
Combinatorics, Probability and Computing (1998) 7, 33–46. Printed in the United Kingdom
c© 1998 Cambridge University Press

Endomorphisms of Partially Ordered Sets
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V O J T Ě C H R Ö D L† and A N D R Z E J R U C I Ń S K I†
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It is shown that every partially ordered set with n elements admits an endomorphism with

an image of a size at least n1/7 but smaller than n. We also prove that there exists a partially

ordered set with n elements such that each of its non-trivial endomorphisms has an image

of size O((n log n)1/3).

1. Introduction

Let P be a partially ordered set. A function φ : P → P is an endomorphism of P if for

every two elements x, y of P , the inequality φ(x) 6 φ(y) holds whenever x 6 y. Obviously,

the identity mapping is a (trivial ) endomorphism. Here, however, we will be interested in

endomorphisms with an image of size less than |P |, i.e. endomorphisms which are not

automorphisms of P . We will refer to them as non-surjective. Define

η(P ) = max{|φ(P )| : φ is a non-surjective endomorphism of P }

and

g(n) = min{η(P ) : |P | = n}.
The only known estimates for g(n) are due to Grant, Nowakowski and Rival, who

introduced the problem in [2] and proved that

(1 + o(1))
log n

log log n
< g(n) = O(

√
n).

In this note we improve both the above bounds for g(n), showing the following two
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results. Here and below C(x) = {y ∈ P : y > x or y 6 x} denotes the set of all elements

comparable with x, and D = D(P ) = maxx∈P |C(x)|.

Theorem 1.1. Let P be a partially ordered set of size |P | = n.

(i) If P contains an element comparable to each element of P then η(P ) = n− 1.

(ii) If P has no such element then

η(P ) > max

{
D,
( n

D4

)1/3
}
.

In particular, g(n) > n1/7.

Theorem 1.2. There is a constant c > 0 such that for every n there exists a partially

ordered set P of size n with the property that the only endomorphism φ of P with |φ(P )| >
c(n log n)1/3 is the identity. In particular, for every n, g(n) 6 c(n log n)1/3.

Remark. One can easily modify the proofs of Theorems 1.1 and 1.2 to get similar

bounds for a function analogous to g(n) and defined for graphs, provided we allow

an endomorphism of a graph to map a pair of adjacent vertices into one vertex (or,

equivalently, we assume that there is a loop at each vertex of a graph).

2. Proof of Theorem 1.1

Throughout this section, P denotes an n-element ordered set. We say that x covers y (or

y is covered by x) if x 6= y, x > y and, for every z, if y 6 z 6 x then either z = x or z = y.

First, if there is some x ∈ P with C(x) = P , let y be any element covered by or covering

x. The map φ which sends y to x and fixes all other elements is an endomorphism with

|φ(P )| = n− 1. This proves (i).

Assuming P has no element comparable with all others, choose x ∈ P with |C(x)| = D

and define φx on P by

φx(y) =

{
y, if y ∈ C(x),

x, otherwise.

Then, |φx(P )| = C(x) = D < n and φx is an endomorphism.

Thus, to prove part (ii) of Theorem 1, it is enough to construct a non-surjective

endomorphism with image of size at least (n/D4)1/3. Without loss of generality we may

assume that P is connected, i.e. that it is not possible to split P into two subsets of

mutually incomparable elements. Indeed, if P has components Pi with ni = |Pi| and

Di = D(Pi), i = 1, . . . , s, and φ is an endomorphism of P with (ni/D
4
i )

1/3 6 |φ(Pi)| < ni,

i = 1, . . . , s, then

|φ(P )| =
∑
i

|φ(Pi)| >
(∑

i

ni/D
4
i

)1/3

> (n/D4)1/3

since Di 6 D. Let max(P ) (min(P )) denote the set of maximal elements of P (minimal

elements of P , respectively), and let ext(P ) = min(P ) ∪max(P ). We call a subset X ⊆ P
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an up-set (down-set) whenever y 6 x (y > x) and y ∈ X imply x ∈ X. In particular, if

x ∈ min(P ) (max(P )) then the singleton set {x} is a down-set (up-set). Given an up-set X

and a down-set Y of P , let

N(X) = {z ∈ P : z 6 x for some x ∈ X}
N(Y ) = {z ∈ P : z > y for some y ∈ Y }.

