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ABSTRACT 

Let (G, <) be a finite graph G with a linearly ordered vertex set V. We consider the 
decision problem (G, <)ORD to have as an instance an (unordered) graph r and as a 
question whether there exists a linear order < on V(T) and an order preserving graph 
isomorphism of (G, <) onto an induced subgraph of r. Several familiar classes of graph are 
characterized as the yes-instances of (G, <)ORD for appropriate choices of (G, <). Here 
the complexity of (G, <)ORD is investigated. We conjecture that for any 2-connected 
graph G, G F K,,  (G, <)ORD is NP-complete. This is verified for almost all 2-connected 
graphs. Several related problems are formulated and discussed. @ 1995 John Wiley & Sons, 
Inc. 

1. INTRODUCTION 

In this paper we shall consider the computational complexity of the following 
graph recognition problem. Given an ordered graph (G, <) where G = (V, E )  is a 
graph with no loops or multiple edges, and < is a linear ordering of V,  we pose 
this decision problem. 

(G ,  <)Ord 

Instance. A graph r = (V, E ) .  

Question. Does there exist an ordering < of V(T) such that 
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(G ,  <)$(r, <)? 

By (G, <) 5 (r, <) we mean that there is an injection + : V(G)+ V(T) such 
that u, <u ,  implies + ( u i ) < + ( u , )  and (b is a graph isomorphism of G onto the 
induced subgraph of r on +(V(G)). In the future, we often abuse notation by 
using < for < and just say that (G, <) is an induced ordered subgraph of (r, <). 

Several graph characterization problems that at first may not seem to be 
related to ordered subgraphs may be formulated as (G, <)ORD for the appro- 
priate choice of (G, <). Two well-known examples of this are characterizations of 
comparability graphs and chordal graphs. 

A graph r =  (V, E )  is said to be the comparability graph of the partially 
ordered set P = (V, 0, denoted r = Comp(P), if for all a ,  b E V ,  { a ,  b }  E E if 
and only if a < b or b < a  in P. These graphs have been well studied and many 
results relating to them appear in [14]. Ordered graphs provide a well-known 
characterization. 

Theorem 1.1. A graph r is a comparability graph if and only if  r is a satisfying 
instance of ( G ,  <)ORD with V(G, <) = (1 ,2 ,3)  and E(G, <) = {{1,2}, {2,3}}. 

Since the problem of determining whether a graph is a comparability graph has 
been shown to be solvable in polynomial time, this is an example of a 
(G, <)ORD problem which is in P. 

Similarly, a graph r is said to be a chordal graph if every cycle of length 4 or  
more has a chord. These graphs are also sometimes called triangulated, rigid 
circuit, monotone transitive, and perfect elimination graphs, and have an 
extensive literature [14]. The reason for the term perfect elimination graph leads 
us to a (G, <)ORD characterization of chordal graphs as follows. An ordering 
(ul ,  u 2 ,  . . . , u k )  of the vertices of a graph is said to be a perfect elimination scheme 
if, for every i ,  1 5  i 4 k ,  N(ui )  n { u ~ + ~ ,  . . . , u k }  induces a complete subgraph, 
where N(ui )  is the neighborhood of ui. Dirac [8] showed that a graph r is a 
chordal graph if and only if it has a perfect elimination scheme. A moment’s 
thought will show that this is equivalent to the following. 

Theorem 1.2. 
where V(G, <) = (1 ,2 ,3)  and E(G, <) = { { 1,2}, { 1,3}}. 

A graph r is a chordal graph if and only if  r satisfies (G ,  <)ORD,  

Again the decision problem of chordal graph recognition has been shown to be 
solvable in polynomial time, so this is another (G ,  O O R D  problem that is in P. 

A simple generalization of a greedy algorithm for recognizing chordal graphs 
given by [ 111 leads to the following theorem. 

Theorem 1.3. Zf (G, <) is the ordered graph with vertex set V(G, <) = 
(1,2, . . . , k )  for any k 2 3 and edge set E(G,  <) = { { 1,2}, { 1,3}, . . . , { 1, k } } ,  
then (G, <)ORD is in P. 

Another example of (G,  <)ORD that is in P is given by the complete ordered 
subgraph (Kkr <), where V(&, <) = (1,2, . . . , k )  and E(Kk,  <) consists of all of 
the ( i)  possible edges. (Kk,  <)ORD is solvable in polynomial time as it is 
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equivalent to seeing if a graph has a complete subgraph of order k which is easily 
seen to be solvable in polynomial time as long as k is in our problem definition, 
not our input. 

More examples of ordered graphs for which (G, <)ORD is solvable in 
polynomial time may be obtained from the following observations. The problem 
(G, <)ORD is solvable in polynomial time if and only if either of the problems 
(G", <)ORD or (G, >)ORD is solvable in polynomial time, where by G" we 
mean the complement of G and by > we mean the reverse order of <. The first 
of these observations is true because r satisfies (G, <)ORD if and only if I" 
satisfies (G" ,  <)ORD, and finding the complement of a graph r can be done in 
polynomial time. The second is true because a graph r satisfies (G, <)ORD if and 
only if r satisfies (G, >)ORD. Hence, whatever we deduce about the computa- 
tional complexity of (G, <)ORD is also valid for (G", O O R D  and (G, >)ORD. 

We will use somewhat nonstandard notation to represent our different 
mappings. Given < on V =  (1,2, . . . , k ) ,  we represent the mapping that sends u1 
to  1,  u2 to 2, and so on, by (ul ,  u 2 , .  . . , uk). 

In this paper, we will show that for some large classes of ordered graphs the 
problem (G, <)ORD is NP-complete. First we look at the class of ordered graphs 
that are 2-connected and have automorphism group consisting only of the two 
mappings, 

(1 ,2 , .  . . , k )  and ( k , k - 1 , .  . . , l ) ,  

where (1,2, . . . , k )  is the ordered set of vertices of (G, <). 

Theorem 1.4. If (G,  <) is a 2-connected ordered graph with the 2-element 
automorphism group consisting of the identity automorphism and the mapping 

( k , k - 1 , .  . . , 1 ) ,  

then (G,  <)ORD is NP-complete. 

This result is proven by a polynomial reduction from the known NP-complete 
problem of (k  - 1)-colorability, specifically when we restrict our instances to 
graphs r, where A(r) 5 d = d(k - l ) ,  an absolute constant depending only on k .  
An interesting corollary of this result is the NP-completeness of (G, <)ORD for a 
k-element path with the "natural" order and k 2 5. Notice that since k = 3 yields 
the comparability graph recognition problem, an easy one, only the naturally 
ordered 4-element path remains. In fact, this problem can be shown also to be 
NP-complete as it contains as a subproblem the known NP-complete problem of 
deciding if a graph of girth at least 5 is 3-colorable. 

Our final result applies to  less restricted automorphism groups than the first 
one and settles the complexity question of (G, <)ORD for a much larger set of 
ordered graphs. 

Theorem 1.5. Let (G ,  <) be a 2-connected ordered graph, where 

V(G, <) = (1 ,2 , .  . . , k )  , 

whose automorphism group contains neither of the mappings 
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( 2 , 3 , .  . . , k , 1 )  or  ( k , k - 1 , .  . . , 1 ) .  

Then (G, <)ORD is NP-complete. 

Our proof of this result is much more involved than the first and causes us to 
define the rather artificial decision problem d-MIDDLE whose NP-completeness 
must be established before that of (G, < ) O R D .  

It is easy to show that almost all graphs are 2-connected, and it follows from a 
result of Erdos and Renyi [9] that almost all graphs have the trivial automorphism 
group. Hence, in a probabilistic sense, almost all 2-connected graphs satisfy the 
hypotheses of Theorem 1.5. This combined with the earlier mentioned results and 
our intuition have led us to  make the following conjecture on the computational 
complexity of (G, <)ORD. 

Conjecture 1.6. For any ordered graph (G, <), such that (G, <) is neither a 
complete nor an empty graph, (G, <)ORD is NP-complete i f  either G or its 
complement is 2-connected. 

While the full conjecture remains unsettled, by the observation above, we have 
made significant progress. Notice that because of the result on 4-vertex paths, the 
conjecture cannot be extended to a characterization. This leaves the question 
open as to whether there is some easy characterization of the (G,  <)’s for which 
(G, <)ORD is NP-complete. 

2. NOTATION AND TERMINOLOGY 

We take X =  { x , , x , ,  . . . ,x,} to be an unordered m-element set. We define 
1x1 = m .  By [ n ]  we will denote the set of integers {1,2, . . . , n } .  If we wish to give 
a specific order to a set, we will denote it by X =  (x,, x2 ,  . . . ,x,) where here the 
order is x, < x 2  < * . . < x,. By 9 ( X )  we denote the set of all subsets of X ,  and by 
[XI‘ the set of all t-element subsets of X .  Given a linear order < on a set X and 
subsets Y and Z of X ,  we write Y < Z if for every y E Y and every z E Z ,  y < z .  
We will also say that Y <’ Z if for all subsets Y’  C Y and Z’ Z such that 
IY’l r S ( Y 1 ,  /Z’I>SIZ[ ,  we have Z ‘ P Y ’ .  So, Y P ’ Z  means that there exist 
subsets Y ‘ C Y  and Z ’ C Z  such that I Y ’ l r 8 l Y ( ,  IZ’ l?SlZl ,  and Z ’ < Y ’ .  

By a hypergraph X = (V, E )  we mean a set V of vertices and a set E C 9 ( V )  of 
edges. If for every e E E ,  (el = k then we say that 2t is a k-uniform hypergraph. A 
2-uniform hypergraph will be called a graph. An ordered graph (G,  <) is a graph 
G along with a linear order < on V(G).  For any x E V we will define deg(x) = 
l{e E E :  x E e } l .  Further, let A(X) = max,,,(deg(x)). 

At some points in this paper we wish to define an orientation on the edges of 
our hypergraphs. By an oriented hypergraph X = (V, E )  we mean a hypergraph 
where each edge is an ordered set (vl ,  u2 ,  . . . , u k ) .  Given a linear order < on V ,  
we say that e = (ul, u,, . . . , uk) is an increasing edge with respect to < if 

u1 < V 2 < * ’ . < V k  

and define it to be a decreasing edge with respect to < in the analogous way. We 
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further say that e is monotone with respect to < if it is either increasing or 
decreasing with respect to <. 

Given a hypergraph X = (V, E ) ,  we denote by a path in X a sequence 
P = (u l ,  e l ,  u 2 ,  e2, . . . , e,, u / + ~ )  where u l ,  u 2 ,  . . . , u / + ~  E V,  u i ,  ui+l  E ei E E,  1 5  
i 5 1 ,  and all edges and vertices are distinct except possibly u1 and u / + ~ .  The vertex 
u l  is called the initial vertex of P and u / + ~  is called the terminal vertex of P. We say 
that 1 = 1(P) is the length of P. If we have u 1  = u / + ~ ,  then we say P is a cycle and 
usually denote it by the letter C. If % is the set of all cycles of a hypergraph 
X =  (V, E ) ,  then we define the girth of X ,  girth(%), to be min,,,{length(C)}. 
For a hypergraph X and any two vertices x and y of X, we define the distance 
from x to y ,  dist,(x, y ) ,  to be the length of the shortest path in 2 with initial 
vertex x and terminal vertex y .  If no such path exists we say that dist,(x, y )  = co. 

