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Abstract

We discuss Hedetniemi's conjecture in the context of categories of relational structures under
homomorphisms. In this language Hedetniemi's conjecture says that if there are no homomor­
phisms from the graphs G and H to the complete graph on n vertices then there is no
homomorphism from G x H to the complete graph. If an object in some category has just this
property then it is called multiplicative. The skeleton of a category of relational structures under
homomorphisms forms a distributive lattice which has for each of the objects K of the category
a pseudocomplementation. The image of the distributive lattice under such a pseudo­
complementation is a Boolean lattice with the same meet as the distributive lattice and the
structure K is multiplicative if and only if this Boolean lattice consists of at most two elements.
We will exploit those general ideas to gain some understanding of the situation in the case of
graphs and solve completely the Hedetniemi-type problem in the case of relational structures
over a unary language.
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Section 0

Let 5£ be a relational language. That is, 5£ is a set of relation symbols together with

the arities associated with those relation symbols. A model A of 5£ is a set A together

with a relation of the appropriate arity for each of the relation symbols in 5£. If A and

B are two models of 5£ then the function r:t. : A ~ B is a homomorphism from A to B iff

for each of the relations R E 5£ and each sequence of elements at, a2, '" , an of A,
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R (at, a2' ... ,an) implies R(a(ad, a(a2), ... ,a(an)). If a is a homomorphism from A to
B we will write A ~ B and express the fact that there is a homomorphism from A to
B by writing A -> B. If there is no homomorphism from A to B we will write A -hB and
will denote by M!f' the category of fE-models under -> as morphisms. The category
My, is a category with product x. For two 2'-models A and B, A x B is the fE-model
defined on the cartesian product of the sets A and B such that R((at, bd, (a2' b2), ... ,
(an,bn)) in A x B iff R(a1,a2' .. , ,an) in A and R(b1,b2, ... ,bn) in B. The category
MY' has a coproduct, sum + , given by the 'disjoint union' of 2'-models. That is if
A and B are two 2'-models then A + B is the 2'-model defined on the disjoint union
of the sets A and B and if R is an n-ary relation symbol of fE, then R(Xt,X2' ... ,xn)in
A + B if and only if all of the elements x 1, X2, ... ,Xn are in A or in B and then either
R(X1,X2' ... ,xn) in A or R(X1,X2' '" ,xn) in B. The category Mil' is a category with
exponentiation. If A and B are two fE-models then A power B, AB

, is an fE-model
defined on the set of all functions from the base set of B to the base set of A. If
[1,12, ... ,in are functions from B to A and R is an n-ary relation symbol of 2' then
R(f1,f2, '" ,In) in A B if and only if for all sequences a1,a2, ... ,an of elements of A,
R(a1' a2, ... ,an) implies R(fdad,Ji(a2), .. , ,fn(an)). For any relational language
fE we will denote by one, or one!!" the 2' model which has as base set a single element
set a and for every relation symbol R E 2', R(a, a, ... ,a).

Two 2'-models A and B are similar, A "-' B, iff A -> Band B -> A. Clearly ~ is an
equivalence relation. Note that if A -> A1 and B -> Bt then A + B -> A 1 + B1 and
AxB->A1xBt . Hence if A"'A t and B"'Bt then A+B"-'A1 +B1 and
A x B ~ A 1 X Bt . If C is a small subcategory of Mff' then C is called a proper
2'-category if C is closed under x, +, exponentiation and contains the 2'-models
one and the empty model. Let C be a proper fE-category and K an element of C, then
K C is the set of all elements of the form K A for some element A of C. Let Sim be the
functor on C which associates with every 2'-structure A of C the equivalence class
Sim(A) which consists of all of the 2'-structures B of C such that A "-' B. Observe by
straightforward verification that for any proper fE-category C the ~ equivalence
classes form a distributive lattice Sim(C) with x as meet and + as join. If G and
H are two elements of the lattice Sim(C) then G ~ H in Sim(C) if and only if for some
element A of G and some element B of H, A -> B. Clearly then for all elements A in
G and B in H, A -> B. We will sometimes also write G -> H. The one of the lattice

o

Sim(C) which we will denote by 1 is the equivalence class containing the element one
and the zero, 0, of this lattice is the class containing the empty 2'-model. An fE-model
M is multiplicative in a category C of fE-models if whenever A -f M and
B -f M for two 2'-models A and B of C then A x B -fM. Note that if M '" M t then
M is multiplicative in C if and only if M t is multiplicative in C. An element A of the
lattice Sim(C) is called multiplicative if one of the 2'-models and hence all of the
2'-models in the equivalence class A of 2'-models are multiplicative.