Then N(X) is a down-set and N(Y ) is an up-set. We define sets Nk(X) and Nk(Y )

recursively, setting

N0(X) = X, and Nk(X) = N (Nk−1(X)) , for k = 1, 2, . . . ,

and write N(x), Nk(x) instead of N({x}), Nk({x}).
The following basic construction will be crucial in defining a non-surjective endomor-

phism with large image. Let elements f0, . . . , fk of P (not necessarily distinct) form a fence,

i.e. for each i = 1, . . . , k− 1 they satisfy fi−1 6 fi > fi+1 or fi−1 > fi 6 fi+1. Let us assume

that f0 6 f1. Then, for any v ∈ min(P ), the mapping

φ(Ai) = fk−i , i = 0, 1, . . . , k, (2.1)

where A0 = {v}, A1 = N1(v) \ {v}, A2 = N2(v) \ N1(v), . . . , Ak−1 = Nk−1(v) \ Nk−2(v),

Ak = P \ Nk−1(v), is an endomorphism. This is because if y 6 z then {y, z} ⊂ Ai ∪ Ai+1

for some i = 0, . . . , k − 1, and therefore the elements y, z are mapped either to the same

image fj or to two consecutive elements of the fence, always preserving the order.

Now, we shall find integers k and r, elements v1, . . . , vr and fences F1, . . . , Fr with

common final vertex, such that the sets Nk(vi) will be pairwise disjoint, and mapping each

set Nk(vi) on one of the fences in the above prescribed manner will create a non-surjective

endomorphism with large image.

For all x ∈ ext(P ), let deg(x) = |N(x)| and d = max{deg(x) : x ∈ ext(P )}. (Note that

d 6 D.) Then, for an up-set X and a down-set Y ,

|N(X)| 6 d|max(P ) ∩X| 6 d|X| and, similarly, |N(Y )| 6 d|Y | . (2.2)

By taking X = max(P ) and Y = min(P ), it follows that |max(P )| > n/d and |min(P )| >
n/d. Set

t(x) = max

{
k : |Nk(x)| <

(n
d

)1/3
}
. (2.3)

Note that N0(x) = {x} while, since P is connected, |Nk(x)| = n for some k. Thus t(x)

always exists. Observe that, by (2.2) with X = Nt(x)(x), it follows that

|Nt(x)(x)| > 1

d

(n
d

)1/3

=
( n
d4

)1/3

. (2.4)

Choose x0 such that t0 = t(x0) minimizes t(x) over ext(P ). The set Nt0 (x0) will serve as

a source of fences with common origin x0 and length t0. There are four similar options

with respect to the location of x0 (min(P ) or max(P )) and the parity of t0. Without loss

of generality we thus assume that, say, x0 ∈ min(P ) and t0 is even.
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By the definition of t0 and by (2.3), for all v ∈ min(P ) we have |Nt0 (v)| 6 (n/d)1/3, and

so

|N2t0 (v)| =

∣∣∣∣∣∣
⋃

u∈Nt0
(v)∩min(P )

Nt0 (u)

∣∣∣∣∣∣ 6
(n
d

)2/3

.

Since, in addition, |min(P )| > n/d, one can greedily find l > (n/d)1/3 elements v1, . . . , vl ∈
min(P ) such that Nt0 (vi) ∩ Nt0 (vj) = ∅ for all i 6= j. In fact, we will only need v1, . . . , vr ,

where r = |Nt0 (x0)| < (n/d)1/3. Let us associate to each vi a fence Fi of the form

x0 = fi,0 6 fi,1 > fi,2 6 . . . > fi,t0 = ui,

where ui runs through all the elements of Nt0 (x0), and where the fi,js need not be distinct.

Now we construct a mapping which maps each set Nt0 (vi) onto the fence Fi, i = 1, . . . , r,

as in (2.1). Formally, define φ on P by

φ(vi) = ui for i = 1, 2, . . . , r,

φ(Nj(vi) \Nj−1(vi)) = fi,t0−j for i = 1, 2, . . . , r, and j = 1, 2, . . . , t0 − 1, and

φ(y) = x0 for all y 6∈
(

r⋃
i=1

Nt0−1(vi)

)
.

Because Nt0 (vi) ∩Nt0 (vj) = ∅ for all i 6= j, the map φ is well defined. Since vi ∈ min(P ),

each x ∈ N1(vi) \ {vi} satisfies x > vi, and

φ(x) = fi,t0−1 > fi,t0 = ui = φ(vi).

That φ is an endomorphism follows by similar argument. It is important to notice that

for all i 6= j and all x ∈ Nt0 (vi) and y ∈ Nt0 (vj), the elements x and y are incomparable,

and we do not need to worry about the relation between φ(x) and φ(y) for such pairs.

Furthermore, we have clearly

|φ(P )| = |Nt0 (vi)| = r,

and, by (2.2) and (2.3), ( n

D4

)1/3

6
( n
d4

)1/3

6 r <
(n
d

)1/3

< n.