Given a metric p :  V x V+Z U (03) on the vertex set of a hypergraph X = 
(V, E )  we define a p-cycle to be a sequence C = {P I ,  P2, . . . , P,} of paths in X 
satisfying the following conditions: 

(i) If i # j ,  then P, and P, are disjoint except possibly at the endpoints 

(ii) If u,., is the terminal vertex of P, and u i + l , l  is the initial vertex of P,+l,  

(iii) If is the terminal vertex of P, and u , . ~  is the initial vertex of P,  , then 

mentioned below. 

then P ( U l , , ,  u,+1.1) < w. 

p(Urn,t, ~ 1 . 1 )  < 

We define the 

1 I -  1 

length(C) = C ' (Pi)  + C ~ ( ~ i , r ,  ui+ l , l )  + p(um,t, ' 1 . 1 )  . 
i =  1 1 = 1  

Throughout the text, we will be referring to the automorphism group of an 
ordered graph. We use the term automorphism in the graph theoretic, rather than 
order theoretic manner. That is, for an ordered graph (G, <) = (V, E ) ,  a mapping 
f :  V+V belongs to the automorphism group Aut(G, <) if and only if it is a 
bijection where 

{f(x), f ( y ) }  E E if and only if { x ,  y }  E E . 

As indicated earlier, we use somewhat nonstandard notation to represent our 
different mappings. Given < on V =  (1,2, . . . , k ) ,  we represent the mapping that 
sends u1 to 1, u2 to 2, and so on, by ( u l ,  u 2 , .  . . , uk). All of the other graph and 
hypergraph terminology that we will be using is quite standard. Please see [2] for 
any questions on these. 

The proofs in the next section of the paper all depend upon probabilistic 
arguments. In these arguments we are assuming that we have a probability space 
with a binomial distribution Bi(n, p ) .  This distribution may be thought of as a 
random subset, Y ,  generated from an n-element set X ,  where every x E X is in Y 
with probability p and all selections are independent of one another. For a more 
complete discussion of these probabilistic arguments, see [l]. 

In this paper we will be discussing many different decision problems. The main 
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one, (G, <)ORD has been introduced already. The others of interest to us now 
follow. 

Graph 3-colorability (3-COL) 

Instance. A graph r = (V, E ) .  

Question. Does there exist a good 3-coloring of the vertices of r? 
By a good 3-coloring we mean a function f : V(r)--+ 131 such the for all { x ,  y }  E 
E ( r ) ,  f ( x )  #f(y). This problem can be generalized to the following. 

Graph k-Colorability (k-COL) 

Instance. A graph r = (V, E ) .  

Question. Does there exist good k-coloring of the vertices of r? 
This problem has been shown to be NP-complete for any fixed k 2 3, and for 

k = 3 even if we restrict it to graphs of maximum degree 4 [13], and will be the 
basis for the proofs of all of our further NP-completeness results. The next 
decision problem is used as an intermediate step in the proof of Theorem 1.5. 

d-MI DD LE 

Instance. 
EM,, 

A structure 9 = ( S ,  E M I M ,  E,,,) where S is a finite set, EM[, ,  
[SI3, and Vs E S, I{ T 1 T E EM,, U EM,,, s E T } (  5 d .  

Question. Does there exist an ordering of S such that 

V(a,  b,  c )  E EMIM, a < b < c or c < b < a ,  

V(a, b,  c )  E EMOM, i ( u  < b < c or c < b < a)? 

With these definitions in mind we are ready to begin with the proofs of some 
preliminary lemmas. 

3. THE GIRTH MACHINE 

In order to obtain instances of our ordered graph problem, where we can control 
the copies of G appearing, we shall first construct an appropriate oriented 
hypergraph with large girth from one, without necessarily large girth but bounded 
degree, and then insert a copy of (G, <) into each hypergraph edge so that the 
ordering of the vertices corresponds to the orientation of the edge. Because we 
shall assume that G is 2-connected and know that the girth of the hypergraph is 
larger than k = IV(G)l, the only copies of G created will be those confined to 
single hypergraph edges. 

We shall construct our hypergraph piece by piece (Lemma 3.3), showing the 
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existence of each piece by probabilistic methods (Lemma 3.2). As the problem 
size considered in Lemma 3.2 depends only on fixed constants, the "construction" 
of an appropriate piece can be done for fixed constants in constant time. Thus we 
may piece together the entire hypergraph in time linear with respect to the 
number of edges of our original hypergraph. 

Throughout this section we will make use of the following lemma, used to 
bound the tail of the binomial distribution, which is proven in [17]. 

Lemma 3.1. For all 0 < p  < 1 and 0 < E < 1 ,  

Pr(lBi(n, p )  -npl L ~ n p ) S 2 e x p ( - q ~ ( l  -q)npmin/2) 

where 7 = min(E, 2/3) and pmin = min(p, 1 - p ) .  

Using this, we can prove our first lemma which states the existence of the 
pieces with the properties we will need for our later constructions. It is a 
generalization of a lemma proven in [HI. 

Lemma 3.2. Given integers n 2 1,  1 2  2, j l ,  . . . , j , ,  2 1, and reals c l ,  6 > 0 ,  let 
XI, X,, . . . , X,, be pairwise disjoint sets of size N and E = 1/13. Let V =  U:=, X ,  
and 

p :  v x v-zu {w} 

be a metric satisfying, for every x E V,  

I { y E V :  p ( x , y ) = i ) l ~ ( c , N ' ) ' .  (1) 

Then if N 2 No(cl ,  1, n,  j l ,  . . . , j , ,  6 ) ,  there exists an m-uniform hypergraph X = 
(V, E ) ,  where m = C:=, j , ,  which enjoys the following properties. 

1. For all edges e E E ,  /Xi f l  el = j i ,  for all i = 1,2 ,  . . . , n.  
2. A(%) < 1.5". 
3. For every X,! c Xi such that IXl! I 2 6 /Xi[, for i = 1,2 ,  . . . , n,  

I[ ij x:]m n E /  2 C 2 ~ l + €  
r=l 

for c2 = ~ ~ ( 6 ,  1, jl, . . . , j , , ) .  
4. X contains no p-cycle of length 1 or less. 

Proof. Let X ( N ,  p )  be the random hypergraph on the vertex set V =  Uy=l Xi, 
lXil = N ,  where for every e C V such that le n Xil = j i ,  i = 1 ,2 ,  . . . , n,  e is an edge 
of X ( N ,  p )  with probability 

P = N1-m+S * 

We will show below that, with probability greater than 0, X ( N ,  p )  has the 
following properties provided that N is large enough: 

(a) A(X(N,  p ) )  5 1.5n'. 
(b) If X (  c Xi, such that IXL! I 2 S IX, I for i = 1,2 ,  . . . , n,  then 
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where c; =.;(a, j l ,  . . . , j,) and E' = E(X(N,  p ) ) .  

for which (1) holds. 
(c) X ( N ,  p )  has fewer than 2N p-cycles of length at most I ,  for any metric p 

If we can show this, then there exists a hypergraph X '  in our probability space 
X(N, p )  with these properties. If we take N large enough that 2N < $ N 1 + ' ,  let 
c2 = and delete an edge from each p-cycle of length 1 or less in X ' ,  we will form 
a hypergraph X with the desired properties. 

Given any vertex x E X , ,  

and this random variable has binomial distribution. So, by Lemma 3.1, we get, for 
any x E V ,  

Pr(deg(x) 2 1.5") 5 2 exp(-cN') . 

Hence, we obtain 

Pr(3x E V ( X ( N ,  p ) )  : deg(x) 2 1.5") 5 2nN exp(-cN') 5 1 / 4  ( 2 )  

for N large enough. So we have condition (a) with probability at least 3/4.  
Now, for any collection of sets, X,' X,, IX: 1 2 6 l X , / ,  i = 1 , 2 ,  . . . , n,  

for N large enough. Since this distribution is also binomial, Lemma 3.1 gives 

Hence, 
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< 114 (3) 
for N large enough. So if we let c; = c12, we get condition (b) of our list with 
probability greater than 314. 

Notice that since p satisfies the condition that, for any x E V ,  

I{yEV: p ( x , y ) = i ) l s ( c 1 N ' ) ' ,  

the number of vertices y E V such that p(x, y )  < 1 is at most 

i = O  

for N large enough. 
This means that for any path P = { u l ,  e l ,  u 2 ,  e 2 , .  . . , e m ,  u r n + , } ,  there are less 

than N1.5/'2 vertices that could be the initial vertex of the next path in a p-cycle 
containing P of length at most 1 .  So if X J X )  is a random variable counting the 
number of p-cycles in X of length at most 1 with t paths containing a total of s 

edges in these paths, there are at most (nN(N1.5 / '2) )r  ways of selecting the 
terminal and initial vertices of each pair of paths, at most (nN)s - r  ways of picking 
the other intersecting vertices of the edges of each path and at most (nN)(m-2)S 
ways of picking the other vertices to go on each edge of each path. Hence, 

E(X, , ,T(X(N,  p ) ) )  5 (nN(N 1.5"2))'(nN)"-'(nN)(m-2)sp~ 

- - +'(In -qNy+$ 
= c 3 , , N 7  1 . 5 r + %  1 .  

Therefore, if we let X I ( % )  be a random variable counting the number of 
p-cycles in %' of length at most k', 

I s  

E(x/(x(N, PI)> 5 Z 2 ~ ( x r . s ( z ( ~ 7  PI)) 
r = 2  r = 1  

for N large enough. 
So by Markov's Inequality we get that 

pr(xI(~(N7 PI) ' 2n) 5 E(X, (X(N,  p"N 

< N / 2 N = + .  
So the probability that any one of our three conditions listed above does not 
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hold is less than = 1. Hence the probability that all three of them hold is 
positive and, as noted at the beginning of the proof, we can obtain the desired 

+ $ + 
hypergraph. 0 

The next lemma gives the main step in our construction of oriented hy- 
pergraphs with large girth. 

Lemma 3.3 (The Girth Machine). Let d ,  1, and k be positive integers at least 2, let 
6 > 0,  and let X = (V, E )  be a k-uniform oriented hypergraph with A(%) 5 d .  
Then there exists N = N ( d ,  k,  1, S )  and a construction, polynomial in the size of X, 
of a k-uniform oriented hypergraph X '  = (V x X ,  E l ) ,  where 1x1 = N ,  and 
satisfying: 

1 .  For all e' E E ' ,  e ' =  ( u i ,  u i , .  . . , u ; ) ,  where u,' EX, ,  = { u , }  X X ,  and (u,, 

2. A(%") 5 d'N' ,  where d' = d'(d,  k, 1, S )  and c = 5 ;  
3. For ( u l ,  u 2 ,  . . . , u k )  E E ,  X:, 5 Xu, with ( X i  I 2 S lXu,l, f o r  all i E [ n ] ,  

u 2 , .  . . , u , ) E E ;  

(x:, x x:, x * .  x x : ~ )  n E' z 0 ; 

4. Girth(%') > 1. 

Proof. Let N be an integer large enough that Lemma 3.2 holds with n = k, 
j ,  = j 2  = . . =in = 1 , 1 =  1, 6 = 6, and c ,  = 1.5d(k - 1). Let ( e l , .  . . , e,,) be a listing 
of E ( X )  and let X be a set of N distinct vertices. We inductively construct a 
sequence of k-uniform oriented hypergraphs X(,, . . . , Xp on V x X and set 

P,(& Y> = dist,(x, Y )  

Initially set E(Xo)  = 0 and, so, po(x,  y )  = co for all x # y  in V x X .  
For i = 1 , 2 ,  . . . , p we do the following procedure. 