It follows that an element M of the distributive lattice Sim(C) is multiplicative if
whenever A~M and B~M then the meet A x B ~M. Clearly, if M is multiplicative
then M is meet-irreducible. (A lattice element z is called meet irreducible if x 1\ y = z
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implies x = z or y = z). The converse, that is if M is not multiplicative then M is not
meet irreducible, is also true. For assume that A~M, B~M but A x B ~ M. Then
M < A + M and M < B + M but (A + M) x (B + M) = A x B + A x M + M x B +
M x M ~ M. We conclude tha an element of the distributive lattice Sim(C) is multipli­
cative if and only if it is meet irreducible and that an element M of a proper
2-category C is multiplicative in C if and only if the similarity class of Sim(C)
containing M is meet irreducible in the distributive lattice Sim(C).

Exponentiation is a contravariant functor. That is, if G, Hand K are 2-models
with G ..... H then K H ..... KG. In order to see this assume that G ~ H. Let IX* be the
function from K H into KG such that 1X*(f)(a) = f(lX(a)). Clearly, IX* is a homo­
morphism from K H into KG. It follows that if G ~ H then K G ~ K H. If G ~ K, then
IX E KG has the property that for every relation symbol R of 2, R(IX, IX, ... ,IX) and
hence KG ~ one. 1

IfA, B, G are three 2-models with A ~ B then A G~ B G
• The homomorphism 1X 1 is

defined as follows: iff E A G and x E G, then (1X 1 f)(x) = 1X(f(X)). Hence if G ~ G1 and
H ~ HI, then GH ~ G~l. This implies that if C is a proper 2-category and K and
A are two elements ofSim(C) then K A is well defined as that element ofSim(C) which
contains the 2-model K1' for some K 1 E K and some Al EA. By KSim(C) we will

denote the set of all elements H of Sim(C) such that for some element X of Sim(C),
H = K X• Note that KSim(C) = Sim(KC).

Our interest in this general setting stems from a vexing problem in graph theory
originally due to Hedetniemi [8]. Given two graphs A and B both having chromatic
number n, what is the chromatic number of Ax B? It is easy to see that the chromatic
number of A x B is at most n. (The graph A x B can be colored with n colors by
choosing some n-coloring of A and by coloring the pair (a, b) with the color of the
vertex a). Hedetniemi's conjecture says that the chromatic number of the graph A x B
is n if the graphs A and B have chromatic number n. It is known that the conjecture is
true for n ~ 4, [4], and not true for infinite chromatic numbers, [7]. For all we know
the following might be true: 'For any arbitrarily large finite number n there exists two
n chromatic graphs A and B such that the chromatic number of the graph A x B is at
most 9' [14,15]. It is known that the conjecture is true for several special classes of
finite graphs. See the references at the end of this paper [20, 3].

Observe that the chromatic number of a graph A is n if and only if A ..... K n

and A -fK n - l' (Kn denotes the complete graph on n vertices and by misuse
of notation also the ~ equivalence class of graphs containing K n .) If for two
graphs A and B, A ~ B holds then the chromatic number of A is equal to the
chromatic number of B. Let FG be the proper category of finite graphs and Sim(FG)
the distributive lattice of ~ equivalence classes of finite graphs. We can then
speak of the chromatic number of an element of Sim(FG) as the chromatic number of
one of the graphs it contains. Hedetniemi's conjecture is equivalent to the statement
that the complete graphs are multiplicative in the category of finite graphs or
equivalently that the ~ classes containing the complete graphs are multiplicative,
that is meet irreducible, in the distributive lattice Sim(FG). We will prove (Lemma 4,
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see also [4J) that the complete graph K n is multiplicative iff for every graph G with

G +Kn, K~ ~ K n .

