(2) M, is separated but not proper.
Note for (2) that to show that M), is not proper we need more than just a family
which degenerates. o

Good compactification of M,

e Let X be a normal surface. X is then Cohen-McCauley, so the dualizing sheaf
wx exists. As X is smooth in codimension one wx 1s invertible in codimension
one, and there thus exists a well defined Weil divisor class Kx. This is the same
as Q-Gorenstein of index n (we make this our definition).

o Kx has index n iff nKx is a Cartier Divisor iff (w§")** is invertible.

So we now consider the non-normal case (because often we will have for exam-
ple non-reduced special fibers). Consider the desingularization X — X. X is Q-
Gorenstein. Thus

KX——f*KX—ZaiEi’ai €Q

where the sum is over the exceptional divisors of f. If a; are all positive then X has
terminal singularities, which for surfaces means smooth. If all a; > 0, then X has
canonical singularities. This is the case of rational double points. If a; > —1 then
we have log terminal singularities, and if a; > —1 then we have log terminal and log
canonical.

Remark 2.2. The philosophy of the minimal model program is that we should allow
log canonical singularities. o
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We have a similar definition for log pairs (X, D) where D is a Q-Cartier divisor.
We then have

K¢~ f'(Kx+D)=> aE - Dia€Q

where now D; is a component of the strict transform D. Now if a¢; > —1 then (X, D)
is a log canonical pair.

We now give a definition of a class of non-normal surfaces that we will consider.

Definition 2.3. Let X be a surface. We say that X has semi-log canonical singulari-
ties if
(1) X is Cohen-MacCauley.

(2) The only singularities in codimension 1 are normal crossings (a double curve is
the closure of the codimension 1 singular locus; we think of the double curve as
where two components meet or a component meets itself with normal crossings).

(3) (1) + (2) tells us that there exists a canonical Weil divisor class Ky associated
to wy. For this we need to understand that Ky is Q-Cartier.

(4) Let 7 : X — X be the normalization. Then (X° 7~'(D)), with D a double
curve, is a log canonical pair.

o

We always want our surface to be (Q-Gorenstein to make sense of the canonical
divisor and singularities.

We want to start with a family of flat family X — A with smooth generic fiber of
general type. We want to replace this family with one where the central fiber is in our
above log canonical class.

e Step 1: Semi-stable reduction (KKSM):

X —

N

D> —— >

such that

— X is smooth.

— ¢71(0) is a reduced normal crossings divisor.

What we want is for X’ — X to be an isomorphism on the complement of A—{0}
and want Kxs to be ample.
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(2) Find the relative canonical model of X. This is very well explained in the book
of Kollar and Mori, in the following theorem.

Theorem 2.4 (Kollar, Mori 7.10). Let X — A be a semistable family. Then
there exists a birational model

X—X
N

9

A

such that g¢ is log canonical and relatively ample (i.e. Ky is relatively ample
with respect to g©).

The following lemma is in the same book.

Lemma 2.5. If the general fiber of X¢ is log canonical, then X¢ is too.

Thus the total space will be canonical if the generic fiber is.

Theorem 2.6 (Shepard-Baron, Kollar 5.1). Let f : X — A be a morphism with X
canonical, and denote the central fiber by Xo = f~'{0}. Then Xy is semi-log canonical.

Someone can prove this later.

Corollary 2.7. Let X* — A* be a family of canonically polarized surfaces over the
punctured disk. Then (after a base change) you can complete it to a (necessarily unique)
Q-Gorenstein family X — A with Xy semi-log canonical and Kx ample.

We will see that if we drop Q-Gorenstein we lose separatedness (i.e. uniqueness).

New Functor

We should now consider the functor of stable surfaces
MY :Bw— { f:Z — B: f has semi-log canonical geometric fibers of index N and (

We consider the following standard construction.

Example 2.8. Degeneration of a variety to the cone over the hyperplane section. Let
X C P" be a projective variety and consdier the cone C'(X) C P"*'. The generic
pencil of hyperplane sections is a family Y — P! with generic fiber X and special fiber
C(X N H) (here H is a hyperplane). o

Example 2.9. Consider the cubic scroll Sy, C P* Fix an isomorphism between P*
and a conic, and take the space of lines between isomorphic points. Alternatively,
S19 =P(Opi(1) ® Op1(2)). now consider C(S15) C P® as a family over P'. Tts generic
fiber is smooth, and the central fiber is C(S N H). Also, SN H is degree 3 in P? and
is thus a rational normal curve, which we denote by Cj.

