
Order 13: 209-218, 1996. 
@ 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

209 

The Complexity of the Fixed Point Property 

D. DUFFUS* and T. GODDARD* 
Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia, 30322, 
U.S.A. (e-mail: dwight@mathcs.emory.edu; goddard@mathcs.emoryedu) 

Communicated by I. Rival 

(Received: 11 December 1995; accepted: 20 February 1996) 

Abstract. It is NP-complete to determine whether a given ordered set has a fixed point free order- 
preserving self-map. On the way to this result, we establish the NP-completeness of a related 
problem: Given ordered sets P and Q with t-tuples (PI,. ,pt) and (41,. . , qt) from P and Q 
respectively, is there an order-preserving map f: P + Q satisfying f(pz) > qr for each i = 
l,...,t? 
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1. Introduction 

A (partially) ordered set X has the jixed point property if for every order- 
preserving map f: X + X there is an element 2 E X such that f(z) = 2. 
The fixed point property, in the context of ordered sets, has widest circulation in 
the theorems of Knaster [8], Tarski [13], and Davis [3]: in the class of lattices, 
the lattices that are complete are precisely those with the fixed point property. 

For finite structures, the characterization problem appears first to have been 
raised in Crawley and Dilworth [2]. It has attracted a good deal of attention and 
was included in the Order problem list [12]: characterize those finite ordered 
sets with the fixed point property. While there are few results, those that exist 
provide good characterizations within special classes. For ordered sets of length 
one, Rival showed that an ordered set has the fixed point property if and only if 
its covering graph is a tree [l I]. In the class of width-two orders, Fofanova and 
Rutkowski show that the fixed point property is equivalent to the absence of a 
tower of four-element crowns as a retract [6]. The same condition is equivalent 
to the fixed point property for N-free dimension-two ordered sets [5]. Finally, 
consider those ordered sets which are obtained from semimodular lattices by 
removing the maximum and minimum elements. A member of this class has the 
fixed point property if and only if the original lattice is noncomplemented [l]. 
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In all of these special cases the fixed point property is equivalent to disman- 
tlability (see [12], for instance, for a discussion of dismantlability). With the aid 
of a result from [4], it is easily seen that whether or not a finite ordered set 
is dismantlable can be determined in polynomial time. Indeed, determining the 
complexity of the related decision problem is an obvious step in attempts to char- 
acterize the fixed point property. Here is a statement of the problem which places 
it in the class NP. Call an ordered set fixed point free if it has an order-preserving 
map without fixed points, that is, afied point free map. 

Fixed Point Free Map (FPFMAP) 
Instance: An ordered set P. 
Question: Is there is an order-preserving map f: P -+ P such that f(x) # 2 

for all 2 E P? 

The main purpose of this paper is to prove 

THEOREM 1.1. FPFMAP is NP-complete. 

In Section 2, we discuss the literature related to this decision problem and provide 
terminology and some preliminary lemmas. We note that the NP-completeness of 
the corresponding decision problem for automorphisms of ordered sets follows 
directly from a well-known result for graphs. Section 3 contains the construction 
of ordered sets with ‘well-behaved’ fixed point free order-preserving maps. In 
Section 5, this construction, together with the main steps in transforming 3SAT 
to a decision problem called OPEXT (given in Section 4), provides the basis of 
our proof of Theorem 1.1. 

2. Preliminaries and Background 

The only results in the complexity literature directly related to FPFMAP were 
obtained by Lubiw [lo] in her study of the complexity of graph isomorphism. 
She established the NP-completeness of the following decision problem. (An 
automorphism of a graph is a bijection on the set of vertices preserving adjacency 
and nonadjacency.) 

Fixed Point Free Automorphism 
Instance: A graph G. 
Question: Does G have a fixed point free automorphism? 

In fact, the complexity of the analogous ordered set decision problem can be 
obtained as a corollary. (As is usual, an automorphism of an ordered set is an 
order-preserving bijection on the underlying set whose inverse is also order- 
preserving.) 
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Ordered Set Fixed Point Free Automorphism (FPFAUT) 
Instance: An ordered set P. 
Question: Does P have a fixed point free automorphism? 