Different aspects of this categorial setting of Hedetniemi's conjecture are quite

widely known as 'folklore' and have been independently discovered by several

authors. See [12J, for instance, for an example of this viewpoint. We know from
personal communications that certainly Lovasz and Walker knew about this and that

this connection between homomorphisms of graphs and Hedetniemi's conjecture has

led to investigations into the category of graphs under homomorphisms by 1. NeSetril
and others. Welzl, for example [21], proved tha the lattice Sim(FG) is dense. Hell
introduced the notion of a multiplicative element of a category. Starting with [6J, and
continuing in [9] and [19], multiplicative objects in various categories have been
studied. As far as we know the connection between Hedetniemi's conjecture, multipli­
cativity and distributive lattices has not been commented on and the formalisms of the
abstract setting for Hedetniemi's conjecture and its connection with the Boolean
algebra KSim(Cj do not appear in the literature.

As can be seen from the last paragraph, the 'categorial' perspective on Hedetniemi's
conjecture has quite a long history. Let us also mention here that exponentiation was

defined in [11J by Lovasz. G. Sabidussi, (OJ. Millers advisor), was also thinking along

these lines, [10]. Lemma 4 and several of the statements in Lemma 1 can be viewed as
folklore. They are implicit in [4] and [6] explicitly proved for one binary relation. We

included them here for completeness. Our notion of exponentiation in lattices agrees

with the one of Birkhoff in [lJ and [2].

Given a relational language f:£ and a proper f:£-category C a desirable solution to

what might be called the 'generalized Hedetniemi problem' would be to give a struc­

tural characterization of the multiplicative elements of C and a description of the
subsets KSim(Cj for elements K of Sim(C). We will prove, Theorem 2, that for every

proper f:£-category C and element K of Sim(C) the set KSim(Cj contains at most two
elements. In a certain sense the size of KSim(Cj determines the 'degree' to which K fails

to be multiplicative. In the case of graphs for example, if the chromatic number of the

graphs in K~G is at most m, then it follows that if A and B are two at least m-chromatic

graphs then the chromatic number of A x B is larger than n. The statement: For every
n, K~im(FG) is finite, implies that there is a functionf(n) such that whenever two graphs

A and B have chromatic number larger thanf(n) then the chromatic number of Ax B
is larger than n (Theorem 5).

In the case when the language f:£ contains only unary relations we will provide

a complete description of the situation (Theorem 8 and Corollaries 1 and 2).

For the reader interested in the formal categorial aspects of the theory we mention

the following without going into details. The operations of product, sum and ex­

ponentiation are categorial as the diagrms in Fig. 1 commute.

The object one is terminal and the empty f:£-model is initial in the category My. The

category M:t' has pushouts and pullbacks and hence My is finitely complete and

finitely cocomplete ([10 Theorem 23.7], [12J). Let S be a two element f:£-model with

the property that for every positive n, relation symbol R of f:£ of arity n, and every
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sequence s1> S2' ... ,Sn of elements of S, R(s 1, S2, ... ,sn) in S. It is not difficult to see
that S is a subobject classifier of M:£ and hence M:£ is a topos. Of course, M:£ induces
a topos structure on certain subcategories, for example the category FG is a topos.

It is not difficult to see that exponentiation in the distributive lattice Sim(C) for
a proper 2-category is relative pseudo-complementation, hence the lattice Sim(C) is

a relatively pseudocomplemented lattice and because it contains a zero, 0, it is a
Heyting algebra [17,16].

Section 1

In Lemma 1 we will list some formal properties of +, x and exponentiation of
2 -models. Inspection shows that those properties are actually properties of the

underlying distributive lattice. In order to establish Lemma 1 we could have taken
a more abstract route by first proving that the distributive lattice Sim(C) is relatively
pseudocomplemented for every proper!/!-category C and then used the formal rules
for relatively pseudocomplemented lattices derived in [17] and [16]. We did not
choose to take this route because we wanted to gain an understanding of the concrete

homomorphisms on the 2 -models which give rise to the assertions of Lemma 1.
Theorem 2 establishes the fact that for every element K E Sim(C), KSim(Cj is, under

the ordering in Sim(C), a Boolean lattice with the same meet as in Sim(C) and the join
given by A EBB = K (K

A

/\ K
B

). In this case we use a theorem of Gratzer [5, p. 58] on

pseudocomplemented lattices. We think that not much could be gained from a more

direct but longer argument, even though it would not be difficult to produce:

Lemma 1. Let G, Hand K be three elements of a proper !/!-category C for some
relational language 2, then

G + H '" H + G, G x H '" H x G, (1)

Gx(H + K) '" GxH + GxK, (2)
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(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

one x G '" G,

Proof. Assertations (1) and (2) follow by straightforward verification. In order to see
that K G+H '" KG X K Hassociate with each functionf of K G+

H the pair of functions
flV(G) and flV(H) of KG and K H, respectively. This association is a bijection
between the elements of K G + H and KG x K H. For R an n-ary relation symbol,
ft,fl, ... ,fn functions of KG +H, R U,,fl, ... ,fn) iff for all sequences x, , Xl, ... , X n of
elements of G such that R(Xt,Xl, ... ,xn), RUt (Xd,fl(Xl), ... ,fn(xn)) in K iff for all
sequences Xt,Xl, ... ,Xn of elements of G such that R(XbXl' ... ,xn) and for all
sequences Xt,Xl,'" ,Xn of elements of H such that R(XbXl,'" ,xn),
RUt(xd,fl(Xl), .. , ,fn(xn)) in K iff R(ftlV(G),fllV(G), ... ,fnlV(G)) and
R(f,IV(H),fllV(H), ... ,fnlV(H)).

In order to establish (KG)H '" K GxH associate with each function f of (KG)H and
element b of H the functionfb =f(b) of KG and the functionf* of K GxH given by
f*(a,b) = fb(a). If 9 is function in K GxH we associate with 9 and every b of H the
function gb of KG given by gb(a) = g(a, b) and then the function gO of (KG)H given by
gO(b)(a) = gb(a). Observe that * and ° are two-sided inverses of each other and hence
bijections. For R an n-ary relation symbol, andf, ,fl' ... ,fn a sequence of elements of
(KG)H, R(f,,fl'''' ,fn) if for all sequences bbbl , ... ,bn of elements of H such that
R(bt ,bl , ... ,bn), RUt (bd,fl(bl ), ... ,fn(bn)). Now RUt (bd,fl(bl ), ... ,fn(bn)) iff for
all sequences a"al,'" ,an of elements of G such that R(at,al,'" ,an),
RUdbd(ad,fl(bl)(al), ... , fn(bn)(an)) iff RUr (at, bd,fl* (al' bl ), ... ,fn* (an, bn)·

The first part of (5) is easy to check and for Kone '" K let one be that 2 model
consisting of the single element a and for every relation R of 2, R(a, a, ... ,a). The
association betweenf of Kone andf(a) of K is an isomorphism between Kone and K.

To see assertion (6) assume that G x H ~ K. Then we associate with 9 E G the
function g*: H -+ K given by g*(h) = (X(g, h) = (X(g, h). Straightforward verification
shows that * is a homomorphism from G to K H.

If (f,a) E V(K Gx G), then the evaluator which maps (f,a) to f(a) is a homo­
morphism. For each element x of K, the map which associates with x the constant
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map from G to x is a homomorphism from K to KG. Assertion (8) follows immediately
from assertion (7).

We already observed that the function which maps G to KG is a contravariant
functor. Hence if G -+ H then K H -+ KG and K (KG) -+ K (K

H
). Let us denote by

*: G -+ K (KG) the function such that for a E V(G) and f E V (KG), a*(f) =f(a). Ob­
serve that * is a homomorphism from G into K (KG) and hence G -+ K (KG). Applying
this rule to the graph KG we get KG -+ K(KlKGI). On the other hand, using the fact that
exponentiation is a contravariant functor we obtain from G -+ K(K

G
), K(KlKGI) -+ KG.

Apply the latter to G = K H E K C. Thus K(K<KHI) -+ K H, that is K(K
G

) -+ G. We obtain
then that G "-' K(K

G
) whenever G E K C.

For (11) note that if one"": KG then the function lX(one) from the elements of G to
the elements of K is a homomorphism from G to K. On the other hand, if f is
a homomorphism from G to K then there is a homomorphism from one to KG whose
image is! 0

We have mentioned earlier that if C is a proper 2-category then Sim(C) is
a distributive lattice. Also, Sim(A x B) = Sim(A) 1\ Sim(B), Sim(A + B) = Sim(A) +
Sim(B), Sim(AB) = Sim(A)Sim(B) and Sim(K c

) = (Sim(K))Sim(C).