Claim: the cone C(Cs5) is Q-Gorenstein and semi-log canonical.

Kk
W%b(@n

_ w%)[N])
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Proof. Consider the desingularization f : Z — C(C3), Z = BI(C(Cs)) = P (Op & Op1(3)),
and we have Ky = f*K¢(c,) + alf where E is the exceptional divisor. Then

E-K;=FE-(aE) = akE?

and also
F -K;=Kg—E*E?>=-3,degKp = 2.

The canonical divisor K¢(c,) is also ample, simply because. .. o

Thus the cone over the rational normal cubic is a stable surface. Nonetheless, there
are two things that are wrong with this family

(1) K? is not constant on the fibers.
(2) It is not Q-Gorenstein.
Lemma 2.10. The total space C(S) is not Q-Gorenstein at the vertex.

Proof. We have the rational map C(S) — S — P!, wher ethe first map is the projec-
tion. Call the composition f.

I'=T;cCC(S) x P!
C(S) \‘ Pl
Then a moment of reflection will convince you that what you add is

T (0) =P

in particular this is a small contraction. Once we show that the graph I' = F_f is smooth
we lose Q-Gorenstein. But under the map I' = P! 7, (b) = C(F,) = P?, thus T is
smooth. Now think about the fibers of I' over A. The generic fiber is S = F;. The
special fiber is a blow up of a cone over C3. The conclusion is that I' — A has semi-log
canonical fibers and is Gorenstein, and C(S) is not even Q-Gorenstein.

o

Thus you lose uniqueness. o

To get an example of general type you need to change this slightly.
Expository article on stable surfaces
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3 Boundedness of Stable surfaces

Today’s speaker is Brian.

Definition 3.1. We say that a set A C R is a DCC set if it satisfies the descending
chain condition. o

The setup is as follows. Suppose A C [0,1] is a DCC set. Let S be a surface with
log-terminal singularities, B a divisor with coefficients in A and (S, B) is a log-canonical
pair. Then K¢+ B is ample.

Theorem 3.2. The following are true.
(1) The set of values {(Ks + B)*} is also a DOC set.
(2) The family with (Ks + B)* = C is bounded.

We have defined a functor My g which sends a base 1" to flat families over 7" whose
fibers are stable surfaces such that Kg is ample, K2 = C'is fixed. Here N is the index
of the total space X — T.

Eventually we want to show that the coarse moduli space is projective. We want
to use Kollar’s criterion, and to this end we need things to be bounded.

Theorem 3.3. Let X — T be stable degeneration of surfaces of general type, and let
S be be general fiber. Then the index of X is bounded by K?2.

Proof. Suppose Y is a singular fiber of the map X — T'. Since this is only stable, Y
may not be normal (just semi-log canonical). Let Y = UY,,, and define B,, on Y,, to
be the double intersection locus.

Key fact: Locally around the singular fiber of Y, the index of X is the lem of
the indices of the Y,,. It turns out that the pairs (Y,,, B,,) are log canonical and
K2 = K% = Y (Ky, + By,)*. (This is why we included the B,,’s in the first place).
By the first theorem there are only finitely many numbers occurring at (Ky,, + Bm)Q.
By the other part of the first theorem we are done. ]

Recall the following definition.

Definition 3.4. We say that a family X — T is bounded if any fiber can be found
as a fiber of a fixed map T" — T" of finite type schemes. o

Example 3.5. For smooth surfaces, with Kg ample, K2 fixed, it is true that 5K
defines an embedding. So for this we can take the universal family over a subscheme
of a Hilbert scheme. o

Question 3.6. What are the barriers to doing this for singular surfaces. o
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The B’s in the first theorem will play the same role as marked points in the curve
case.
What are the problems with extending these things to stable surfaces?

Problem 3.7. Blowing up causes the ample curves to become nef instead of ample.
This is why ruled surfaces are not bounded; you can fix K2 and keep blowing up.

o
The solution is to look at p(S) of the desingularization.
Problem 3.8. SLC is hard. o
But it’s not too hard.
Idea 3.9. SLC normalizes to LC, which is a limit of LT. o
Problem 3.10. Everything we are doing is taking place over Q instead of Z. o
Idea 3.11. Scale coefficients of B downwards and use induction. o

This is sort of like the minimal model program.