If e, = (u , ,  u 2 ,  . . . , u k ) ,  then with the parameters of Lemma 3.2 specified 
above, p = p, - , ,  and XI = Xu,,  i = 1 , 2 ,  . . . , k, let X'  be the hypergraph 
guaranteed by Lemma 3.2 and % = ,3C-l U XI. Let p, = d i s t ,  . 

Execution of each step of this construction depends on the verification of the 
following claim. 

Claim 1. For every i,  every z E V X X and every r I 1, 

l { y  E V X X :  p,(z, y )  = r } l s  (c,N')' 

Recall that c1 = 1.5d(k - 1) .  

Proof (of Claim 1). What we will actually show is that for all i ,  

A(%.) 5 1.5dN' . 

This will imply our claim since every edge of Xi has cardinality k ,  which would 
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imply that any vertex t would have at most 1.5d(k - 1)“ vertices of distance 1 
from it. 

Fix i and consider X,.. Let z = ( u ,  x )  E V X X .  Let 

E, = {eq E E ( X )  : u E eq,  q 5 i }  . 

Obviously IE,I 5 d .  For each q such that eq E E,, t is a vertex of X q .  Further, 
these are the only hypergraphs in the collection whose union makes up X,., which 
have z as a vertex. Since A ( X q )  5 1.5“ for all q ,  degxi(z) 5 d .  1.5“. 

0 (Claim 1) 

Therefore, we can construct 2’. Notice that any cycle in Xj is a p-cycle at the 
stage where the last edge is added to it. Therefore, the length of any cycle in any 
of our q . ’ s  is greater than 1. So girth (X,) > 1 for all i .  We also get property ( 2 )  of 
the statement of our lemma for X‘ if we let d‘ = 1.5d, as well as property (1). 
Hence X’ is the hypergraph required. As to the time taken to construct our X‘ ,  
since N was determined by d ,  6, and k ,  not by X, finding the hypergraph to define 
on each vertex set ei x X had nothing to do with X, so requires constant time. So, 
the time taken to construct X‘ is linear in terms of the size of X, completing the 
proof of the lemma. 0 

4. THE PROOF OF THEOREM 1.4 

The proof of Theorem 1.4 depends upon a polynomial reduction from the 
problem of ( k  - 1)-COL where k = IV(G)/. This problem was shown to be 
NP-complete for any (k - 1) 2 3 by Garey, Johnson, and Stockmeyer in 1131. In 
the same paper they showed that it remained NP-complete for ( k  - 1 )  = 3 even if 
we restrict our instances to those graphs r with A(T) 5 4. Here is a simple fact 
which we use to extend this result, 

Lemma 4.1. If k-COL is NP-complete when restricted to instances r with 
A(T) 5 d ,  then (k + 1)-COL is NP-complete when restricted to instances r with 
A(T) 5 2d + 1. 

Proof. Given a graph r = (V, E )  with A(r)  5 d ,  we wish to give a polynomial 
transformation to a graph r’ = (V’ ,  E ’ )  with A(r’) 5 2d + 1 such that r is k- 
colorable if and only if r’ is (k  + 1)-colorable. The construction of r’ is as 
follows: 

let V ’ = { x , , x , : x E V } ;  

let E’ = {{XI 7 Y 11, {XI, Y 2 > ,  {xz, Y I 1  : {x, Y >  E E l  u {{XI? x21 : x E v> 
It is not hard to show that this construction has the properties stated above and 

0 we will leave it to the reader to verify. 

This then means that for any k 2 3 ,  there exists a constant d = d ( k )  such that 
the problem of k-colorability remains NP-complete when we restrict ourselves to 
graphs r with A ( r )  5 d .  
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We will use the following description of chromatic number in our arguments. 
By an ordered n-path in an ordered graph (G, <), we mean a sequence of distinct 
vertices { u l ,  . . . , u ~ + ~ } ,  where u1 < u2 < - * < u,+ and each of the pairs 
{ui, u ~ + ~ } ,  i E [ n ] ,  is an edge of G. 

Lemma 4.2. A graph G = (V, E )  has x ( G )  I k if and only if there exists an 
0 ordering < of V(G) such that (G, <), contains no ordered k-path. 

Proof of Theorem 1.4.  
V(G) = (1,2, .  . . , k) and 

Let (G, <) be a fixed 2-connected ordered graph with 

Aut (G,<)={(1 ,2  , . . . ,  k ) , ( k , k - 1 ,  . . . ,  1 ) ) .  

We describe a polynomial transformation which takes as input an instance 
r = (V, E )  of (k - 1)-COL with A(r)  5 d and gives as output an instance r’ of 
(G, <)ORD such that 

r‘ is a yes-instance of (C ,  <)ORD if and only if x(r) I k - 1 . 
First, let B = { P I ,  P 2 ,  . . . , P,,,} be a list of all (k - 1)-paths of r. Since k is a 

constant, m is polynomial in IV(r)l; in fact, since A ( T ) I d ,  another constant, 
rn I d(d - l)k-21V(r)/ is linear in IV(r)(. Thus, there is an algorithm, polynomial- 
time in IV(r)l, which provides the list 9. 

Now, let X be the k-uniform oriented hypergraph with V ( X ) = V ( r )  and 
E ( X )  = 9, where each edge is oriented by its corresponding path orientation. 
Notice that A ( X )  5 d‘ = d(d - l)k-2k, so we can apply Lemma 3.3 with d = d’ ,  
6 = +, and 1 = k. This yields a k-uniform oriented hypergraph 2’ = (V x X ,  E ’ )  
with these properties. 

1. A ( X ’ )  ~ d ’  where d’ is some large but fixed constant independent of the 

2. If (u , ,  u2 ,  . . . , u k )  E E ,  X : ,  CX”,, and IX: I 26lX,,l for all i E [k], then 
size of X. 

( X i ,  X X: ,  X * . . X X : , )  n E’ # 0 .  

3. Girth(%’) > k. 

We now form our graph I?’ by inserting a copy of (G, <) into every edge of X’  
so that its vertices coincide with the orientation of the edge. 

Claim 2. r’ is a yes-instance of (G ,  <)ORD if and only if r is a yes-instance of 
(k - l)-COL. 

Proof (of Claim 2). First notice that since G is 2-connected, for all x ,  y E V(G)  
there is a cycle in G which contains both x and y .  Since the girth of 2’ is greater 
than k = IV(G)l, each subgraph of r’ that is isomorphic to G is contained within 
an edge of 2’. So any ordering <* of V(T’) = V(X‘) such that (G, <) 5 (r‘, <*) 
induces a monotonically ordered edge of 3%’’ since (G, <) has only the two 
automorphisms stated above. 

Suppose that x(T) I k - 1. Then by Lemma 4.2 there is an ordering < of V ( r )  
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such that (r, <) does not contain an ordered (k - 1)-path. This implies that 
(2, <) does not contain a monotonically ordered edge. Let <* be an ordering of 
V ( Y )  such that for all a, b E V ( X )  with a < b,  we have X ,  < * X b .  Then (X ' ,  <*) 
will not contain any monotonically ordered edges. Therefore, by the argument 
given above, (G, <)#(r', <*) and r satisfies (G, <)ORD. 

Now suppose that r' satisfies (G, <)ORD and let <* be an ordering of V(r ' )  
such that (G, <)#(r', <*). Then by the argument above (X ' ,  <*) does not 
contain a monotonically ordered edge. We will define our ordering <' on 
V(T) = V ( X )  as follows: 

1. Let (el, e 2 , .  . . , e,)  be a listing of E ( X ) .  
2. For all x E V ( X )  let X:  = X,  = {x} X X .  When x = ui, we use Xi = X u  . 
3. For i = 1 to m do the following. 

(a) If ei = ( u l ,  u 2 ,  . . . , uk) ,  then there is an ordering (u,,, u,,, . . . , u j k )  of 
( u l ,  u 2 ,  . . . , u k )  and sets 

X !  I /  CXj,', - l s l s k  

such that 

<* XI!, <* * * * <* 

in our ordering <* and 

4. There is a partial order induced on the pairs x ,  y of V(%) =V(T) by 
Xr <* X r .  Let <' be any linear extension of that partial order. 

Indeed let S C V(r') be the smallest initial segment of (V(r'), <*) which contains 
lx'-Il +- elements of one of sets Xi - ' ,  X i - ' ,  . . . ,X i - ' .  Let j l  be this j and 
X,!, = Xi-' f l  S. To obtain j 2 ,  we let S' c V ( r ' )  - S be the smallest initial segment 
containing +- elements of one of the sets Xj- ' ,  j # jl. Let j 2  be this j and 
X,!, = X;-' n S'. Continue in this manner to obtain j 3 , .  . . , j k .  We claim that 
(2, <') does not contain a monotonically ordered edge, implying that (r, <') 
does not contain an ordered (k - 1)-path, thereby showing that X ( r )  I k - 1. 
Suppose that ( u l ,  u2,  . . . , u k )  is a monotonically ordered edge of 2. Without loss 
of generality, we may assume that 

lx'-'l 

u1 <' u* <' . . . <' U k  . 
Hence X y  <* XT <* * * <* X r .  But since A(%) 5 d each X ,  has been pruned as 
in 3(a) at most d times so IXYl L$IX~I = S IX,I. So by Lemma 3.3 there exists 
e E E ( X ' )  such that e c II:=, X r .  This implies that e is monotonically ordered by 
<* which is a contradiction. h u s  (X, <') does not contain a monotonically 
ordered edge and x(T) I k - 1. This completes the proof of the claim. 
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We have a polynomial transformation from an instance r of ( k  - 1)-COL to an 
instance r' of (G, <)ORD such that r satisfies (k - 1)-COL if and only if r' 
satisfies (G, <)ORD, thereby establishing the NP-completeness of (G, <)ORD 
for any 2-connected (G, <) with the specified 2-element automorphism group. 0 

5. THE NP-COMPLETENESS OF d-MIDDLE 

As we stated earlier our strategy for proving Theorem 1.5 is to take the known 
NP-complete problem 3-COL (A(r) 5 4) and give a polynomial transformation 
that reduces an instance of 3-COL to an instance of d-MIDDLE for any d 2 108, 
thus establishing the NP-completeness of d-MIDDLE. In the next section we will 
use this result in the proof of Theorem 1.5. 

In our first transformation we again use the characterization of 3-chromatic 
graphs given in Lemma 4.2. Given an instance r = (V, E )  of 3-COL7 let P = 
{ P ,  , P2, . . . , P,,,} be the set of all three-paths of r where each P, = { q,, r,, s,, t ,  }, 
where { {q , ,  r,}, { r , , ~ , } ,  {s,, t , } }  are the edges of the path. 

Define 9,- = (S, E,,,, E,,,) as follows: 

S = {V(T) u {x, ,: i = 1 , 2 , .  . . , m, j = 1,2,3}} , 

EM,, = { (q , ,  x, I r,), (r, ,  x , , ~ ,  s,), (s,, X, t , )  : i = 1,2 ,  . . . m }  , 

E M ~ M = { ( x , , ~ , ~ ,  2 ,x l  3 ) :  i =  1 , 2 , .  . . , m > .  

Theorem 5.1. 
which is a yes-instance if and only if r is 3-colorable. 