Thus, |φ(G)| >
(
n/D4

)1/3
, yielding the required lower bound for η(P ).

We verify g(n) > n1/7 easily: the inequalities D < n1/7 and
(
n/D4

)1/3
< n1/7 contradict

each other.

3. Proof of Theorem 1.2

The proof of Theorem 1.2 involves a natural relation between bipartite graphs and 2-level

partial orders. A partial order P such that P = min(P )∪max(P ) is called 2-level. The Hasse

diagram of a 2-level partial order is a bipartite graph G(P ). Conversely, every bipartite

graph G with bipartition (V1, V2) can be viewed as a partial order P (G) on the set V1∪V2,

in which x > y if and only if x = y or x ∈ V1 and {x, y} is an edge of G. (Throughout we

will be assuming that V1 is the set of maximal and V2 of minimal elements of P .)
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From now on we set, for convenience,

m = m(n) = (n log n)1/3.

For further reference observe that m < n2/5 as well as m < n7/18 (here and throughout this

section we tacitly assume that all the inequalities are only claimed to hold for sufficiently

large n).

Let vi(H) = |Vi ∩ V (H)|, i = 1, 2, for any subgraph H of G. Furthermore, let degG(v)

denote the degree of a vertex v in a graph G and NG(S) stand for the neighbourhood

of a subset of vertices S in a graph G. (Note that if P is 2-level then, for any v ∈ P ,

NG(P )(v) = N(v) \ {v}, where N(v) was defined in Section 2.)

To prove Theorem 1.2, we will show the existence of a bipartite graph G on n + n

vertices such that the partial order P (G) satisfies the inequality η(P (G)) 6 100× 227m.

It is shown (probabilistically) in Lemma 4.1 that almost all bipartite graphs G with

bipartition (V1, V2), |V1| = |V2| = n, which belong to a certain space of random graphs,

satisfy all the properties (1–6) listed below. Thus the next lemma follows.

Lemma 3.1. For every n large enough, there exists a bipartite graph G with bipartition

(V1, V2), |V1| = |V2| = n, satisfying all the properties (1–6) listed below.

(1) There is no subgraph H of G with |V (H)| < 80 and |E(H)| > 3
2
|V (H)|.

(2) For each vertex v of G,

| degG(v)− m| 6 n1/3.

(3) Every subgraph H of G such that min{v1(H), v2(H)} 6 n2/5 contains at most 3|V (H)|
edges.

(4) Let S be a subset of vertices of G contained in one set of the bipartition.

(a) If |S | 6 n7/18 then

|NG(S)| > |S |m(1− 10−15);

(b) if |S | 6 n7/18 and H is a subgraph of G with bipartition (S,N) and such that

degH (v) > 0.999m for every v ∈ S , then

|N| > 0.999|S |m(1− 10−15);

(c) if |S | = bn2/3c and H is a subgraph of G with bipartition (S,N) and such that

degH (v) > 0.9m for every v ∈ S , then

|N| > 0.8n;

(d) if 8m 6 |S | 6 n− 8m2 then

|NG(S)| > |S |+ 7m2.

(5) For each i = 1, 2 and for every pair of disjoint sets S ′, S ′′ ⊆ Vi of b2mc vertices each,

there exists w ∈ V3−i which has neighbours in both S ′ and S ′′.

(6) No two edge-disjoint, induced subgraphs H ′, H ′′ of G with

v1(H ′) = v2(H ′) = v1(H ′′) = v2(H ′′) = dn3/4e

are isomorphic.
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In the proof of Theorem 1.2 we shall also need the following lemma, which is proved

in Section 4.

Lemma 3.2. Let G be a bipartite graph with bipartition (V1, V2), such that, for some natural

numbers d, k > 2, the following holds.

(i) |V1| > 24d+3k;

(ii) degG(v) 6 k/8d for every vertex v of V2;

(iii) |E(G)| 6 d|V1| .
Then there are two disjoint subsets W ′, W ′′ of V1, of k elements each, such that no vertex u

of V2 has neighbours in both W ′ and W ′′.

The proof of Theorem 1.2 consists of several steps in which we gradually reduce possible

forms of endomorphisms with large image to that of the identity. Let us start with a

simple observation which will allow us to consider only endomorphisms of a special type.

We call an endomorphism φ : P → P of a 2-level partial order P straight if φ(V1) ⊆ V1

and φ(V2) ⊆ V2.

Claim 1. Let P be a 2-level partial order such that the minimum degree of the graph

G(P ) is at least 2. Then for every non-surjective endomorphism φ : P → P there exists a

straight, non-surjective endomorphism φ′ : P → P such that |φ′(P )| > |φ(P )|.