Let D be a distributive lattice. Suppose that for every two elements x and y of D the
element sup{z: y 1\ z ~ x} exists and has the property that (sup{z: y 1\ z ~ x}) 1\
y ~ x. We then say that D is a distributive lattice with exponentiation and put
xY= sup{z: y 1\ z ~ x} and xD = {xY: y ED}.

o

Lemma 2. Let D be a distributive lattice with exponentiation and with x, u, v E D, 1 the
one of D, y and z in xD

. Then

z 1\ y ~ x => z ~ xY, (12)

x ~ xu, (13)

y 1\ xY= x, (14)
0

Xl = x, XX = 1 , (15)

y ~ z => X
Z
~ xY, (16)

xY 1\ X Z = xY v Z , (17)

y ~ x(xY) , (18)

u = xIx") <:> U E xD , (19)

XU f\ v ~ (xu)" . (20)

Proof. It follows from the definition that z 1\ y ~ x => z ~ xY•

If v 1\ U ~ x then (v V x) 1\ U = (v 1\ u) V (x 1\ u) ~ x. It follows that x ~ XU and
that for every element y E x D, X ~ y.
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We deduce from the definition of xY that y 1\ xY ~ x. And hence because x ~ yand
x ~ xY, Y 1\ xY = X. It is also immediate from the definition of xY that x'i = x, XX = i
and y ~ z => X

Z
~ xY.

It follows from assertion (16) that xY ~ xY v Z and X Z ~ xY v z, hence xY 1\ X Z ~ xY v z.

In order to prove that xY 1\ XZ
~ x Y v Z it is sufficient to prove that (xY 1\ XZ

) 1\

(y V z) ~ x. We calcuate:

xY I\xz I\(y Vz) =xY 1\ ((X Z I\y) Vx) =xY I\(X Z I\y) =(xY I\y) I\ zz =X I\xz
=X

Assertion (18) follows directly from the definition of exponentiation. Obviously if
y = x(XY) then y E XD. Also from the definition of exponentiation if u ~ v then XU ~ xV.
Hence if y E XD, that is if there is a zED such that y = x Z

, then z :::; XX%:= p(z) and

Because y ~ xxY, it follows that y = xx>.
In order to prove assertion (20) observe first that x ~ XU 1\ v 1\ (u 1\ v) =

(XU 1\ v 1\ V) 1\ u. This implies by the definition of XU that XU 1\ v 1\ v ~ xu, which in turn
implies that XU 1\ " ~ (XU)". 0

Lemma 3. For every element xED, x is the smallest element in XD, i is the largest
element of XD, the set xD is closed under 1\ and hence is a meet semi/attice.

Proof. Immediate from Lemma 2. 0

Following [5] an element a* is a pseudocomplement of a E L if a 1\ a* = 0 and

a 1\ x = 0 implies that x :::; a *. A pseudocomplemented lattice is one in which every

element has a pseudocomplement. Note that Lemmas 2 and 3 imply that if D is

a distributive lattice with exponentiation then for ~very element xED, xDis a meet
semilattice with smallest element x, largest element 1 and for every element y E xD the
element xY is a pseudocomplement of the element y.

Theorem 1 (Gratzer [5]). Let L be a pseudocomplemented meet-semi/attice,
S(L) = {a*; a E L}. Then the partial ordering ofL partially orders S(L) and makes S(L)
into a Boolean lattice. For a, bE S(L) we have a 1\ bE S(L), and the join EB in S(L) is
described by

aEBb = (a* 1\ b*)*.

Hence the following theorem follows.

o

Theorem 2. If D is a distributive lattice with exponentiation, largest element 1, and if
xED, then the partial ordering of D partially orders xDand makes xDinto a Boolean
lattice. For z,y EX Dwe have z 1\ yin XD, and the join EB in xDis described by
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Let C be a proper 2-category then we conclude from assertion (6) that Sim(C) is
a distributive lattice with exponentiation. Assertion (3) implies that L = KSim(C) is
a meet semilattice. Because K K "'"' one and Kone "'"' K the elements Sim(one) = i and
Sim(K) are elements of L and the largest and smallest elememts of L, respectively.
Hence the next theorem follows directly from Theorem 2.