.9[ = (S, E,,,, EM,,) is an instance of d-MIDDLE (d 2 108) 

Proof. 
definitions E,,,, EM,, C S3. We need only to show that, for all s E S ,  

First we will show that 9,. is in fact an instance of d-MIDDLE. By their 

If s ES,  then either s EV(T) or s =x,,, for some i and j .  If s =x,,,, then s occurs 
in exactly 2 triples, one in EMIM and one in EMOM so (4) is obviously satisfied. If 
s E V ( r ) ,  then s j Z  T for any T E EMOM and s is in one triple of EM,, for every 
3-path for which it is an end vertex and two triples of EMIM for every 3-path for 
which it is an interior vertex. Since A(r)  5 4, any vertex of r can be the end 
vertex of at most 4 * 3 3 = 36 3-paths and an interior vertex of at most 4 - 3 - 3 = 36 
3-paths. Hence, if s E V(T), then s occurs in at most 108 triples of gr. Condition 
(4) is satisfied so gr is an instance of d-MIDDLE for any d 2 108. 

Now assume that < is an ordering of S that satisfies d-MIDDLE and consider 
<* = We claim that this is an ordering of V(T) which does not contain an 
ordered 3-path which by Theorem 4.2 implies that r has chromatic number at 
most 3. Suppose not, then (r, <) contains an ordered 3-path. Then, for some 
P, = { q, , r,, s,, t, } , we have that q, < r, < s, < t, or t ,  < s, < rr < q,. Without loss of 
generality, we may assume the former. But since < is a satisfying order for 
d-MIDDLE this implies that 

q r<Xf , l< r f  < X ~ , 2 < S l < X l , 3 < t l  ' 
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This is a contradiction to satisfaction of d-MIDDLE because this means that 

' 1  1 <x1 ,2  <'I,, 

Hence, if 9,- satisfies d-MIDDLE then r is 3-colorable. 
Conversely, if r is 3-colorable then, by Lemma 4.2, we know that there is an 

ordering < of V(T) such that (I', <) does not contain an ordered 3-path. We will 
now define a series of extensions of < which will eventually lead to a partial order 
I, on the set S. We will then show that there is a linear extension <* of 5* which 
satisfies &MIDDLE. 

To define s* take each {a ,  b }  E E(T)  such that a > b.  Then for every PI such 
that {a ,  b }  E {q , ,  r , } ,  { r , , ~ , } ,  {s,, t , } }  define a > * X I , ,  >* b for j = 1 ,2  or 3 
depending on the position of {a ,  b }  in P,. If we do this for every edge in E(I ' ) ,  
then the transitive closure of s* is obviously an extension of < to a partial order 
on S. We now need to show that this partial order has a satisfying linear 
extension. 

For each P, E 9 either q, < r , ,  and q, < r, < s, < t, does not hold, o r  q, > r, and 
q, > r, > s, > t, does not hold. In either case there are 11 possible linear orders on 
q,, r,, s,, and t, and it is easy to check that for each of them s* I p ,  can be extended 
to a linear order <, such that neither x , , ~  <, x , , ~  <, x , , ~  nor x , , ~  <, x , , ~  <, x,,, hold. 
Let <* = Ulk_l <,. Since <* = <, it is easy to see that the transitive closure 
of <* is a desired satisfying order on S. 

We have shown that r satisfies 3-COL if and only if 9,- satisfies d-MIDDLE 
0 thereby establishing the NP-completeness of d-MIDDLE for d z 108. 

6. BLOCK DECOMPOSITIONS 

Given a graph, G, we can define a binary relation - on V(G)  in the following 
manner. For all x ,  y E V(G) ,  

x - y @ N ( x ) - y = N ( y ) - x ,  

where N(x)  = { y  E V(G)  : { x ,  y }  E E(G)}.  With this definition in hand, we can 
easily prove the following two propcsitions. 

Proposition 6.1. The binary relation - is an equivalence relation on V(G).  

Proof. It is obvious by the definition of - that it is both symmetric and reflexive 
so let us verify that it is transitive. 

Suppose x - y and y - z .  We show that N(x)  - z = N(z )  - x .  So suppose that 
t E N(x)  - z .  First we will assume that t # y ,  in this case we know that t E N(x)  - 
y = N ( y )  - x ,  but since t f x ,  z ,  we know that t E N ( y )  - z = N ( z )  - y .  Hence 
t E N ( z )  - x .  Now suppose that t = y .  Then y E N(x) ,  which implies that x E N ( y ) .  
But, since N ( y )  - z  = N ( z )  - y ,  we get that x E N ( z )  so z E N ( x ) .  But, since 
N(x)  - y = N ( y )  - x meaning z E N ( y ) ,  we get that y E N ( z )  - x .  Therefore, 
x - 2 .  0 

Proposition 6.2. 
of - is either complete or empty. 

The subgraph induced by the vertices of any equivalence class C 
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Proof. If the order of C is either 1 or 2 then the proposition is obvious. So 
suppose that ICl? 3. Then, for any x ,  y ,  z E C,  if x E N ( y )  then since y - z which 
implies N ( y )  - z = N ( z )  - y ,  and x E N ( z ) .  If x is adjacent to any vertex in C then 

0 it must be adjacent to all of them and the proposition holds. 

Now, if we consider the ordered graph (G, <), we can define the block 
decomposition ( B , ,  B,, . . . , B,) of (G, <) to be the decomposition of V(G)  into 
maximum consecutive sets of vertices of the same equivalence class. Formally, if 
V(G, <) = (u l ,  u, ,  . . . , u k ) ,  then 

B, = (ul ,  u 2 , .  . . , ul1 ) (Ju1  - u ,  , for all j ,  I C j l i ,  , 

and 

ul/u,l+l * 

Similarly, 

B, = ( u , , - ~ + ~ ,  . . . , u,,) v l f - l+ l  - uk , for all k ,  i,-l + 1 5 k 5 i, , 

and 

~ 1 , ~ 1 + 1 / ~ , , + 1  . 

Notice that if x E B , ,  y E B,, and x is adjacent to y ,  then every vertex of B, is 
adjacent to every vertex of B,. This allows definition of the block graph (G-, <) 
of (C, <) to be the ordered graph with vertex set (Bl, . . . , B r ) ,  where B, is 
adjacent to B, if and only if the vertices of B, are adjacent to the vertices of B, in 
(G, <I. 

7. ANOTHER PROBABILISTIC RESULT-THE XY LEMMA 

Here we employ probabilistic methods to obtain the final tool needed for our 
proof of Theorem 1.5. The basic step in that proof is a transformation of an 
instance 9 of &MIDDLE to an instance r of (G, <)ORD in a manner similar to 
the one used in verifying Theorem 1.4. First, we form a sequence of hypergraphs 
and then insert copies of (G, <) into the edges of the last hypergraph, obtaining 
the graph r. Here the new part of each successive hypergraph in the sequence 
corresponds to a triple in EM,, U EMOM, the edge set of 9. Actually the ordering 
of the first three blocks of the block decomposition of (G, <) in each edge of the 
final hypergraph will be determined by the ordering of the corresponding triple. 

Since the graph (G, <) may have more than three blocks, we need a way of 
ensuring that the rest of the copy of (G, <) in each edge is properly ordered. This 
is where the XY Lemma (Lemma 7.1) comes into play. It enables us to force, for 
any ordering < of r not containing (G, <), that two subsets of vertices X and Y 
satisfy x<' Y .  

Some special terminology is required for this section. Let V be a set, let 
V =  X U Y be a partition, and let < be a fixed order on V with Y < X .  Given a 
second order < on V,  we say that a k-set e = { y ,  x , ,  x2, . . . , x k P l }  with y E Y, 
x i  EX, and order 
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y < x l  < x 2  <. . - < X k - ,  

is almost <-monotone if either 
y < x , < * ' *  <xk-l or y <xk- ,  < 7 .  * < x ,  . 

In the former case, say that e is <-increasing. 

Lemma 7.1 (The XY-Lemma). Let 6 > 0 and let cl, k 2 2 be integers. Then there 
exists an integer N = N(k,  6, c l )  satisfying the following. Given a set V =  X U Y ,  
Xn Y = O ,  1x1 = IYl= N ,  an order < on V with Y < X ,  and a metric 

p : V 2 + Z U { q  

such that for all v E V,  E = 5 ,  and i 5 k ,  

I{uEV:  p(u , v )= i ) z s (c ,N ' ) ' ,  

there exists a k-uniform hypergraph X = (V, E )  satisfying these conditions. 

(1)  For every e E E ( X ) ,  le fl XI = k - 1 ,  le f l  YI = 1 . 
(2) A ( X )  5 1.5". 
(3) X contains no p-cycle of length at most k .  
(4) For all orders < on V with Xp' Y ,  E contains at least c2N1+' almost 

(5) There is an orientation I? = {e I e E E }  of E such that: 
<-monotone edges for some c2 = c2(S, k ) .  

(i) for all e = { y ,  x 1  , x2 ,  . . . , xk-  , } E E ,  with y < x1  < * - < x k - ,  , either 

e = ( y , x , , x 2 * . * x k - l )  or e = ( y , x k - , , .  . * > X I )  3 

(ii) for all orders < on V with X p 6  Y ,  E contains an <-increasing oriented 
edge. 

Proof. First we will obtain a hypergraph satisfying (1)-(4). 

3.2, now with n = 2, 1 = k ,  jl = k - 1, and j 2  = 1. Recall that p = N 
X = X ,  and Y = X,. We claim that 

Consider the random hypergraph X(N, p )  defined as in the proof of Lemma 
. Let 1 - k + r  

(a') A(X(N,  p ) )  5 1.5Nf, with probability greater than f .  
(b') X ( N ,  p )  contains at most 2N p-cycles of length at most k ,  with probability 

greater than 3. 
Statement (a') is verified just as (a) in the proof of Lemma 3.2,  with argument 

culminating in Eq. (2). Statement (b') follows in the same manner as (c) in the 
proof of Lemma 3.2, which ends with Eq.  (3) .  

We shall now prove: 

(c') For all orders < of V such that X #  Y ,  E ( X ( N ,  p ) )  contains at least 
c;N1+' almost <-monotone edges, where c; = c;(S, k ) ,  with probability 
exceeding :. 
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Once this is done, we know that with positive probability, X ( N ,  p )  satisfies 
(a'), (b'), and (c'). Take N large enough that 2N < 2 N1+'.  Select X' E X ( N ,  p )  
satisfying (a'), (b'), and (c') and delete an edge from each p-cycle of length less 
than k in X ' .  The resulting hypergraph X satisfies (1)-(4). 

Let < be an order of V. Then for all X' C X ,  with IX'l? 6 1x1, let Px> be the 
family of all k - 1 element subsets of S of X '  such that (S,  <) is the same as or the 
dual to ( S ,  <), It is easy to show that 

Indeed by the well-known theorem of Erdos and Szekeres [lo], any subset 
Y C X ' ,  1YI = ( k  - 2)2 + 1 = I contains a member of Sxt. Thus 

holds. Simple computation then will obtain the desired result. Now assume that 
X P ' Y .  This means that the <-first 6 N  elements of Y precede the <-last 6N 
elements of X .  So if X, is a random variable that counts the number of almost 
<-monotone edges of X with respect to  <, 

- - a k  N'+'(1+ o(1)) 
( k  - l)!((k;?:+l) 

N ' + €  
S k  

2 
2(k - l)!(ck ;?:+ ') 

= ,$N1+' 

for N large enough, C; = cI(S, k ) .  So once again by Lemma 3.1 we get 

Pr(X,(X(N, p ) )  s$- C'  N"') 5 2 exp(; -c2 N l + '  ) . 
Thus, 

Pr(3 <:X%' Y and X,(X(N, p ) )  < $ N 1 + ' )  

< 114 
for N large enough. 