Proof. Let us define φ′ setting

φ′(x) =

{
φ(x) if x, φ(x) ∈ V1 or x, φ(x) ∈ V2,

x′ otherwise,

where x′ is any element of NG(P )(φ(x)).

It is not hard to see that φ′ is indeed an endomorphism of P and that it is straight.

Furthermore, if x ∈ Vi but φ(x) = z ∈ V3−i, for some i = 1, 2, then for all y ∈ N(x),

y ∈ φ−1(z). Thus, φ−1(z) contains elements from V3−i and φ′(P ) ⊇ φ(P ). Moreover, as

|N(x)| > 2, φ is not an automorphism.

Now, let G be a bipartite graph satisfying properties (1–6) above and let φ be a

straight endomorphism of P = P (G) with |φ(P )| > 100× 227m. In Claim 2 we show that

|φ(Vi)| > 50 × 227m for both i = 1 and i = 2. As a result of Claim 3 we conclude that

|φ−1(v)| 6 n7/18 for all v ∈ P . Claim 4 reduces φ to an automorphism, and finally, in

Claim 5 we prove that φ must be the identity.

Claim 2. If φ : P → P is a straight endomorphism of P such that |φ(Vi)| > 50 × 227m

for i = 1 or i = 2, then |φ(Vi)| > 50× 227m for both i = 1 and i = 2.

Proof. Let us assume that |φ(V2)| < 50× 227m 6 |φ(V1)|. Then the graph Gφ spanned in

G(P ) by the set of vertices φ(P ) has, by property (3), at most 6|φ(V1)| edges.

Thus we can apply Lemma 3.2 to the graph Gφ, with d = 6 and k = 50m, to deduce

the existence of subsets W ′,W ′′ ⊆ φ(V1) such that |W ′| = |W ′′| > 50m and no vertex
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w ∈ φ(V2) has neighbours in both W ′ and W ′′. But then the sets φ−1(W ′) and φ−1(W ′′)

are disjoint subsets of V1 of at least 50m vertices each, which have no common neighbours

in V2, contradicting property (5).

Claim 3. Let φ : P → P be a straight endomorphism of P such that |φ(Vi)| > 50× 227m,

i = 1, 2. Then |φ−1(v)| 6 n7/18 for all v ∈ P .

Proof. Let φ : P → P be a straight endomorphism of a partially ordered set P such that

|φ(Vi)| > 50× 227m for i = 1, 2. We classify elements of φ(P ) into two categories: we call

v ∈ φ(P ) large if |φ−1(v)| > 2m and small otherwise.

Let us first prove that each set of the bipartition contains at most three large elements.

Suppose that v1, v2, v3, v4 are large elements which belong to, say, V1.

By property (5), for each i = 1, 2, 3, 4, the vertex vi must be connected by a path of

length two to all except at most 2m vertices of the set φ(V1). Indeed, let S ⊂ φ(V1),

|S | > 2m. Then the sets φ−1(vi) and φ−1(S) are disjoint and of size at least 2m each. By

property (5) there is a vertex w ∈ V2 adjacent to both these sets. But then its image φ(w)

is adjacent to both vi and S . Hence, all except at most 8m vertices of φ(V1) are each

connected by a path of length two to each of v1, v2, v3, v4.

Let U be the set of all elements of V2 which are adjacent to at least two vertices from

v1, v2, v3, v4. By property (1), |U| 6 12, since otherwise there would be a 17-vertex subgraph

with density 26/17 > 3/2.

Since the maximum degree of G is smaller than 1.1m, all except at most (1.1× 12 + 8)m

vertices of φ(V1) are connected to each of vertices v1, v2, v3, v4 by paths of length two not

containing vertices from U, i.e. by internally disjoint paths.

More precisely, if for such a vertex x the paths from x to v1, v2, v3, v4 go through

ux1 , . . . , u
x
4 , then the vertices ux1 , . . . , u

x
4 are distinct.

Moreover, one can find, say, 15 vertices x1, . . . , x15 with all 60 vertices u
xj
i , i = 1, . . . , 4,

j = 1, . . . , 15, distinct. This is because every 4-tuple ux1 , . . . , u
x
4 excludes (i.e. have edges to)

at most 4.4m vertices of φ(V1), and there are still plenty of them available.

But these 15 vertices create a subgraph of G with 4 + 5 × 15 = 79 vertices and

15 × 8 = 120 edges, which is prohibited by property (1) of G. Thus, each level of P

contains at most three large vertices.

Let us denote the set of all large elements contained in V1 and V2 by L1 and L2

respectively, and set Ui = NG[φ(P )](L3−i), i = 1, 2. Finally, for i = 1, 2, set Ri = φ(Vi)\
(Li ∪Ui).