One can amend Lubiw’s transformation from 3SAT to FIXED POINT FREE 
AUTOMORPHISM to obtain the NP-completeness of FPFAUT (as is done in 
[ 141). Alternatively, one can employ a variant of a standard ordered set construc- 
tion - this is outlined here. 

The split of a graph G = (V, E) is the two-level ordered set with maximals V, 
minimals E, and comparabilities w > e if v~ E e. The 2-split of G has maximals 
V, minimals (Ex {O})U(Ex (1)) an d comparabilities w > (e, 0) and u > (e, 1) 
if ZI E e. (There is a technical difficulty if G has isolated vertices, as these are 
both maximal and minimal elements of the split and the 2-split. In this case, 
replace ‘minimal’ by ‘nonmaximal’ in the sequel.) 

THEOREM 2.1. FPFAUT is NP-complete. 

This theorem is an immediate consequence of the following lemma. 

LEMMA 2.2. Let G = (V, E) b e a graph and let P denote the 2-split of G. 
Then G has a fixed point free automorphism if and only if P has a jxed point 
free automorphism. 

Proof. Let cp be an automorphism of G and let @ denote the map on P defined 
by@lv=(pandfore={u,v}EE, 

It is obvious that $ is an automorphism of P and that if cp is fixed point free 
then @ is fixed point free. 

The converse is also straightforward. Cl 

It is worth noting that FPFAUT and FPFMAP have different complexity for the 
class of length one ordered sets, provided that P # NP FPFMAP, restricted to 
length one instances, is in the complexity class P, as already noted. Since the 
split of a graph is a length one ordered set, FPFAUT is NP-complete even when 
restricted to length one instances. 

We conclude this section with two elementary observations, concerning fixed 
point free maps, that will be used repeatedly in the following sections. 

OBSERVATION 1. Let X be a finite ordered set. If X has a fixed point free map 
then there is a fixed point free map f on X satisfying 

f[min(X)] C min(X) and f[max(X)] C max(X) 

(where min(X) denotes the minimals of X and max(X) denotes the maximals 
of X). Say g is fixed point free on X. Define f by letting it be g off max(X) U 
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b’ a’ 
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Figure 1. General construction. 

min(X) and by using these rules: for z G max(X), let j(z) be any maximal 
above g(z) ; for z G min( X), let j(z) be any minimal below g(z). It is obvious 
that f is order-preserving. Since g is fixed point free, g(y) is incomparable to r~ 
for all y E X (as is the case for any fixed point free map on a finite ordered set). 
Thus, f is fixed point free. 

OBSERVATION 2. For a positive integer n, let C’Z~ denote the crown on 2n ele- 
ments, that is; C’Z~ is the 24evel ordered set whose covering graph is a 2n-cycle. 
The only fixed point free order-preserving maps on C& are automorphisms. This 
is well known; see, for instance, [ 111. 

3. A General Construction 

Let R be defined on the following sets, with the comparabilities as indicated (see 
Figure 1). 

~=~(j~~~~~~~~~~, 

where C6 is the &crown on a, b, c, CL’, b’, c’ with comparabilities 

a < b’,c’, b c a’, c’ and c < a’,b’ 

and X, Y and 2 are arbitrary nonempty ordered sets, all of whose elements 
dominate at least 2 maximal elements of the 2n-crown C’Z~ (n > 3), and which 
satisfy 

X < h% Y < {a,~} and 2 < {b,c}. 

Finally, each element in (7~~ is less than a, b, and c. 