We now show that, for N large enough, but again depending only on k ,  6 and 
c,, a choice of X E  X ( N ,  p )  satisfying (1)-(4) also satisfies ( 5 ) .  So, take 
X E X ( N ,  p ) ,  X = (V, E ) ,  and define the random oriented hypergraph a = (V, 
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E) to be the probability space over the orientations of the edges of X where for 
every edge e = {y, x , ,  . . . , x k - , }  with 

x , < x 2 < * - . < x , - ,  , 

Pr(F= ( y , x , ,  . . . , x , - , ) )  = 1 / 2 ,  

and 

Pr(E= ( y , x k - , ,  . . . , x , ) )  = 1 / 2 .  

Given an order < on V with X p '  Y define A, to be the event that ( H ,  <) 
does not contain an <-increasing edge. Then 

by (4). Let B be the event that there exists an order < on V with X p '  Y and A, 
holds. Then 

Pr(B) I (2~)!2-'2"+' < 1 , 

for N large enough. So there is an orientation of E satisfying (5)(i) and (5)(ii). 
0 

8. THE PROOF OF THEOREM 1.5 

Throughout this section we will assume that (G, <) is a 2-connected ordered 
graph such that 

( u 2 ,  u37 * . ' 7 u k ,  u l ) ,  ( u k ,  u k - l , .  . . 2 u l )gAut (G ,  <) 2 

where ( u l ,  u 2 , .  . . , u k )  is an ordered listing of V(G).  Let ( B l ,  B,, . . . , B,) be the 
block decomposition of (G, <). 

We say that a block Bj is distinguishable from another block B, if at least one of 
the following conditions holds. 

1. lei( # IBjl. 
2. Bj and Bj are neither both complete nor both empty as induced subgraphs. 
3. N G - ( B j )  - B, # NG-(B,) - Bj .  

In other words, two blocks are distinguishable in G,  <) if switching them in the 
order of (G, <) gives a nonisomorphic ordered graph. 

Our strategy for the rest of this section will be to first prove the theorem where 
(G,  <) is an ordered graph with three or  more blocks in which the second block is 
distinguishable from the first and third, then to outline the proof in the case where 
(G,  <) has three or more blocks and the second is indistinguishable from either 
the first or the third, and finally outline the proof when (G, <) has only two 
blocks. The second two cases are very similar to the first so we only outline the 
differences without going into great detail. The case where the ordered graph has 
just one block does not apply as these are either complete or empty graphs. 
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8.1. Case 1: B ,  I s  Distinguishable 

We give a polynomial transformation of instances of d-MIDDLE to instances of 
(G, <)ORD, for a fixed integer d L 108 and a fixed ordered graph ( G ,  <), with 
IV(G)l = k ,  block decomposition (G, <) = (Bl, B,, . . . , B() ,  lB,l= b j ,  t 2 3 ,  and 
B, distinguishable from 23, and B,. Yes-instances will correspond under the 
transformation. 

Let N be an integer large enough that each of these hold. 

(i) Lemma 7.1 with 6 =&, k = IV(G)l, c1 = 3 d ( 4 k  - 1). 
(ii) Lemma 3.2 with 6 = &, I = k ,  n = t ,  c1 = 3d(4k - l ) ,  j l  = b l  + 2b2 + b , ,  

(iii) Lemma 3.2 with 6 = 1 I = k ,  n = r ,  cI  = 3d(4k - I), j l  = b l  + b, ,  1 ,  = 
j , = 2 b l + 2 b 3 ,  j 3 = j l  and j i = 4 b , ,  4 5 i S t .  

2b , ,  j 3  = j l  and j ,  = 2bi ,  4 I i I t .  
3 d l  ' 

Let 9 = ( S ,  E,,,, E,,,) be an instance of d-MIDDLE, with (el ,  . . . , e p )  a 
listing of EM,, U E,,,. Set 

P I  

v =  u xau u ux,,, 9 

a E S  , = I  ,=4 

where IXal = ~ X , , , ~  = N for all a, i, j and all X s  are disjoint, and fix some ordering 
< on each X ,  and X I , ,  for use as part of the hypothesis of Lemma 7.1. We 
inductively construct a sequence X O ,  XI, . . . , Xp of hypergraphs on V, and set 

P I ( X ,  Y )  = dist , (x ,  Y )  . 

Initially, set E(Xo)  = 0 and, so, pO(x, y )  = 

construction of X, will depend on whether e, E EM,, or  e, E E,,,. 

for all x # y in V. 
Assume that Xl - l  and, thus, p, - l  have been obtained. The method of 

MIM. Let el = (a, b,  c )  E EM,, (see Fig. 1). 

Step (0) With the parameters of Lemma 3.2 specified by (ii) and p = p l p 1 ,  
X 1 = X a ,  X , = X , ,  X 3 = X c  and X , = X l , ,  ( j = 4  , . . . ,  t ) ,  let F,o be 
the hypergraph guaranteed by Lemma 3.2 and X :  = U q,o. Let 
p ,  = di+. 

Step (1) With the 'parameters of Lemma 7.1 specified by (i) and p = pp, 
X = X, ,  Y = X,,4, let X, l  be the hypergraph given in Lemma 7.1 and 

Step (2) As (1) but replace p = pf,  X =  X,,, resulting in Xl+2 from Lemma 7.1, 

Step ( 3 )  As (1) but replace p = p ; ,  X = X, ,  resulting in q,3 from Lemma 7.1, 

Step ( j )  With the parameters of Lemmi 7.1 specified by (i), p = p : - ' ,  X =  
let q,, be the hypergraph given in Lemma 7.1 and 

0 

Xf = Xy U X,l. Let p ,  i = dist,:. 

and X: = XI1 U q,2, p: = dist,;. 

and X: = 2: U q,,, p: = distX3. 

XI,,,  Y = 
Xi = X{- '  u q,,, p :  = dist,!. 

With j = 4 , .  . . , t - 1, we let q = 2 f - l  and p, = p : - ' .  
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Fig. 1. Hypergraphs added to form X2. 

MOM. Let e i  = (a ,  b ,  c )  E E,,,. 

Steps (0)-(t - 1) as above, except in Step (0), the parameters of 
Lemma 3.2 are given by (iii) . 

Execution of the construction specified in MIM and MOM depends on the 
verification of the following claim. 

Claim 1. For each p = p i ,  for each x E V and r I k 

I { ~ E v :  p ( x , y ) = r } l ~ ( c , N ' ) ' .  

Recall that c1 = 3d(4k - 1). 

Proof. Our approach here will be to show that, for any i, j ,  

A(%{) I 3dN' . 
This will prove our claim since any edge of any %{ has cardinality at most 4 k ,  
which implies that any vertex x E V has at most 3d(4k - 1)N' vertices of distance 
1 from it, and hence at most (3d(4k  - l ) N E ) r  vertices of distance r from it. 

Fix i, j and consider 2%';. Let x E V. Then either x E Xu for some a E S, or 
x E Xf,m for some I and in. First, assume that x EX, for some a E S. Let 

E, = { eq  E EM,, U EMOM : a E e 4 ,  q 5 i} . 

Obviously IEuI 5 d. For each e4 E E,, x is a vertex of H4,0 as well as one of the 
hypergraphs % q , l ,  Xq,*, %q,3. Further, these are the only hypergraphs in the 

243 
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collection whose union makes up X: which have x as a vertex. Since each of these 
Xq,.'s has A(%q,r) 5 l.SN', 

deg,!(x) 5 d 2.1.5" = 3dN' . 

Now assume that x E for some I and m. Then x is a vertex only of the 
following hypergraphs in the collection whose union is X:: 

q . 0  ; 

i f m  = 4, , a%;,2, %,3 and %,4 ; 

if m = t ,  X/,,- ; 

if m # 4 and m # t ,  X, .m-l  and X/,m . 

Since each X/,m has 5 1.5N', 

deg,Jx) I 5 .  1.5" = 7.5" . 

Since d 2 108, 3dN' > 7.5" so 

A(%,,) 5 3dN' 

for all i and j .  0 

Therefore, we are able to construct all of our Xi's. Notice that, at each step, all 
we are doing is placing hypergraphs satisfying certain properties onto our vertices, 
and these properties depend only on d and (G, <), not on the size of our instance 
9 of d-MIDDLE. Hence, we can think of each step as only taking constant time. 
Therefore we construct Xp in time linear with respect to the number of edges of 
X. 

Claim 2. For every i = 1 ,  2, . . . , p ,  girth(%) > k = IV(c)l. 

Proof. 
obvious. 

The proof is by induction on i. For i = 0, since E(X,) = 0 the claim is 

Assume the girth(%;-,) > k and consider Xi. Recall that 

% = X;&l u %;,o u %;,I u * . u %.,t- l  

and 

Xep = u q,o, = %;-I u 2 q j  . 
We must show that none of the edges added to to form q create a cycle of 
length at most k in q. Consider first the edges of F,o added to form X: .  Since 
p i - l ,  the metric used in the construction of was the distance metric from 
q-,, each cycle in X y  which contains edges from q.,o corresponds to a metric 
cycle in Xi,,. By the induction hypothesis, any cycle in X :  which has length k or 
less must contain edges from Xi,o. But this is not possible since Lemma 3.2 
guarantees that %;,, will contain no metric cycles of length k or less. Hence, 
girth(%:) > k .  A similar argument holds for all other %{'s so girth(Xi) > k .  0 
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When constructing T from X,, we will insert copies of G inside the oriented 
edges of ZP in various ways. Sometimes we will want the orientation of the edge 
to correspond to the ordering of (G, <), but, more often, we will want it to 
correspond to a slightly different ordering. To aid us in this process, we develop 
the following terminology. 

Recall ( B l ,  B,, . . . , B,) is the block decomposition of (G, <) and b, = (Bi(. 
Thinking of the B,'s as labels on their respective vertex sets, for any permutation 
( p ,  q ,  r )  of (1, 2, 3), we define the ordered graph (G, < p q r )  to be the ordered 
copy of G with block ordering, 

(BP? B,, B,, B,, . . . , 4). 
For example, (G, = (G, <). 

Construct r from X, as follows. 

1. 
2. 

3. 

V(T)  = V(XP> 
For each ei = (a,  b ,  c )  E EM,,,,, define E(T)  so that there are four vertex 
disjoint copies of G contained in the vertex set of each oriented edge e of 
the hypergraph Xi,o. Define the edge set so that the four copies of G, if 
ordered to correspond to the orientation of e, are 

The vertex set of each (G, < p q r )  should contain b, vertices from X,,  6 ,  
vertices from X,,, b, vertices from X, ,  and b, vertices from X,, , ,  4 5 s 5 t 
(see Fig. 2). 
For each ei = (a, b,  c) E EMOM, define E ( T )  so that there are two vertex 
disjoint copies of G contained in the vertex set of each oriented edge e of 
Xi,". Define E ( T )  in such a way that if the vertices are ordered to 
correspond to the orientation of e the copies of G are ordered (G, < 1 2 3 )  

Fig. 2. Edge set of r for ei E EMIM. 
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e 
Fig. 3. Edge set of r for ei E EMOM. 

and (G, < 3 2 1 ) .  The vertex set of each (G, < p q r )  will be selected just as in 
step 1 (see Fig. 3).  