Proofs

These lemma’s will let us work with the boundary of the nef cone.

Lemma 3.12. Let X be a Q-factorial surface and let (X, B) be a log canonical pair
such that Kx + B == 0 (== means numerically equivalent). Write B =Y_b;B;. Then
> bi < p(X) +2.

Lemma 3.13. Let X be a nonsingular surface, and let B = > b;B; with0 <b; < 1—¢
for some € > 0. Suppose that Kx + B == 0. Then p(X) < %.

The following will be the most careful proof we do.
Proof of Lemma 2. (1) Suppose that Kx == 0. Then Ky is nef. Thus X is K3 or
Enriques, and p(X) < 22.

(2) Kx == —B. Suppose X is not rational. We know that for a ruled surface,
K% =8(1—g). Since K? = B? > 0, g = 1 and no blowups are allowed, so X is ruled
over an elliptic curve.

B (3) Suppose X is rational. Then X — F,, is the blowup of a Hurziwitz surface. Let
Bj be the transform of B; on F,, (i.e. ignore it if it is contracted). Then We still have
Ky, + B == 0, and we use adjunction. lL.e. if C'is a distinguished section, then

—2=C(Ky, +C)=(Kp, +B)-C—B-C+C?*=0+C*—(1—¢)-C*= —en
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and thus n > %

Now we need to bound the Picard number. We want to bound the number of blow
ups. We have ¢ : X — F,,. Fact. We can do intermediate blow-ups along p; so that
the multiplicity of B at p; is non-increasing. We can bound the number of parts with
multiplicity > €/2. Consider

BQ _ q*( B)2
This number decreases by at most €¢/4. Then parts with multiplicity < €/2. This
means that the exceptional curve you get when you blow up does not satisfy the log
condition. When you count this carefully you get the lemma. O

All of the arguments in this paper are pretty similar. The ruled surface case will
be handled by adjunction.

Scaling coefficients

Lemma 3.14. Let K + B be big and log canonical on a smooth scheme X and suppose
6 < bj < 1—e€. Then there exists an ‘indexing’ subset J' C J and N(0,¢€) so that
|J'| < N and L+, b;B; is big.

Proof. By scaling components. O]

Our first boundedness theorem

Remark 3.15. Let . = (S, H) be a family of Q-polarized normal surfaces such that
NH is Cartier for some fixed N and H?> < C and H - K < C for some C. Then .¥
is bounded. Furthermore, if we include a divisor . = (S, H, B) is also bounded if
H-B<(C o

Theorem 3.16 (First Boundedness). Fiz C > 0 and a DCC set A C [0,1] with 1 € A.
Then there exists a bounded class (Z, D) of surfaces with divisors such that for every
X with (X, B) with K + B big, nef, and log canonical such that B has coefficients in
A and (K + B)® < C, there exists a diagram

L}Z

><<T"<:

with such that

(1) Y is a minimal resolutoin of X.
(2) D = q(Suppf* (Kx + B) U Exc(f))

This does not prove boundedness, it is just a related result.
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Proof. By the previous lemma we scale B to B’ such that
(1) K+ B'is big.
(2) The coefficients of B’ belong to a finite set of rational numbers.
(3) The coefficients of B’ are < 1 —e.

Now we apply the previous lemma to toss out components of B’ leading to a B” with
Kx + B” big (but maybe no longer log canonical). Now we run a general kind of
minimal model program (more generally than log canonical) on Ky + B” and we get
a surface Z where the we can apply the previous remark. You need to be a little more
careful, but this is more or less it. O

Boundedness

How do we actually get boundedness out of this. There could be many (X, B) giving
us the same (Z, D). How do we work backwards? Fix (Z, D). Then we get a diagram
insert picture
Such that (V, BY) — (X, B) are bounded.
We show that there exists a V with h} (Ky + DY) < K¥ + BY. This implies that

essentially since (KV + BV)2 is some kind of global minimum, every map ¥ — X
factors through V.
Once we know this the two original theorems follow pretty easily.

References
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4 Valentino: Stability for Polarized Varieties

GIT: Let G = SL(m,C) and W = C"*"! and P(W) = P". Consider an action of G on
GL,41(C).