CLAIM. Zj’R h as a jixed point free order-preserving map then R has a fixed 
point free order-preserving map f such that 
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By Observation 1, we may assume that j[{u’, b’, c’}] 2 {u’, b’, c’}. Suppose that 
the image has size less than 3, say f(u’) = b’, f(b’) = c’, and f(c’) = b’. Since 
f(o) < b’,c’ and f(u) $ u, f(u) E 2. Also, f(c) < b’,c’, and f(c) $ c, so 
f(c) = u or f(c) E X. We may assume that f(c) = u. Now choose y E Y (thus 
y < u and y < c, but y g b). Then y > U, u’ for distinct maximal elements 
u,u’ E C2n. Ah, f(y) < f(u), f(c), KI f(y) < hc,ai ems f(y) E C2n. 

Also note that for any u E C&, u < u, b, c, so j(u) < b, c, u, meaning 
hat .f[Gn] 2 CT 2n. By Observation 2, fjcZn is an automorphism; but then f(y) 
cannnot belong to (7~~ and dominate the distinct maximal elements f(u) and 
f(~‘). This contradiction implies that f[{u’, b’, c’}] = {u’, b’, c’}. 

So without loss, we may assume that f(u’) = b’, j(b’) = c’, f(c’) = u’. Then 
j(c) < b’, c’ and f(c) d c, so j(c) $! YUZUC&; that is, f(c) = u or j(c) E X. 
In any case, we may assume that j(c) = u. (Just redefine f; it will remain 
order-preserving and fixed point free.) Similarly, we may assume j(u) = b and 
f(b) = C. It follows that f[Czn] G C zn, so, again using Observation 2, fjcxn is 
an automorphism. Now let z c X. Then z > U, U’ for distinct maximal elements 
u and u’ of C&. It follows that f(x) dominates distinct maximals of CZ~, so 
f(z) $ Cz*. Since zz < u, b, the image f(x) < b, c, so f(x) is an element of 2. 
Similarly, f [Y] G X and f [Z] c Y, completing the verification of the claim. 

4. Order-Preserving Extension (OPEXT) 

While trying to determine the complexity status of FPFMAP, we were led to 
consider the following decision problem. 

Order-Preserving Extension (OPEXT) 
Znstance: Ordered sets p and Q with &tuples (~1, . . . ,pt) and (ql , . . . , qt) from 

p and Q respectively. 
Question: Is there is an order-preserving map j: p -+ Q satisfying f(pi) 2 qz 

foreachi=l,...,t? 

This decision problem may equivalently be thought of as being an instance of 
ordered sets p and Q with a partial map defined by the conditions f(pt) > 
(Jl,...> f(pt) 2 qt. The question then becomes: is there an order-preserving map 
f: p + Q extending the given partial map? 

THEOREM 4.1. OPEXT is NP-complete. 
Proof The decision problem OPEXT E NP because verification that, for a 

given instance, the answer to OPEXT is ‘yes’ is provided by an order-preserving 
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map extending the given partial map. Such a map is obviously of size polynomial 
in the size of the instance. 

To show that OPEXT is NP-complete, we exhibit a transformation from 3SAT. 
Let C = {Cl,... , Cm} be a set of clauses over the variables ~1, . . . , z~. For 
notational purposes in the construction that follows, we place an ordering on the 
terms of each clause; that is, CZ = {Ci(l),Ci(2),Ci(3)}. Construct graphs G’p 
and GQ with vertex and edge sets as follows (i = 1,. . . , n, J’ = 1, . . . , m): 

U{{C;,Cf}: tt = 1,2,3} 

U { {C;,xT}: (CJ(k) = xi) and k = 1,2,3} 

U{{Cf,xr}: (Cj(k) = 3%) and k = 1,2,3} 

(CJ(k) # x%,Zi) and k = 1,2,3}. 

(Figure 2 shows the construction with Ct = {xl, 52, x3}.) 
Let I’ and Q be the splits of Gp and GQ respectively. An instance of OPEXT 

is then given by the ordered sets I’ and Q and the partial map I = 
xf,f(xf) = xi (i = l,... ,n), and j(Ci) = C: (j = 1,. . . ,rn). Notice 
that this partial map is equivalent to the conditions j(xt ) 2 x:, f(~$) > Z$ 
(i = l,... ,n), and j(o) > (77 (j = l,... , rn) because the specified elements 
are maximals of I’ and Q. 