We have |Li| 6 3, i = 1, 2, and, without loss of generality, we can assume that

|φ−1(R1)| > |φ−1(R2)|.
Note that there is no edge between L2 and R1 and thusNG(φ−1(R1)) ⊆ φ−1(R2)∪φ−1(U2).

Moreover, since U2 consists of at most 3.3m vertices, all of which are small, |φ−1(U2)| 6
6.6m2 and consequently

|NG(φ−1(R1))| 6 |φ−1(R2)|+ |φ−1(U2)| < |φ−1(R1)|+ 7m2.

Thus, according to property (4d), either |φ−1(R1)| 6 8m, or |φ−1(R1)| > n− 8m2. However,

|φ−1(R1)| > |R1| > |φ(V1)| − |L1| − |U1| > 8m and the first option is ruled out.
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Hence

|φ−1(R1)| > n− 8m2, (3.1)

which implies two further inequalities:

|φ−1(L1)| 6 8m2 (3.2)

and

|NG(φ−1(R1))| > n− 9m, (3.3)

the second one by property (4a) applied to the set S = V2 \ NG(φ−1(R1)). (If this set is

bigger than 9m then, by (4a), the set NG(S) is bigger than 8m2, contradicting (3.1).)

Inequality (3.3) implies, in turn, that

|φ−1(L2)| 6 9m. (3.4)

On the other hand,

|NG(φ−1(L1))| 6 |φ−1(L2)|+ |φ−1(U2)| 6 7m2,

and, again by property (4d) and in view of (3.2), we conclude that

|φ−1(L1)| 6 8m. (3.5)

The upper bounds (3.4) and (3.5) we just obtained and the definition of the sets L1 and

L2 imply together that |φ−1(v)| 6 9m < n7/18 for every element v ∈ P .

Claim 4. If φ : P → P is a straight endomorphism of P such that for every v ∈ P ,

|φ−1(v)| 6 n7/18, then φ is an automorphism of P , i.e. |φ−1(v)| = 1 for every v ∈ P .

Proof. Let φ : P → P be a straight endomorphism such that s = maxv∈P |φ−1(v)| 6 n7/18

and let v0 ∈ φ(P ) be such that |φ−1(v0)| = s. Without loss of generality we may assume

that v0 ∈ V1.

In the rest of this proof we shall frequently recall the expanding property (4). First, by

(4a), since NG(φ−1(v0)) ⊆
⋃
w∈NG[φ(P )](v0) φ

−1(w),∑
w∈NG[φ(P )](v0)

|φ−1(w)| > |NG(φ−1(v0))| > (1− 10−15)sm. (3.6)

But the number of terms in the sum in (3.6) is at most m + n1/3 (property (2)), and

each of them is not larger than s. Thus, by simple counting argument, the vertex v0 has in

φ(P ) at least 0.9999999m neighbours w for which |φ−1(w)| > 0.9999999s (otherwise, the

sum in (3.6) would be less than 0.9999999ms+ 0.0000001m× 0.9999999s = (1− 10−14)sm

– a contradiction). Let us denote the set of such neighbours of v0 by N1.

An analogous argument shows that each w ∈ N1 has at least 0.999m neighbours u with

|φ−1(u)| > 0.999s. Here we apply (4a) with S = φ−1(w), so the respective sum is at least,

say, 0.9999995sm and if there were less than 0.999m such neighbours this sum would be

at most 0.999ms+ 0.001× 0.999s, not reaching its lower bound – a contradiction. Let us

denote the set of these neighbours u of w by Nw . In turn, by a similar argument, for
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each w ∈ N1, each u ∈ Nw has at least 0.9m neighbours z with |φ−1(z)| > 0.9s. This set is

denoted by Nu.

Now, we apply (4b) to the subgraph H1 consisting of all w ∈ N1 on one side and⋃
w∈N1

Nw on the other, concluding that the set N2 = NH1
(N1) has size at least 0.99m2.

Next, consider the graph H2 with vertex set N ′2 being any subset of N2 with bn2/3c
elements on one side, and the set

⋃
u∈N ′

2
Nu on the other.

Applying to this graph the property (4c) yields |NH2
(N ′2)| > 0.8n, i.e. more than 0.8n

vertices which lie at a distance of three from v0 have their preimages of size at least 0.9s

(and, of course, all these preimages are disjoint). But all vertices which are at distance

three from v0 belong to V2 and, as φ is straight, their preimages are subsets of V2. Hence,

the sum of their preimages must not be greater than n, i.e. we must have 0.72sn < n, and

consequently, s = 1.

Claim 5. The only automorphism of P is the identity.