Theorem 3. Let C be a proper 2 -category and K an element ofSim(C). Then KSim(C) is
a Boolean lattice with smallest element. K, largest element 1, for each A E KSim(C) the
complement ofA in KSim(CI is K A, the meet in KSim(C) is x and the join in KSim(C) is given
by A EB B = K(K

A
11 K

B
).

Note that under the conditions of Theorem 3, K(K
A

AK
B

) = KK
A

VB holds. This
follows from Lemma 1 (3).

Lemma 4. Let C be a proper 2-category and K, G be two elements of C with G +K.
Then

KG ~ K ~ V(H +K)(G x H +K).

Proof. Assume that KG ~ K. If for some HE C with H +K, G x H ~ K then it
follows from assertions (6), that G~ K H. Hence by assertion (9) and the fact that
exponentiation is contravariant,

in contradiction to the assumption that H +K.
Assume that for all HE C with H +K, G x H +K. Then in particular if KG +K,

G x KG +K in contradiction to assertion (7). D

We call an element G E C with G +K and the property that for all HE C with
H +K, G x H +K, stable with respect to K. (This notion of stable element is
a generalization of the notion of 'nice' graph to general relational structures. The latter
was studied in [20,3], and implicitly also in [21].) Lemma 2 can then be restated to:
The structure G is stable with respect to K if and only if KG ~ K. Note also that K is
multiplicative in C if and only if every structure G E C with G+K is stable with
respect to K. Hence the structure K E C is multiplicative in C if and only if for every
structure G E C either G ~ K or if G+K then K G~ K, that is, G is stable with respect
to K. This leads us to the next theorem.

Theorem 4. Let C be a proper 2-category and K an element ofSim(C). Then K is
multiplicative in Sim(C) if and only if KSim(C) consists of at most two elements.

Proof. Assume that K is multiplicative in Sim(C) then the above discussion has
shown that for every G E Sim(C) with G +K, KG ~ I and hence by asseertion (7),
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KG = K. If G -4 K then according to assertion (11), KG = 1. Hence KSim(C) contains at
most two elements.

Assume that KSim(C) contains at most two elements. Then by Theorem 3 the
elements of K Sim(C) are the largest element 1and the element K. If for G E Sim(C),
KG = 1then by assertion (11), G -4 K. This means that if G+K, then KG = K. Hence
every element G with G+K is stable and we conclude using the discussion above this
theorem that K is multiplicative. D

Even in the case when C is a proper ,Sf-structure which consists of finite structures
only we cannot decide whether KSim(C) is always finite or not. This question is
particularly interesting in light of the following. Let for a positive integer m, g(m) be
the smallest number such that if two graphs A and B have chromatic number larger
than or equal to m, then the chromatic number of Ax B is at least g(m). Hedetniemi's
conjecture says, (cr. [14]), that g(m) = m. Does g(m) tend to infinity with m? The
following is known [15]: g(m) is either less than or equal to 9 or tends to infinity with
m. Clearly if for every positive integer n there is a numberf(n) such that whenever two
graphs A and B have chromatic number larger than f(n) the chromatic number of
A x B is larger than n then the function g(m) tends to infinity with m. Remember that
FG is the category of all finite graphs and K n is the complete graph or the equivalence
class of all graphs equivalent to the complete graph.

Theorem 5. Iffor every number n, K~im(FG) is finite then there is afunctionf(n) such that
whenever two graphs A and B have chromatic number larger than f(n) the chromatic
number of A x B is larger than n.

Proof. Assume that K~im(FG) is finite. Then there is a number, say f(n), such that for all
elements G of K~im(FG), the chromatic number of G is at mostf(n). This implies that for
every graph A the chromatic number of K;; is at mostf(n). If for some graph B the
chromatic number of Ax B is less than or equal to n, that is if A x B -4 Kn, then by
assertion (6) it follows that B -4 K A and hence that the chromatic number of B is at
mostf(n). Of course the chromatic number of A is then also at mostf(n). Hence if the
chromatic number of two graphs is larger than f(n) then the chromatic number of
their product is larger than n. D