Suppose that f: p -+ Q is an order-preserving map extending the described 
partial map. Then f must satisfy j(xT) E {XT, XT}; thus, j gives rise to a 
truth assignment in the natural way. As well, f(C:) E {Ci, Ci, C;}. Let j E 
{l,. . . , m} and assume f (CJ) = Cf. Let us see that the clause CJ is satisfied. 
For some i = l,... , n, Cj (k) E {xx, ?&}; for illustration, say Cj (k) = Zi (the 
case Cj(k) = pi is handled similarly). Because Z$ and CT have a common lower 
bound in p, f(~z) and f(CT) must have a common lower bound in Q; but then 
we must have f(xz) = xf as Z: and Ct do not have a common lower bound 
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d g d 

C~ C, =Xl vy~ vx3 
I 

F i g u r e  2 .  Detail of G p  and GQ with CI = { z t , Y : 2 , x 3 } .  

in Q. Hence the truth assignment induced by f satisfies Cj; consequently, the 
entire set of clauses, C, must be satisfied. 

Conversely, given a satisfying assignment ~: (Z l , . . . , : r~}  --+ {T, F}, set 

f ( x ~ )  = z ~  (z'). For each j = 1 , . . .  ,m,  some term C j ( k )  is satisfied by ~; set 
f ( C ~ )  = C~. The  construction of the edge set of GQ then easily allows f to be 
extended to the entire domain P. (3 

We are also interested in maps f :  Q --+ P obeying the same restrictions f ( z ~ )  = 
.a f ( x ~ )  = b (i = 1 . n) ,  and f ( C  ° )  = C ° ( j  = 1, . m) .  In this case, X i  , X i  , • . , . . , 

there is no difficulty mapping Q into P; just set f ( C ~ )  = C~ (k = 1,2, 3 and 
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~=l,...,~)and~(~~)=~(~~)=~~(~=l,...,~).Suchamapcaneasily 
be extended to the minimals of Q and always exists regardless of whether C 
has a satisfying assignment or not. Moreover, this is the only map from Q to P 
satisfying the given restrictions. 

5. FPFMAP Is NP-Complete 

The two preceding sections are now brought together to provide a proof of our 
main theorem. 

THEOREM. FPFMAP k NP-com$ete. 
proc$. We begin by constructing a special case of the ordered set defined in 

Section 3. Let X, Y, and 2 be ordered sets containing the subsets {zr , . . . , zt}, 
{Yl,... , it}, ad {zI,. . . , zi} respectively. Let 

~=c&~~~~~2~~&+~~. 

Let the 6-crown (76 with maximals {a’, b’, c’}, minimals {a, b, c}, and compara- 
bilities a < b’, c’, b < a’, c’, and c < a’, b’, satisfy {a, b} > X, {a, c} > Y, and 
{b, c} > 2. Cyclically enumerate the maximals of the (6t + 18)-crown by 

{w , x0, & 217. . . ,QmYo,Y;,il,... ,~~,~3,~0,~~,~1,‘..,~~}. 

Include exactly the comparabilities {a, b,c} > c,jt+lg, X > {T&Z&}, Y > 
{yo, yh}, 2 > {zo, zb}, and, for each i = 1,. . . t, q > 5+, yz > &, and z% > & 
(and those following by transitivity). 

Note that R satisfies the conditions of Section 3, Thus, if R is fixed point 
free, there is an order-preserving map F: R + R so that p permutes the subsets 
X, Y, and 2 in a three-cycle, say, J’[X] & Y, J’[Y] 2 2, and F[Z] s X. 

Since F[X] c Y, F[Y] c 2, p[Z] 2 X, and F]c~~+,~ is an automorphism, 
we must have 

F[{xo, x;, 6,. . . ,&}I 2 {YO,Y~A.-,&I-, 

F[{Yo, Y& !h>. . . &}] G {~oA-,A...,&} and 

F[{zo, 4), 21, . . 7 .%}I 2 {~o,~~A..A}. 