Proof. Let σ : P → P be an automorphism of P . Let us denote by W the set of all fixed

points of σ and let W stand for the complement of W .

Note that σ must be straight, and suppose that |W ∩Vi| > 3n3/4 for some i = 1, 2. Then

one can find in this W ∩ Vi two disjoint subsets S1 and S2 such that |S1| = |S2| = dn3/4e
and σ(S1) = S2. Simply, for each cycle of the permutation σ, include every second element

to S1 and all the remaining ones, except one in case the cycle is odd, to S2.

Then, for any subset T ⊂ V3−i of size |T | = dn3/4e, the subgraphs H ′, H ′′ of G spanned

by the pairs of sets (S1, T ) and (S2, σ(T )), respectively, satisfy vi(H
′) = vi(H

′′) = dn3/4e,
i = 1, 2, and are edge-disjoint. Moreover, since σ is an automorphism of the graph G,

subgraphs H ′ and H ′′ are isomorphic, which contradicts property (6).

Thus, we may assume that |W ∩ V1| 6 |W ∩ V2| < 3n3/4. Suppose W is non-empty.

Then, by property (4),

NG(W ∩ V2) > 7|W ∩ V2|+ 1

and, by the pigeon-hole principle, there is v ∈W with at least seven neighbours in W .

The image of v, φ(v) is different from v and is adjacent to the same seven neighbours

of v. Thus, a copy of K2,7 is present in G: a contradiction with property (1). Hence W is

empty, i.e. σ is the identity automorphism of P .

4. Random graphs and the probabilistic method

The bipartite graph we employ in the proof of Theorem 1.2 has properties ‘typical’ for a

random bipartite graph G (n, n; p). Indeed, we shall show in this section that ‘almost all’

graphs from the space G (n, n; p) satisfy all properties (1–6) listed in Lemma 3.1.

At the end of this section we provide a probabilistic proof of Lemma 3.2 which was

used in the proof of Theorem 1.2.

The random bipartite graph G (n, n; p) is the graph with vertex set V = V1 ∪ V2, where

|V1| = |V2| = n and each pair of vertices {v1, v2}, where v1 ∈ V1 and v2 ∈ V2, appears in

G (n, n; p) with probability p, independently for each such a pair. If p = p(n) is a given
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function of n and the probability that G (n, n; p) has a given graph property A tends to 1

as n→∞, we say that G (n, n; p) has property A almost surely.

Throughout the whole section we set the probability of the existence of an edge to be

p = p(n) = (log n/n2)1/3.

Lemma 4.1. Almost surely, G (n, n; p) possesses all the properties (1–6) listed in Lemma 3.1.

Proof. We prove properties (1–6) one by one. Having proved some of them, we will be,

explicitly or not, assuming that they hold when proving the next properties. Formally, we

will be using on such occasions the standard argument that, for two sequences of events

An and Bn, if Pr(Bn)→ 1 then Pr(An)− Pr(An ∩Bn) = o(1).

All convergences and o(·) terms are with respect to n → ∞. The dependence on n of

several random variables will be suppressed.

(1) We prove property (1) using the first moment method – a basic tool in the theory

of random structures. Let X count the forbidden subgraphs H . Then X is the sum of at

most
∑

H n
|V (H)| indicator random variables, where each of them equals 1 with probability

p|E(H)|. Thus, by the linearity of expectation,

EX 6
∑
H

n|V (H)|p|E(H)| = o(1)

and, by Markov’s inequality,

Pr(X > 0) 6 E(X) = o(1).

In the forthcoming proofs we shall utilize the following estimate for the binomial

distribution B(n, p) (see, for instance, Bollobás [1], Corollary I.4ii).

Chernoff’s inequality. Let X be a random variable with the binomial distribution B(n, p). If

n, p and ε are such that max{100p, 100/
√
np} < ε < 1/6 then

Pr(|X − pn| > εpn) 6 exp(−ε2pn/4).

(2) To see property (2) it is enough to notice that Chernoff’s and Markov’s inequalities

imply that the probability that there exists a vertex of G (n, n; p), the degree of which

differs by more than n1/3 from its expected value (n − 1)p = m + o(1), is bounded from

above by

n exp
(
−n1/3

/
5 log1/3 n

)
→ 0.

(3) Let X be the random variable which counts subgraphs H of G (n, n; p) such that, with

v1 = v1(H) and v2 = v2(H), min(v1, v2) 6 n2/5 and |E(H)| > 3(v1 + v2).