4. For every oriented edge e = (ul ,  u 2 ,  . . . , uk) of each of the hypergraphs 
satisfying Lemma 7.1 used in constructing Xp, we put in E(T) the proper 
edges so that ( u , ,  . . . , uk) is a copy of (G, <). 

5 .  The only edges in E ( r )  are those specified in 2-4. 

Claim 3. 
yes-instance of d-MIDDLE. 

r = (V, E )  is a yes-instance of (G, <)ORD if and only if 9 is a 

Proof. By Claim 2, the girth of Xp is greater than k = IV(G)l. Hence any cycle 
of length less than or equal to k in r must be entirely contained in a single 
hyperedge of Xp. Since we assume that (G, <) is 2-connected, which means that 
any two vertices of (G, <) are contained on a cycle, each subgraph of r which is 
isomorphic to G must be contained within a single hyperedge of Xp. 

Suppose that <' is a good ordering of S for d-MIDDLE. Then define <* on 
V(T) in the following manner. 

1. If X E X , ,  y E X ,  then x < , y e a < ' b .  
2. If x E X, ,  y E X1, ,  then x <* y .  
3. I f x E X i , , ,  y E X , , ,  t h e n x < , y e i < k o r i = k a n d j < l .  
4. Order each Xu and each Xi?, by ordering < from ( 5 )  of Lemma 7.1. 

Subclaim 3.1. <* is a good order of V(T) for (G, <)ORD, [i.e., (G, <) $ 
(r? <*)I. 
Proof (of Subclaim 3.1). Notice that each of the Xi, j ' s ,  j # 0, is ordered so that 
each hypergraph is oriented ( u 2 ,  u 3 , .  . . , u k ,  u l )  or (u,, u k P l ,  . . . , u , ) ,  neither of 
which will contain a subgraph of (r, <*) isomorphic to (G, <) by our 
assumptions on Aut(G, <). 

Consider the hyperedges of each %i,o. 
If e, = (a, b ,  c )  E EMIM, then since < is a satisfying order for d-MIDDLE, we 

know that a < b < c or c < b <a. Hence each copy of (C, <) contained in each 
hyperedge of Xi,o is ordered by blocks in one of the following ways: 
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B, <* B, <* B, <* B, <*.  . . <* B, , 
B, <* B ,  <* B,  <* B, <*. . * <* B, , 
B, <* B, <* B, <* B, <* * * * <* B, , 

or 

B, <.+ B, <.+ B, <* B, <*.  . . <* B, . 
Each of these orderings, by our assumption that B, is distinguishable, is not 
isomorphic to (G, <). 

Similarly, if ei = (a, b ,  c )  E EMOM,  then b < a  < c, b < c < a, a < c < b ,  or 
c < a < b ,  and we get the same possible block orderings of our copies of (G, <) in 
each hyperedge; hence, none of them is isomorphic to (G, <). Therefore (G, 
<)#(I', <*) so <* is a good order of r for (G, <)ORD. 

0 (Subclaim 3.1) 
Suppose that <' is an ordering of V(T) such that 

(G,  <)#(r., <'I ' 

Now we define an ordering, <*, on S. 

1. Let (el, e,, . . . , e p )  be a list of E ( 9 ) .  
2. For all x E S let X:  = X,. 
3. For i = 1 to p do the following: 

(a) If ej  = (a, b ,  c ) ,  then there is an ordering ( j ,  k, 1 )  of (a, b ,  c )  and sets 

X! I -  c xj-1, x; xi-,, x; c xi-' 
such that 

XI! ex; <'Xi 
and 

> l  xi-, > l  xi-, ~ x , ! 1 2 ~ ~ x ~ - ' ~ ~  l x ; l - 3 1  k 1 )  l x ; l - 3 1  I 1 .  
Let X ; = X ] ! ,  x ~ = x ; ,  x ~ = x ; .  

(b) For all xjZ {a ,  6 ,  c }  let X:  = Xk-l. 

4. There is a partial order induced on the pairs x, y of S by Xf: <' X ; .  Let <* 
be any linear extension of that partial order. 

The following subclaim will complete the proof of Claim 3. 

Proof (of Subclaim 3.2). Suppose not and let 

ei = (a, b,  C) E E M I M  U E M O M  

be an edge which is not correctly ordered. 
If ei E E M I M ,  then this implies that 

a < , c < , b ,  c < * a < , b ,  b < , a < * c ,  
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or b <* c <* a. Assume that a <,c <* b (the rest of the cases follow a similar 
argument). This implies that X: <‘X:  <’Xg.  

Let 

z,=x:, z,=x:, z,=xg, Z,=X,,,. 
It  is easily seen that for each j there exists 2,’ C 2, such that 12; I 5: + lZIl and 

for some permutation rr of [ t ] .  We claim that this permutation must be the 
identity, for otherwise 

z,’ < ’ Z1’- , 
for some j z 4 .  Recall that Lemma 7.1, the XY-Lemma, was applied with 
X 2 Z,-, and Y 3 Z, to form q,,. Since lZl’l 2 6 N  and 1ZJf-, I 2 6 N ,  6 = &, there 
exists an ordered hyperedge (u , ,  . . . , u k )  with u 1  <’ . * . <‘ u k ,  which would 
correspond to a copy of (G, <) in r. 

Since IZ,’ I 2 6 N  for all j ,  Lemma 3.2 guarantees the existence of a hyperedge 
from q,o in IIi=, Z,’. Since rr is the identity, though, this edge is ordered so that 
it will contain a copy of (G, <) (see Fig. 2). Hence e, must not be ordered 
a < , c < ,  b. 

This same argument will hold for each of the other bad orderings of e, as well 
as for any bad ordering of an edge in E,,,. Thus we deduce that <* must be a 
good order for 9. 0 

Since we proved the NP-completeness of d-MIDDLE earlier, we have now 
established Theorem 1.5 in the case where (G, <) is 2-connected and has B, 
distinguishable from B ,  and B,. 

8.2. Case 2: B ,  I s  Indistinguishable 

Here we will outline the proof of Theorem 1.5 for ordered graphs (G,  <) where 
B,  is not distinguishable from at least one of B,  and B,. As we noted earlier, this 
proof is very similar to the last one, so we will just emphasize the differences 
here. 

The construction of Section 8.1 depended upon the fact that interchanging B ,  
and B,  or B, and B, resulted in a different graph. We will modify the construction 
of Section 8.1 and describe how this works when B,  and B, are indistinguishable. 

Let (G, <) be an ordered graph where B,  and B, are indistinguishable and B, 
and B, are distinguishable. This means that the following conditions hold: 

Notice that this implies that lBll = lB21 # 1: were { x }  = B,,  { y }  = B2,  then by 
condition (2), x - y ,  implying that they are in the same block. Similar arguments 
show that if B, and B, induce complete graphs, the blocks are not adjacent and if 
they induce empty graphs, they are adjacent. Thus, the subgraph induced by the 
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B l  B2 
Fig. 4. Possible indistinguishable blocks. 

first two blocks is one of the two graphs pictured in Figure 4. Also, every vertex 
of these two blocks is adjacent to the exact same set of vertices outside of the two 
blocks. 

Let B; be the set of the first [$I vertices in B, and BY = B, - Bi. Then, 

( B ;  7 By, B,, . . - 9 B,) 

is isomorphic to (G, <). More importantly, if By and B, are switched, the new 
ordered graph is not isomorphic to (G, <). 

Here is the modification of the transformation from &MIDDLE of Section 8.1. 
Let N be an integer large enough that each of these hold: 

(i) Lemma 7.1 ,  the XY-Lemma, with 6 =&, k = IV(G)l, c1 = 4.544k - 

(ii) Lemma 3.2 with 6 =A 1 = k, n = t + 1, c1  = 4.5d(4k - l), jl = 

4[$], j 2 =  131 + 2 b , + b 3 ,  j 3 = 2 [ $ ]  +2b3,  j 4 = j 2 ,  a n d j j = 4 b i - l ,  5 5  
i 5 t + l ;  

1 = k, n = t + 1, c I  = 4.544k - l) ,  jl = 

2[%1, j 2 =  

1); 
3qr + 1 )  ’ 

(iii) Lemma 3.2 with 6 =A 
? d ( ‘ +  1 )  ’ 

+ b 3 ,  j 3 = 2 b 2 ,  j 4 = j l ,  andj i=2b, - , ,  5 s i s t + l .  

Let 9 = (S, E M I M ,  E M O M )  be an instance of d-MIDDLE, with ( e l , .  . . , e,) a 
listing of EMIM U EM,,. Set 

P r + l  

a E S  I =  1 r = l  j = 5  
v =  u x, u 6 XJ u u u X I , ,  3 

where IXal = IX,,,I = N for all a, i, j ,  and all X’s disjoint. We inductively construct 
a sequence of Xo, Xl , . . . , Xp of hypergraphs on V,  and set 

PI(& Y )  = dist , (x ,  Y )  . 

Initially, set E(Xo)  = 0 and, so, po(x, y) = 03 for all x f y  in V. 

will depend on whether el E EMIM or el E EMOM. 
Assume that and, thus, p r - l ,  have been obtained. The construction of 3 

MIM. Let ei = (a, b, c) E EMIM (see Fig. 5). 

Step (0) With the parameters of Lemma 3.2 specified by (ii) and p = p i - , ,  
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X1=X, , l ,  X , = X , ,  X , = X , ,  X,=X, ,  and X j = X i , j  ( j = 5  , . . . ,  
t + l), let Xi,o be the hypergraph guaranteed by Lemma 3.2 and 
X: = 2t-l U Y& Let PI) = dist,?. 

Step (1) (a) With the parameters of Lemma 7.1 specified by (i) and p = py,  
X = X i , l ,  Y = X,, let be the hypergraph given in Lemma 7.1 
and X; = 2": U &,o .  Let py = dist,,. 

(b) With the parameters of Lemma 7.1 specified by (i) and p = p4, 
X = X j , l ,  Y = X, ,  let &,, be the hypergraph given in Lemma 7.1 
and X f  = Xy U q,,. Let pp = dist,;. 

(c) With the parameters of Lemma 7.1 specified by (i)  and p = p p ,  
X = X i , l ,  Y = X,,  let Xi,, be the hypergraph given in Lemma 7.1 
and X f  = Xp U Hi, , .  Let pf = dist,?. 

Step (2) With the parameters of Lemma 7.1 specified by (i) and p = p ; ,  
X = X,, Y = Xi,s,  let 2$2 be the hypergraph given in Lemma 7.1 and 
X; = X; U Xi,2.  Let p i  = dist,;. 

Step (3) As (2) but replace p = p ; ,  X = X , ,  resulting in q.,, from Lemma 7.1, 
and 2; = 2; U Xi,,, p: = dist+. 

Step (4) As (2) but replace p = p: ,  X = k,, resulting in Xi,4 from Lemma 7.1, 
and 2: = X :  U Xi,4,  p f  = dist,;. 

Step ( j )  With the parameters of Lemma 7.1 specified by (i), p = p { - l ,  X =  
X .  1 .I ., Y = X i , j + l ,  let XL,i be the hypergraph given in Lemma 7.1 and 
X{ = Xi- '  U X. 1.1 ., p {  = dist,;. 