Section 2

In the previous section we have seen that given a proper ,Sf-category C and two
,Sf-structures K and Gin C, then G is stable with respect to K if and only if KG -4 K.
The ,Sf-structure K is multiplicative in C if and only if every ,Sf-structure G E C with
G+K is stable with respect to K. The relevant information is contained in the
distributive lattice Sim(C). The distributive lattice Sim(C) is a distributive lattice with
exponentiation and the ,Sf-structure K is multiplicative in C if and only if the Boolean
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lattice Sim(K)Sim(C) contains at most two elements. The 2-structure G is stable with
respect to K if and only if KG", K and G ---+ K if and only if Sim(K G) = i. Hence if
G+K then G is not stable with respect too K if and only if the equivalence class
Sim(K G) is not the class Sim(K) or the class 1. This implies that in a certain sense the
size of the Boolean lattice Sim(K)C is an indication of the extent to which K is
multiplicative. This leads us to investigate the Boolean lattice xD for a distributive
lattice D with exponentiation and element XED. Remember that the 2 -structure K of
the proper !f'-category C is multiplicative if and only if Sim(K) is meet irreducible in
the distributive lattice Sim(C).

Let D be a distributive lattice with exponentiation. Then M(D) denotes the set of
meet irreducible elements of D. If L is a lattice then C(L) denotes the set of coatoms of
the lattice L.

Theorem 6. Let xED, a distributive lattice admitting exponentiation and let y > x in D.
Then

Y E C(xD
) ~ x y > x and y E M(D) .

Proof. Assume that xY > x and Y E M(D). We show first that Y E xD and suppose for
a contradiction that y¢xD

• As y /\ xY = x and both y > x and xY > x, we know that
y and xY are incomparable in D. Then we obtain from assertions (8) and (19), that
y < xx

Y and from assertion (14), with xY in place of y, that xY /\ xxY = x. Note that
X

XY 'jxY because X
XY

/\ xy = x < xY• This in turn implies that y V xY f;.x XY
• If

xxY
~ Y V xY then X

XY < y V xY and the elements x, y, X
XY

, xY, Y V xY would form a
5-element nonmodular lattice. Thus, we have the situation as depicted in Fig. 2, with
xxY and y V xY incomparable.

Since y E M(D),

which is not possible because y > x.
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Thus Y E XD. As Y E M(D), Y E M(xD
), (remember that the meet operations coincide).

But in any Boolean algebra relative complementation shows that the existing meet

irreducibles must be coatoms.

Assume that y E C(xD
). We first prove that Y E M (D). If not then there are elements

u > y and v > y such that y = u 1\ v. Then

x :::;; XU :::;; xY and x:::;; XV :::;; xY •

If XU = xY then because y E XD,

which is not possible. Thus XU < xY and XV < xY• Using the fact that y is a coatom of xD

we get that XU = x = XV. This means,

xY = XU 1\ V :::;; (XU)V = XV = X ,

which again is impossible. The inequality above follows from assertion (20). Thus, we
have y E M(D).

It is immediate that x Y > x, as it is an atom of XD. D

Theorem 7. Let xED, a distributive lattice admitting exponentiation. If z > y > x and
y E M(D) then X

Z = x and hence z is stable with respect to x.

Proof. If not, X
Z > x and z 1\ X

Z = x. If xY = x then x z
:::;; xY = x, an immediate

contradiction. If xY > x then by Theorem 6, y E C(xD) and so y < z :::;; xx' E x D means

xx' = i and hence X
Z = x, which is again a contradiction. (Note that i E xD and if

o

xx' > y a coatom then xx' = 1.) D

Section 3

We consider now the special case when 2 is a unary language. If the cardinality of

2 is K we may assume without loss that 2 = K. In this case 2?-models consist of sets

S so that for each XES there is some C(x) <;: K, a set of colours. So, an object

(2-model) is actually a (multi)-set of subsets of K. If x, yES and C(x) <;: C(y) then

there is a homomorphism cp: S -----. S - {x}, where

( ) {
t if t i= x,

cp t =
Y otherwise.

Evidently each equivalence class of objects can be represented by an order ideal in

'}/ where the ordering in the distributive lattice is given by <;:, meet by n and the join

by u. (A subset S of2K is an order ideal if whenever XES and x ;;:: y, then YES.) From

this it follows that the collection f0K of similarity classes so ordered satisfies

~ = 22K
K _ ,
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the free distributive lattice on K generators. (See [5, p. 80 ff.].) Anyway, it follows
from our general discussion about ff' -structures that ~I< is a distributive lattice
which admits exponentiation. Given two elements A and B in ~I< it is actually not

difficult to see that AB is the order ideal of all those subsets x E 7/ such that if x¢A

then x¢B. In other words AB = {x E 2.1<: ((y ::s; x) 1\ (y E B)) = YEA }nB = A¢> B s; A.