Indeed, because F]c~~+,~ is an automorphism, it must be the case that for each 
i= l,... 6 qq = iI%, qh) = &, and p(,&) = 2%. Then, for each i = 1,. . . t, 
F(G) 2 wq, JqYJ 2 Jy!?J7 and J’(,zi) > $‘(&). Thus, by the construction 
of R, ?‘(z%) 2 y%, J’(y%) > .q, and J’(q) > xz (for each i = 1,. . . t). 

Let us use the above as the foundation for a transformation of 3SAT to 
FPFMAP. Given an instance of 3SAT, C = {Cl, . . . , Cm}, we construct R, 
an instance of FPFMAP, as follows. Let P and Q be the ordered sets obtained in 
Theorem 4.1. Set X = P, Y = P, and 2 = Q. Fix a listing of XT, zt, . . . , zg, z$, 
CF, . . . , Cz in P and Q and let q, . . . , q, yr, . . . , yt, and zr, . . . , q be rela- 
bellings of this list in X, Y, and 2 respectively. The construction is completed 
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Figure 3. Specialized construction to house OPEXT, 

by including the comparabilities with ~0, &, St,. . . , &, yu, y& $1,. . . , &, and 
A 

zo, & Zl, . . . , .& as described above. 
Suppose that C = {Cl, . . . , Cm} has a satisfying assignment. As in the proof 

of Theorem 4.1 there is an order-preserving map f: Y + 2 such that f(yi) = zz 
(i = 1, . . . , t). Let g: X + Y be the identity and /K 2 + X be the unique map 
satisfying h(.zi) = zi (i = 1, . . . , f) (as described after the proof of Theorem 4.1). 
We can then easily extend f, g, and h to a fixed point free map F: R -+ R. 

Conversely, if R has a fixed point free map F, then either F[X] 2 2 or 
F[Y] c 2. In either case, we obtain (by restriction) an order-preserving map 
f: p --+ Q satisfying j(~$) = $ and j($) = zf for each i = 1, . . . , n and 
f(CF) = CF for each i = 1,. . . , m. This is precisely the instance of OPEXT 
constructed in Theorem 4.1, so C has a satisfying assignment. 

We have shown that R has a fixed point free map if and only if C has a 
satisfying assignment. The construction of R is clearly polynomial in m and n, 
so it follows that FPFMAP is NP-complete. q 

6. Related Results and Open Problems 

We conclude with a few observations and questions. 
As was stated in the introduction, it is possible to decide FPFMAP in poly- 

nomial time for ordered sets either with no three-element chain or with no three- 
element antichain. The construction used to show that FPFMAP is NP-complete 
(in general) produces ordered sets with six levels and arbitratily large antichains. 
Is it NP-complete to decide FPFMAP for ordered sets with only three levels? 
What about ordered sets of width three, or simply of bounded width? What about 
the class of dimension-two orders (iv-free or not)? 

When one approaches a new decision problem, it is sometimes useful to seek a 
method of ‘self-reduction’, as all NP-complete problems possess one [9]. (It may 
not be a natural or immediate self-reduction algorithm as a detour through SAT 
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may be required.) We are, to date, unable to solve this problem for FPFMAP, 
but the obvious self-reduction for OPEXT is one of the factors that gave us 
confidence in seeking a proof of its NP-completeness. We still wonder: 

Is there a natural self-reduction for FPFMAP; that is, is there a simple algo- 
rithm that can use an FPFMAP decision problem oracle to produce a fixed 
point free map in polynomial time? 

Once a decision problem has been shown to be NP-complete, a next step is to 
check for #P-completeness (where #P is the class of counting problems associated 
with the decision problems of NP [9]). With a little amplification in Theorem 4.1 
(expanding {Ct: k = 1,2,3} to {Ci: k = 1, . . . ,7} in GQ) it is possible to see 
that OPEXT, and consequently FPFMAP, are #P-complete. It turns out that R 
constructed in this way has exactly twice as many fixed point free maps as the 
Boolean expression has satisfying assignments. 
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