With j = 5 , .  . . , t ,  we let q = X :  and pi  = p : .  

MOM. Let ej  = (a, b ,  c) E E,,,. 



COMPUTATIONAL COMPLEXITY OF SUBGRAPH RECOGNITION 251 

Steps (0) - ( t )  as above, except in Step ( 0 ) ,  the parameters of 
Lemma 3.2 are given by (iii) . 

Just as in Section 8.1, execution of the construction specified in MIM and MOM 
depends on the verification of the following claim: 

Claim 1. For each p = p : ,  for each x E V and r 5 k 

) { y  E v : P ( X ,  y )  = 4 5 (c,")' 

Recall that c1 = 4.544k - 1). 

When constructing r from X,, we will again insert copies of G inside the 
oriented hyperedges of Xp. We slightly alter the terminology of the last section. 

Recall that ( B I ,  BY, B,, . . . , B,) is our modified block decomposition of 
(G, <). For any permutation ( p ,  q ,  r )  of (1, 2, 3), we define the ordered graph 
(G, < p q r )  to be the ordered copy of G with block ordering 

B,, B,, B,, B,, * * * 7 B,) 9 

where, for the element 1 of { p ,  q ,  r}, we set (abusing notation slightly) B, =BY. 
Construct r from X, as follows, letting b, = IBII and b ,  = IBTI: 

1. 
2. 

3. 

v(r) = v(x,). 
For each ei = (a ,  b ,  c )  E EM,M,  define E ( r )  so that there are four vertex 
disjoint copies of G contained in the vertex set of each oriented hyperedge e 
of the hypergraph Xi,,. The four copies of G, ordered to correspond to the 
orientation of e ,  are (G, Czl3),  (G, < 2 3 1 ) ,  (G, <132) ,  and (G, < 3 1 2 ) .  The 
vertex set of each (G, <,,,) contains b, vertices from Xi,,, b, vertices from 
X , ,  b, vertices from X,, b, vertices from X,, and b,-, vertices from Xi,,, 
5 5 s 5 t + 1 (see Fig. 6). 
For each ei = (a, b,  c )  E E M O M ,  define E ( T )  so that there are two vertex 
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disjoint copies of G contained in the vertex set of each oriented hyperedge e 
of The copies of G, ordered to  correspond to the orientation of e, are 
ordered (G, < 1 2 3 )  and (G, The vertex set of each (G, < p y r )  will be 
selected just as in step 2 (see Fig. 7). 

4. For each hypergraph q.,j obtained from the XY-Lemma and for each 
oriented hyperedge e = ( u l ,  u 2 ,  . . . , u k )  in q.,j, E(T) contains all edges 
necessary for r to induce a copy of (G, <) on (u,,  u,,  . . . , u k ) .  In other 
words, rl("l U2,...,Uk) is isomorphic as an ordered graph to (G, <). 

5. The only edges in E ( r )  are those specified in 2-4. 

The proof of the following claim follows the same reasoning as the corre- 
sponding claim in Section 8.1 and so is left to the reader. 

Claim 2. r is a yes-instance of (G, < ) O R D  if and only if 9 is a yes-instance of 
d-MIDDLE.  0 

The case where B, and B, are indistinguishable follows the obvious symmetric 
steps as when B ,  and B, are indistinguishable, simply subdivide B, into B i  and 
BI .  Also, the case when both B, and B, are indistinguishable from B, follows 
from the obvious combination of the first two, with subdivisions of both B,  and 
B,. We have verified the NP-completeness of (G, < ) O R D  for any ordered graph 
(G, <) with three or more blocks. 

8.3. Case 3: 2-Block Graphs 

We assume throughout this section that (G, <) is a 2-connected graph with only 
two blocks in its block decomposition. 

The two blocks must be connected to each other since our graph G is 
2-connected. The blocks must both induce empty subgraphs or one induce an 
empty subgraph and one a complete subgraph. Notice that neither block may 
consist of a single vertex since this would be a cut vertex for the graph. 

We will first look at the case where both of the blocks have size two and then 
generalize to larger blocks. 

8.3.7. IS,/ = /B2/ = 2. 
In either case, we will show the NP-completeness of (G, < ) O R D  by the 

following polynomial transformation from instances of d-MIDDLE (for some 

Here our graph is one of the two pictured in Fig. 8. 
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i i k 1 i i k I 
(GIs 1 ( G 2 s  1 

Fig. 8. Possible 4 vertex, 2-block graphs. 

fixed d 2 108). Again, yes-instances will correspond. Notice that (G,, <) of 
Figure 8 does not satisfy the hypotheses of Theorem 1.5. However, (G,, <)ORD 
is NP-complete and the transformation that shows this gives the basic idea we will 
use later in the more general case. [We note that the assumption about the 
automorphisms of (G, <) in Theorem 1.5 is essential only when we apply the 
XY-Lemma, a result which is not needed here, so we need not worry that the 
graphs in Figure 8 fail to satisfy the hypothesis.] 

If (G, <) = (Gl,  <) then let N be an integer large enough that each of these 
hold: 

( i ) L e m m a 3 . 2 w i t h S = l  c , = 7 . 5 d , Z = 4 , n = 3 , j l = 1 , j 2 = 2 ,  j 3 = 1 .  
(ii) L e m m a 3 . 2 w i t h S = l  ~ , = 7 . 5 d , Z = 4 , n = 3 ,  j l = 2 ,  j 2 = 2 ,  j 3 = 2 .  

3d ’ 
3d ’ 

If (G, <) = (G,, <), then let N be an integer large enough that each of these 
hold: 

Let 9 = (S, EM,,, E,,,) be an instance of d-MIDDLE with (el ,  . . . , e,) a 
listing of the edges of EM,, U EMOM. Set 

v =  ux,, 
a E S  

where IXal = N and all Xa’s are disjoint. We will inductively construct a sequence 
X(,, X,, . . . , Xp of hypergraphs on V and set pt(x, y )  = dist,(x, y ) .  

Initially, set 

E(Xd = 0 , 
and, hence, po(x, y )  = w for all x Z y .  

and pt-, have been obtained. The construction of q will 
depend on whether e, E EMtM or e, E EM,, as well as if (G, <) = (G,, <) or 

Assume that 

(G, <) = (G2, <I. 

MZM. Let ei = (a, b ,  c) E E,,,. 

With the parameters of Lemma 3.2 specified by (i) if G = G, or ( i f )  
if G = G,, p = pi -1 ,  X I  = X,, X ,  = X, ,  and X, = X,,  let Xi be the 

hypergraph guaranteed by Lemma 3.2 and q = U Xi. 
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MOM. Let e i = ( a ,  b ,  c)EE,, , .  

The same condition as in MIM except the parameters of 
Lemma 3.2 are given by (ii) or (ii'). 

Again, execution of each step of our construction depends on the following claim. 

Claim 1. For every p f ,  every x E V ,  and every r 5 4, 

l { y  E V  : P , ( X ,  Y )  = r)ls (c1")'. 

Proof. As before, it suffices to prove that, for every i ,  

A(%.) s 1.5dN' . 

Here is the reasoning. If (G, <) = (GI, <), then every edge of each X, has 
cardinality jl + j 2  + j 3  5 6 so every vertex has at most (6 - 1) * 1.5dN' = 7.5dN' 
neighbors. If (G, <) = (G2, <), then every edge of each X, has cardinality at 
most 8, giving each vertex at most ( 8  - 1). 1.5dN' = 10.5dN' neighbors. 

Fix i and consider Xi. Let x E V ,  then x E X ,  for some a E S. Let 

E, = { e ,  E EM,, U EMOM : a E e , ,  q 5 i} . 
Obviously IEaI 5 d .  For each e4 E E,, x is a vertex of X q .  Further, these are the 
only Z4's, q 5 i, of which x is a vertex. Since A(%?) 5 1.5" for every q, we get 

deg,,(x) 5 1.5dN' . 

This establishes the claim. 0 

Construct r from X' as follows. 

1. Let V(T) = V. 
2. For each ei = (a ,  b ,  c), define E(T) so that every hyperedge of Xi contains 

the appropriate graph from Figure 9 if (G, <) = ( G , ,  <), depending on if 

ei E EMOM e i  E EMIM 
Fig. 9. Insertions if (C,  <) = (GI, <). 
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Fig. 10. Insertions if (G, <) = (G2, <). 

ej E EM,, or ej  E EMOM, or from Figure 10 if (G, <) = (G,, <). These are 
the only edges that are to be in E(T) .  

Again, notice that the size of each X i  depends only upon d and (G, <), not 
upon the size of our instance 9 of d-MIDDLE. Thus, each step in our 
construction of r takes only constant time, and, hence, our construction is 
polynomial in the size of 9. Therefore, the following claim will prove the 
NP-completeness of (G, <)ORD for these two ordered graphs. 

Claim 2. r is a yes-instance of ( G ,  <)ORD, for (G ,  <) = (G,, <) or 
( G ,  <) = (G,, <), if  and only if 9 is a yes-instance of d-MIDDLE. 

Proof. The girth of Xp is greater than 4. This is proven in exactly the same 
manner as Claim 2 of Section 8.1. Hence, any cycle of length 4 or less in r must 
be contained within a single hyperedge on Xp.  Since any two vertices of either G, 
or G, are on a cycle of length 4, this implies that any copy of G in r must be 
contained within a single edge of 2'. 

Suppose 9 = (S, EM,,, E,,,) is a yes-instance of d-MIDDLE, and let < be a, 
good ordering of S. We define an ordering <' on V ( r )  in the following manner: 

1. Va, b ES, if a < b ,  then define X ,  < ' X b .  
2. Order each X ,  arbitrarily. 

Subclaim 2.1. <' is a good order of V(T) for (G,  <)ORD [ i .e . ,  (G ,  <) $ 
(r, <' ) I .  
Proof (of Subclaim 2.1). First assume that (G ,  <) = (G,, <). Then (G, <) is a 
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4-cycle ordered ( i ,  j ,  k ,  1 )  so that the missing edges are { i ,  j }  and { k ,  Z}. The 
graph inserted into each hyperedge of each Xi, where e ,  E EMOM consists of two 
4-cycles which intersect on the edge labeled { b l ,  b 2 }  in Figure 9. The first one has 
vertex set { a , ,  b, ,  b,, c , }  and is missing edges {a , ,  b,} and {b , ,  c , }  while the 
second one has vertex set { a 2 ,  b, ,  b,, c,} and is missing edges {a2,  b , }  and {b2,  
cz}.  Also, the graph inserted into each hyperedge of each X', where e, E EM,,  is 
a 4-cycle with missing edges { a , ,  c , }  and {b , ,  b,}. 

Suppose that e ,  = (a, b, c) E E,,,. Since < is a good ordering of S ,  neither 
a < b < c nor c < b < a  are true. In other words, b is not between a and c when 
ordered by <. By definition of <', b ,  and b, are either the first two or the last two 
vertices of the subgraph induced by a hyperedge of X'. But this implies that 
neither of the 4-cycles containing { b , ,  b,} are ordered as a copy of (G, <), since 
b ,  and b, are connected in these cycles and neither the first two nor the last two 
vertices of (G, <) are connected. 

If e, = (a, b ,  c) E EM,,, then when ordered by < either a < b < c or c < b <a .  
This implies that each of the graphs inserted in the hyperedges of XI is ordered 
by <' so that 6, and b, are between a ,  and cl. This again implies that none of 
these graphs are ordered as a (G, <) since {b, ,  b 2 }  is not an edge of each of these 
graphs while the second and third vertices of (G, <) are connected. Hence, if 
(G, <) = (Gl, <), then <' is a satisfying order for (G, <)ORD. 