Then, using the well known inequality(
n

k

)
<
(en
k

)k
,
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we obtain

EX 6 2

bn2/5c∑
v1=1

n∑
v2=v1

(
n

v1

)(
n

v2

)(
v1v2

3(v1 + v2)

)
p3(v1+v2)

6 2

bn2/5c∑
v1=1

n∑
v2=v1

(
en

v1

)v1+v2
(

ev1v2p

3(v1 + v2)

)3(v1+v2)

6 2

bn2/5c∑
v1=1

n∑
v2=v1

(
en

v1
(v1p)

3

)(v1+v2)

6 2

bn2/5c∑
v1=1

n∑
v2=v1

(
en−1/5 log n

)(v1+v2)

→ 0,

and property (3) follows.

(4) Both expanding properties (4a) and (4b) can be derived from the same fact which can

be formulated as follows.

Let S be a subset of vertices of G (n, n; p) contained in one of the sets of the bipartition

with |S | = s 6 n7/18, and let MS denote the set of all vertices of the graph G (n, n; p)

which have at least two neighbours in S . The probability that, for some S , |MS | > sn1/4

is bounded from above by

bn7/18c∑
s=1

2

(
n

s

) n∑
`=bsn1/4c

(
n

`

)
(s2p2)` 6

bn7/18c∑
s=1

2
(en
s

)s n∑
`=bsn1/4c

(en
`
s2p2

)`

6

bn7/18c∑
s=1

2
(en
s

)s n∑
`=bsn1/4c

n−`/6 → 0.

Thus, almost surely, for all such S we have |MS | 6 sn1/4, and, because of (3), the

number of edges between S and MS is bounded from above by 4sn1/4. This and (2) yield

(4a) and (4b).

Now, for a set S ⊆ V1, |S | = bn2/3c, let US denote the set of all vertices of V2 which have

in S less than 0.999 log n1/3 neighbours. The probability that a given vertex v has less than

0.999 log n1/3 neighbours is, by Chernoff’s inequality, smaller than exp(−10−7 log n1/3).

Thus, the probability that |US | > n/ log log n for some S , is bounded from above by(
n

bn2/3c

)
2n exp(−10−7n log n1/3/ log log n)→ 0.

Hence, almost surely, for all S ⊆ V1, |S | = bn2/3c, all except at most n/ log log n vertices

of V2 have each at least 0.999 log n1/3 neighbours in S . Now, consider the complement

Nc of the set N. It sends at least (|Nc| − n/ log log n) 0.999 log n1/3 edges to S , which, by

property (2) and the assumption that degH (v) > 0.9m for every v ∈ S , cannot be more

than |S |(.1)m(1 + o(1)). This yields that |N| > 0.8n and (4c) is proved.
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The proof of property (4d) is truly deterministic, as it can be derived directly from (4a)

and (4c). If 8m 6 |S | 6 n7/18 then we deduce from (4a) that

|NG(S)| > 0.99|S |m > |S |+ 7m2.

For n7/18 6 |S | 6 n13/19 the inequality (4d) follows from the fact that the neighbourhood

of any subset of S with bn7/18c is, again due to (4a), larger than n13/18.

Similarly, for n2/3 > |S | 6 3n/5 property (4c) ensures that |NG(S)| > 4n/5 and so (4d)

holds.

If |S | > 3n/5 then note that (4d) holds if it holds for the set T of all vertices not

adjacent to S which belong to the other set of the bipartition. Since |S | > 3n/5, and thus

|NG(S)| > 4n/5, we have |T | 6 n/5 and the previous argument applies.

(5) To prove property (5), note first that for two disjoint subsets S ′, S ′′ ⊆ V1, where

|S ′| = |S ′′| = t = b2mc, the probability that a given vertex u ∈ V2 have neighbours in both

S ′ and S ′′ is at least [
1− (1− p)t

]2
>

[
tp−

(
t

2

)
p2

]2

> t2p2(1− tp).

Thus, the expected number of pairs of such subsets which have no common neighbours

is, for n large enough, bounded from above by(
n

t

)2 (
1− t2p2(1− tp)

)n−2t
6
(en
t

)2t

exp
(
−t2p2n(1 + o(1))

)
6 n4t/3 exp (−2t log n)→ 0.

(6) We first show that, almost surely, for every subgraph H of G(n, n; p) with

min{v1(H), v2(H)} > n3/4,

||E(H)| − v1(H)v2(H)p| 6 n−1/40v1(H)v2(H)p. (4.1)

Indeed, let Y be the number of subgraphs H such that v1 = v1(H), v2 = v2(H),

v1, v2 > n3/4, and for which inequality (4.1) does not hold. Then, using Chernoff’s bound,

one can estimate the expectation of Y by

EY 6
n∑

v1=dn3/4e

n∑
v2=dn3/4e

(
n

v1

)(
n

v2

)
exp

(
−v1v2pn

−1/20/4
)

6
n∑

v1=dn3/4e

n∑
v2=dn3/4e

n2 max{v1 ,v2} exp
(
−max{v1, v2}n1/60/4

)
→ 0.