Definition 4.1. A point v € P(IV) is semistable if for some (all) 0 € W above v,
0 & G-v. We say that v is polystable if the orbit of v is closed in W, and v is stable
if the orbit is closed and the stabilizer is finite. o

Consider a 1-parameter subgroup p : C* — G, non-trivial. Then if v is semistable,
then 0 & p(C*)0. We have a converse.

Theorem 4.2 (Hilbert-Mumford criterion). If 0 ¢ p(C*)v for all non-trivial p, then
v s semi-stable.

Now we want to get a numerical criteria.

Remark 4.3. Numerical criterion: Fix a basis (ay,...,a,4+1) of W such that the
action of p(t) is diagonal, say with diagonal elements i, w; € Z. We define the weight
to be > w;. The w; are integers because p is a morphism of schemes, and > w; = 0
by the SL condition. Fix v € P(W), 0 = > . va; and p(t)0 = ). t""v;a;. We want to
take a limit as t — 0, so we define p = min {w;|v; # 0} and ¥y = lim,_o t*p(t) - 0 exists
(since P is proper) so set vy = lim; o p(t) - v. We then find that vy is a fixed point of
the C* action. o

A more intrinsic way to state this is the following. We get a C*-action on Op(,(—1) |V0’
so we get a weight which turns out to be u = u(v, p). Notice that in W, the limit
lim;_o p(t) - 0 exists iff p(v, p) > 0, and is zero iff (v, p) > 0. But if this limit exists,
then it is either v, in which case the stabilizer contains C* and is not finite, or it is
another point, which is then fixed by C*. But then you have a point in the closure of
the orbit which is not in the orbit; in particular the orbit is not closed.

We summarize.

Theorem 4.4. 0 & p(C*) -0 iff u(v, p) <0, p(C*-0) is closed iff u(v,p) <0 and =0
implies that p fives v. p(C*) -0 is closed iff u(v, p) <0 and the stabilizer is finite.

Reformulating the Hilbert-Mumford briterion gives semistable, polystable, and sta-
ble for these above three cases.

Hilbert Stability

Let (X, L) be a polarized smooth variety with ample line bundle L and Hilbert poly-
nomial P(r) = x(X, L*). Pick r large enough so that H (X, L") =0 for ¢ > 0 and L"
very ample.
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Then X — P =P (H° (X, L")") = PP~ has Hilbert polynomial P(Kr) = P'(K).
You thus get a point of a Hilbert scheme. And there thus exists an K depending only
on P! such that

0 Ix(K) — H (P,Op(K)) — H° (X, Os(K]x)) — 0

where the middle term is isomorphic to Sym®(H® (X, L")). Then Ix(K) is a lin-
ear subspace in SymX H® (X, L") = Sym®XCF" of codimension P(Kr). It defines a
point in G = Gr (Sym™CF", P(Kr)) plucker p (APED SymKCPT™). Call the point
Hilb, i (X), and we have an action of G = SL(P(r),C) on P(...), and we are in
precisely in the situation of the beginning of the talk.

Definition 4.5. We say that (X, L) is Hilbert stable with respect to r if Hilb, g, (X)
is GIT stable for all K >> 0, and asympotoically so if it is Hilbert stable with respect
tor >> 0. o

Remark 4.6. Notice from the above that Og(—1)|gin, ., = A™*Sym"H® (X, L") ®
(AmaxHO (X, LK?”))*‘ o

Chow Stability
Let X — P = PPt = PV Let Zy = {AeGr(PVn—1)|[ANX #£0}. This

is a divisor in G’ = Gr (IP’N,n— 1). Let d = degL = (fL—T) = deg X. A classical
computation which is in Harris’s book says that Zx is also of degree d. There thus
exists f € H°(G',Og(d)), unique up to scaling, such taht Zx = {f =0}. Thus
Chow,(X) = [f] € P(H"(G',0g(d))) and G = SL(P(r),C) acts on this. Thus we
can talk about stability.

Definition 4.7. We say that (X, L) is Chow stable with respect to r if Chow,(X)
is GIT stable. We say that it is asymtotocally Chow stable if it is Chow stable with
respect to r >> 0. o

Geometric visualization of 1-paramater subgroups

Definition 4.8. A test configuration for (X, L") is the following data

(1) & a projective scheme with a C*-action and amap 7 : 2~ — C which is C*
equivariant.