It is immediate that {x E2.1<: (y:s; x V Y EB) =YEA) is an order ideal, that

({XE2.I<: (y::S;xVYEB)=YEA})nB=A and if ZnB:s;A, then ZS;{XE2.I<:
(y :s; x V Y E B) =YEA}. Remember that M(~I<) is the set of meet irreducible
elements of ~k'

A subset S of 2.1< is an order filter if for every element XES and every y ;?: x also y is

an element of S. An order filter S of 2.1< is a filter of 21< if for any two elements x and y of

S also xny is an element of S. If S is a subset of 2.1< then the complement of S is the set

S = 21< - S. Observe that S is an order ideal of 21< if and only if S is an order filter of 21<.

Theorem 8. The element S of ~I< is in M(fZl<) if and only if S is a filter of 2/ .

Proof. Assume for a contradiction that Sis a filter and that there are two ideals A and
B with A rotB and B rotA but AnB = S and hence AuB = S. There is then an element
a E A - B and an element b E B - .if. If anb EA then b E A and if anb E B then a E B.
But anb would then not be an element of AuB = Sin contradiction to Sbeing a filter.

If S is meet irreducible and Sis not a filter then there are elements a and b in Ssuch
that anb¢S. Let A = {x: 3y E S with y::S; a and x;?: y} and B = S - {y: y :s; a}.
Clearly A and B are order filters. But b¢A because if there is YES with Y :s; a and
b ~ y then y ::s; anb and hence anb E S. Also a¢B and clearly S = AuB. Hence
S = AnB in contradiction to our assumption that S is meet irreducible. 0

Note that if K is finite then every filter of 2.1< is a principal filter. We obtain then the
following corollary.

Corollary 1. If ff' is a finite unary language then the model S of 2 is multiplicative
if and only iffor every element x of S there is a unary relation R E 2 and an element
yES such that C(x) S; C(y) = 2 - R.

We assume now that 2 is a finite unary language and contains r elements. We

represent the similarity classes of 2 -structures by the set ~r of order ideals in 2r
. Let

K be an element of ~r' Because 2r is finite also KPr is finite and hence atomic. All of
the coatoms of ~r are multiplicative elements of ~r by Theorem 6 and no element of
~r which is strictly larger than some multiplicative element which in turn is larger
than or equal to K is an element of ~r by Theorem 7. Hence we obtain the following
corollary.
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Corollary 2. If!l' is afinite unary language containing r elements and K is an element of
FUfi' then the coatoms of the Boolean lattice KFU.<R are the minimal multiplicative
elements of FUfi' which are larger than or equal to K. This completely determines the
Boolean lattice K FU.<R because the meet in the Boolean lattice K FU.<R is the same as the
meet in the distributive lattice ~r which corresponds to the product of !l'-structures.

Section 4: A problem

Remember that two graphs G and H are similar if there is a homomorphism from
G to H and a homomorphism from H to G. If K is a graph then Sim(K) denotes the
similarity class of the graph K. The similarity classes of graphs form a distributive
lattice where the join corresponds to the disjoint union, the meet to the product and
the order relation to homomorphic embedding. The distributive lattice of similarity
classes of finite graphs is denoted by Sim(FG). We have seen that Hedetniemi's
conjecture is equivalent to the statement that the Boolean lattice Sim(Kn)Sim(FG)
contains only two elements for every complete graph K n and that if the Boolean lattice
Sim(Kn)Sim(FG) is finite then there is a number f(n) such that if the two graphs G and
H have chromatic number larger than f(n) then the chromatic number of G x H is
larger than n.

Problem. For which graphs K is the Boolean lattice Sim(K)Sim(FG) finite?

Note that if the Boolean lattice Sim(Kn)Sim(FG) is infinite then there are infinitely
many graphs which are pairwise not homomorphic to each other their infinite product
is homomorphic to K n but every finite subproduct has chromatic number strictly
larger than n.
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