Thus, if there is a pair of subgraphs H ′, H ′′ which violate (6), then we may assume that

both H ′ and H ′′ have ` edges, for some ` > pk2/2, where k = dn3/4e.
Now, let X be the random variable which counts the pairs of edge-disjoint, induced

and isomorphic subgraphs H ′, H ′′ of G(n, n; p) for which

v1(H ′) = v2(H ′) = v1(H ′′) = v2(H ′′) = dn3/4e

and ` > pk2/2.
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To estimate the expectation of X, we denote by Hk the family of all pairwise noniso-

morphic bipartite graphs with k + k vertices and ` edges, where ` > pk2/2.

For a given graph H ∈ Hk and for two pairs of sets of size k, (S1, T1) and (S2, T2),

such that S1, S2 ⊂ V1 and T1, T2 ⊂ V1, let π(H, S1, T1) be the probability that the

induced subgraph G(n, n; p) [S1 ∪T1] is isomorphic to H , and let π(H, S1, T1, S2, T2) be the

conditional probability that G(n, n; p) [S2 ∪ T2] contains a copy of H , edge-disjoint from

G(n, n; p) [S1 ∪ T1], given that G(n, n; p) [S1 ∪ T1] is isomorphic to H .

Then π(H, S1, T1, S2, T2) 6 (2k)!ppk
2/2 and

∑
H∈Hk

π(H, S1, T1) = 1− o(1). Hence,

EX 6
∑

S1 ,S2 ,T1 ,T2

∑
H∈Hk

π(H, S1, T1, S2, T2)π(H, S1, T1) 6 n4k(k!)−4(2k)!ppk
2/2 → 0,

and the proof of Lemma 4.1 is completed.

We conclude the paper with a probabilistic proof of Lemma 3.2.

Lemma 3.2. Let G be a bipartite graph with bipartition (V1, V2), such that, for some natural

numbers d, k > 2, the following holds.

(i) |V1| > 24d+3k;

(ii) degG(v) 6 k/8d for every vertex v of V2;

(iii) |E(G)| 6 d|V1|.
Then there are two disjoint subsets W ′, W ′′ of V1, of k elements each, such that no vertex u

of V2 has neighbours in both W ′ and W ′′.

Proof. Let G, d and k fulfil the assumptions of Lemma 3.2, and let

V ′1 = {v ∈ V1 : degG(v) 6 2d}.

Note that it follows from (i) and (iii) that |V ′1| > |V1|/2 > 24d+2k.

Now, we shall show that for t = 24dk, there exist in V ′1 some 2t vertices x1, . . . , xt,

y1, . . . , yt such that for each i = 1, . . . , t the set of common neighbours of xi and yi,

NG(xi) ∩ NG(yi), is empty. Indeed, for x ∈ V ′1, the set N2(x) of the vertices at distance 2

from x satisfies the inequality

|N2(x) ∪ {x}| 6 2d
k

8d
=
k

4
.

Thus the set V ′1 \ (N2(x) ∪ {x} ∪ {x1, . . . , xi, y1, . . . , yi}) is not empty as long as i < t and

one can find the next pair (xi+1, yi+1).

Now comes the probabilistic part of the proof. Let us choose a random subset U of V2

in such a way that each vertex u of V2 belongs to U independently, with probability 1/2.

Let X denote the number of those pairs of vertices (xi, yi), i = 1, . . . , t, for which the

neighbours of xi are in U and all the neighbours of yi are not.

Note that X, in a natural way, can be represented as a sum of indicator random

variables, i.e. X =
∑t

i=1 Xi, where

Xi =

{
1 if NG(xi) ⊆ U and NG(yi) ∩U = ∅
0 otherwise.
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Since, for each i, NG(xi) ∩NG(yi) = ∅ and xi, yi ∈ V ′1, we have

EXi = Pr(Xi = 1) = 2− degG(xi)−degG(yi) > 2−4d

and by the linearity of expectation,

EX =

t∑
i=1

EXi > 2−4dt = k.

Thus, there exists an instance of U, U ⊆ V2, for which X(U) > k. This means that there

are k disjoint pairs of vertices in V1, (xi1 , yi1 ), . . . , (xik , yik ) such that the set W ′ = {xi1 , . . . , xik}
has all its neighbours inside U, while the set W ′′ = {yi1 , . . . , yik} has all its neighbours

outside U. This is the required pair of sets and the proof of Lemma 3.2 is completed.
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