(2) A C* equivariant line bundle . — 2~ which is ample over all fibers of 7 such
that for some (and hence any) ¢ # 0 the pair (X, L") = (%23, L 2,)-

We call it a product configuration if the total space is a product 2" = X x C, and
trivial if it is a product and C* only acts on the second factor. o

These test configurations are the same as 1-parameter families.
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Remark 4.9. Let X — P, p a 1-parameter family in G = SL (P(r),C). Then we get
a correspondence
{testconfig} < {1param.}

given by as follows. We get a map C* — H1lb given by p. Inside you get a universal
family inside Hilb x P. Hilb is proper so you can fill in the map to a map C — Hzlb
and pulling back the universal family gives you a test-configuration. The inverse map
is given by setting Lo = Z|x,. This inherits a C* action. You thus get an action on
H° (Xy, Lo) (at least when there is no higher cohomology, else you need to take the
push forward). Then

h? (XO’ LO) =X (X()? LO) =X (Xtv Lt) =X (X7 LT) = P(T)

You need the weight of the one-parameter subgroup to be zero, so we modify the test-
config. Let the weight of the C*-action on H® (X, L{) be w(Kr) = w(k), k = Kr.
First I pull back 2" via the map C — C given by ¢ ~ t"70". The weight on H° (X, L)
becomes w(r)rP(r). Next I compare the C* action with scaling along the fibers of .Z
by ¢, and the weight scales by —rw(r)P(r), and we can force the weight to be 0. o

Question 4.10. What is the Mumford weight p of this 1 parameter subgroup on
Hilb, g (X)? o

Well, set
I, (K) = lim p(t) - I (K).

t—0

Then we get an exact sequence
0 — L (K) — Sym™ H® (X0, Lo) — H® (X, L) — 0
and thus
Oc(—1)|(1y, () = A Sym™ H® (X0, Lo) x (A" H° (X, L)) -
The weight of p is 0, so
—w(k)rP(r) + krw(r)P(Kr) = —w(k)rP(r) + w(r)kP(k)
and we define w, = .

Corollary 4.11. (X, L) is asymptotically Hilbert stable iff for all r >> 0 and for every
nontrivial test configuration for (X, L"), W, < 0 for all k >> 0.

For Chow, we first use Riemann Roch. We know that P(r) is a polynomial of degree
n. By equivariant Riemann Roch, w(k) is a polynomial of degree n + 1 when k >> 0.

We can thus expand
n+1

Wy = Z ei(r)k!

=1
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and each term is
n+1

e;(r) = Zew«rj,r, k>>1.

J=0

Theorem 4.12 (Mumford, 1977). The weight for the action of p on Chow,(X) is
enJrl(?n)'

This is not obvious.

Corollary 4.13 (Fogarty). Asymptotically Chow stable implies asymptotically Hilbert
stable which implies A.H.ss. which implies Ass. C. ss.

Proof. By H-M, (X, L) is asym. Chow S. iff for all » >> 0 and for all nontrivial (X, L"),
en+1(r) < 0. This implies that w, , < 0 for large k. O

Theorem 4.14. T. Mabuchi proved in 2006 that Asymptotically H.S implies Asym.
C.S.

One step further

This is introduced by Tian and Donaldson. It is immediate that e, 41,41 is always zero
(because of our normalization). The next term e,1, is called the Futaki invariant
of the test configuration.

Definition 4.15. We say that (X, L) is K-stable if for large r and all non-trivial test
configurations (X, L"), e,41.n < 0. o

Now we see that Asym. Chow ss. implies K-ss.
Question 4.16. Does K. ss implies Asym. Chow stable? o

Question 4.17 (Yau, Tian, Donaldson). (X, L) is K-polystable iff there exists a Kahler
metric w € ¢;(L) with constant scalar curvature. o

Theorem 4.18 (Donaldson, 2001, 2005). If there exists csc K then you have K ss. if
Aut(X,L) is discrete. If there exists cscK then you have Asym Chow Stable.

Theorem 4.19 (Yau 1978). If L = Kx is ample and if there ezists a csc K then we
have Ascym Chow ss. If Kx s trivial, L ample then there exists csc K.

Finally, if L is Kx and is ample (i.e. Fano), then this is open (i.e. the existence of
a Kahler metric).

For curves, this says that g > 1 implies Asym. Chow ss and K-stable. For g = 0,
we get K-polystable.
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