Now assume that (G, <) = (G2, <). Then G = K, - e, where the missing edge 
is between the first two vertices (see Fig. 8). Let e, E EMOM. The graph defined on 
the vertex set of each hyperedge of X' is described in Figure 10. In the top 
component of this graph, the copies of K ,  - e are on vertex set {a , ,  b, ,  b,, c l }  
with missing edge {a,,  b,}, and on vertex set { a 2 ,  b, ,  b,, c , }  with missing edge 
{a,, bl}. If e, E E M I M ,  then the graph defined on each hyperedge of X '  is 
obviously two disjoint copies of K ,  - e ,  one with vertex set { a l ,  b , ,  b,, c l }  and 
missing edge {b, ,  b 2 } ,  and one with vertex set {a,, b,, b,, c 2 }  and missing edge 

Now consider <'. If e, = (a, b, c )  E EMOM, then it is not ordered a < b < c or  
c < b < a .  Thus, the top component of the graph induced by the vertices of each 
hyperedge of X'  is ordered with b ,  and b, as the first two or the last two vertices. 
In either case, it is easy to see that neither copy of K ,  - e will contain a copy of 
(G, <). A similar argument holds for the other component. 

If e, E EMMI,, then e, is ordered either a < b < c or c < b < a. In either case the 
missing edge in each of the copies of K,  - e will be between the first and last or  
the second and third vertices when ordered by <'. In neither case will this give us 
a copy of ( G ,  <). Hence if 9 is a yes-instance of d-MIDDLE then r is a 
yes-instance of (G, <)ORD. (Subclaim 2.1). 

{a* ,  c 2 ) .  

We now establish the other implication of Claim 2. Suppose that < is an 
ordering of V(T) such that 

(G, < ) P ( r ,  <) . 
Now define an ordering <' on S = V ( 9 ) .  

1. Let (el, e, ,  . . . , e ) be a list of EM,,  U EMOM = E ( 9 ) .  
2. For all s E S let d: = X,.  
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3. For i = 1, 2, . . . , p ,  we do the following. 

(a) If ei =(a ,  b ,  c ) ,  then there is ordering ( j ,  k ,  1) of (a, b ,  c) and sets 

x,! cx;.-' , x; c x y  , x; cX;-l 
such that 

x,! < x; < x; 

pf,q 2+lx;-11, Ix;l r+lx;-'l, Ix;( r+lx;-ll 
and 

Let X;=X,!, X;=X;, x~=x;. 
(b) For all xe {a ,  b ,  c} let Xi = X i - ' .  

4. There is a partial order induced on the pairs x ,  y of S by X: <X;. Let <' 
be any linear extension of that partial order. 

The following subclaim validates Claim 2. 

Subclaim 2.2. <' is a good ordering of S for d-MIDDLE. 

Proof (of Subclaim 2.2). We obtain a contradiction by assuming e, = (a, b ,  
c )  E EM,, U EM,, is a badly ordered edge. If e, E EMOM, this implies that either 
a < ' b < ' c  or c< 'b< 'a .  Assume that a<'b< 'c .  This means that Xf<X:< 
X:. Since degEMMIMUEyOM(x) I d  for all x in S, IX:] z+lXxl. So by Lemma 3.2 
there is a hyperedge of X' contained in Xf U Xg U X: . We claim that there is an 
ordered copy of (G, <) on vertices within this hyperedge. 

Say (G, <) = (GI ,  <). Then using the labeling of Figure 9, we know that 
{al ,  a,} <' { b l ,  b,} <' {cl, cz}. We have two cases to consider. If b ,  <'b,, then 
{a,, b , ,  b,, c,} is ordered as (G, <). If b,<'b, ,  then {al, b,, b , ,  c l }  is a 
properly ordered (G, <). A similar argument holds for ei E EM,, as well as for 
both cases when (G, <) = (G,, <). This contradiction shows that every edge of 
EM,,  U EM,, must be properly ordered. Hence we get the NP-completeness of 

0 (G, <)ORD for these two ordered graphs, (GI,  <) and (G,, <). 

8.3.2. Other 2-Block Graphs. Now we shall consider the other 2-block, 2- 
connected ordered graphs. These ordered graphs are generalizations of the two 
discussed in the last subsection and are pictured in Figure 11. The methods that 
we use to show the NP-completeness of (G, <)ORD for these graphs combine 
method of 8.3.1 with the XY-Lemma. We will give an outline of the steps, 
followed by the details of the construction. The details of the proofs, which are 
omitted, follow the same reasoning as earlier proofs. 

If (G, <) = (GI, <), then, in order for the hypotheses of Theorem 1.5 to be 
satisfied, we must have lBll # IB21. This is not necessary for (G, <) = (G2, <). 
Notice that no block of these graphs may have only one vertex. Thus the 
subgraph induced by the last two vertices of B ,  and the first two vertices of B,  
corresponds to one of the ordered graphs of 8.3.1. 
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Fig. 11.  Possible 2-block graphs. 

We give a polynomial transformation of an instance 9 = (S, E,,,, E M O M )  of 
d-MIDDLE to an instance I' of (G, <)ORD. Here is an outline of the 
construction of r. Let e l ,  e 2 ,  . . . , ep be a listing of EM,,  U E,,,. We obtain a 
sequence Xo,  X, , . , , Xp of hypergraphs, where each Xr is formed from Xc-,  by 
adding a hypergraph Xy satisfying Lemma 3.2 and hypergraphs X:, j = 1, 
2, . . . , 6 ,  satisfying Lemma 7.1, the XY-Lemma. If el = (a, b ,  c ) ,  Xp has vertex 
set 

Xa X b  Kc xr,S 

(see Fig. 12). The graphs inserted into each hyperedge of Xy, when restricted to 
Xa U X ,  U X,, are identical to the ones placed in the corresponding hyperedges in 
8.3.1 (see Figs. 13, 14, 9, and 10). Thus, if el is ordered incorrectly for 
d-MIDDLE and X u ,  X,,  and X,  are ordered likewise, then these sets will always 
contain an ordered copy of the last two vertices of B,  and the first two vertices of 
B,. The remaining vertices of B ,  are in X t , ,  and of B, are in These sets are 
forced to be ordered before and after the Xx7s if we are to avoid (G, <) 's  by the 
XY-Lemma (see Fig. 12). Thus any time that X u ,  X,, and X ,  are ordered 



COMPUTATIONAL COMPLEXITY OF SUBGRAPH RECOGNITION 259 

incorrectly for &MIDDLE, there must somewhere in r be a copy of (G, <). It 
also may be shown that if X,, X,, and X,  may be correctly ordered for 
d-MIDDLE for all e,'s, then there is an ordering of V(r) which does not contain a 

We now will give the details of the construction. If (G, <) = (GI,  <), then let 
(G, <). 

N be an integer large enough that each of the following holds: 

(i) Lemma 7.1 holds with S =&, c1 = 4.5.4(b1 + b2)N',  and k = IV(G)l. 
(ii) Lemma 3.2 holds with S = & ,  c l=4 .5 .4(b l  +b2)N' ,  l=lV(G)l, n = 5 ,  

(iii) Lemma 3.2 holds with S = &, c1 = 4.5 * 4(bl + b,)N', I = IV(G)l, n = 5, 
j ,  = 2(bl  - 2 ) ,  j 2  = 2 ,  j 3  = 4, l4 = 2 ,  and j 5  = 2(b2 - 2) .  

jl = 4(bl - 2 ) ,  j 2  = 4, j 3  = 4, l4 = 4, and j 5  = 4(b, - 2) .  

Similarly, if (G, <) = (G2, <), then let N be an integer large enough that each 
of the following hold: 

(i') Lemma 7.1 holds with S =A, c1 = 4.5.4(bl + b,)N',  and k = IV(G)l. 
(ii') Lemma 3.2 holds with S =A, c1 = 4.5.4(b1 + b2)N',  f = IV(G)l, n = 5 ,  

(iii') Lemma 3.2 holds with S =A, c1 = 4.5 * 4(b1 + b2)N',  f = IV(G)l, n = 5 ,  
j l  = 2(b1 - 2 ) ,  j 2  = 2 ,  j 3  = 4, j 4  = 2 ,  and j 5  = 2(b,  - 2) .  

jl  = 4(b1 - 2 ) ,  j 2  = 3 ,  j 3  = 4, j4 = 3, and j 5  = 4(b, - 2) .  

Let 9 = (S, E,,,, EMOM) be an instance of d-MIDDLE with e , ,  e2 ,  . . . , ep a 
list of EM,, U E,,,. We will form a sequence of hypergraphs Xo,  XI, . . . , X' of 
hypergraphs on the vertex set 

where each Xu and each X , , j  are sets of N vertices. Again we define 
P , b ,  Y )  = dist& y ) .  

Initially, set 

E(Xo)  = 0 
and, hence po(x, y) = co for all x # y. 

whether e, E E M / ,  or e, E EM,,. 
Assume and p i - ,  have been obtained. The construction of Xi depends on 

MIM. Let e, = (a, b,  c )  E EM,,: 

(0) With the parameters of Lemma 3.2 specified by (ii) if (G, <) = (GI,  <) or, 
(ii') if (G, <) = (G,, <), p = pi-1, X ,  = X,, X ,  = X,, and X3 = X,, let X: 
be the hypergraph guaranteed by Lemma 3.2. Let = 2Z-l U Xp and 
P,.o = diSt,,,". 

(1) With the parameters of Lemma 7.1 given by (i) or (i'), p = pi,o, X = 
and Y = X u ,  let X,' be the hypergraph guaranteed by Lemma 7.1. Let 

= XI,* U X: and = dist,,,, . 
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(2) As (1) but replace p = pi,l ,  Y = X , ,  resulting in X ;  from Lemma 7.1 and 

(3) As (1) but replace p = pi ,2,  Y = X , ,  resulting in X ?  from Lemma 7.1 and 

(4) As (1) but replace p = pi ,3,  X = X, ,  Y = X i , 5 ,  resulting in Xf from Lemma 

( 5 )  As (1) but replace p = pi,4, X = X, ,  Y = X i , 5 ,  resulting in X ;  from Lemma 

(6) As (1) but replace p = pi .5,  X = X, ,  Y = X i , 5 ,  resulting in X f  from Lemma 

%,2 = XiJ u X : ,  pi.2 = diSt%j,2. 

%& = Xi,2 u X : ,  pi,s = dist,,,3. 

7.1 and Xi,4 = q,3 U Xf, pi,4 = distx,t.4. 

7.1 and 3,5 = Xi,4 U X : ,  pi.5 = distKL,5. 

7.1 and = &.5 U X: ,  pi = distXlY6. 

MOM. Let ei = (a ,  b ,  c )  E EMOM, 

Steps (0)-(6) from MIM except the parameters of Lemma 3.2 
are given by (iii) or (iii') . 

Again, verification of the following claim is all that is needed to ensure that 
each step may in fact be executed. The proof follows the same reasoning as Claim 
2 in Section 8.2 and so is omitted. 

Claim 1. For each p = p j ,  for each x E V and r 5 k 

I{y E V  : p(x ,  y )  = r } l I  (clN')' . 

Recall that c1  = 4 . 5 .  4(b1 + b,)N' .  0 

This means we can form our hypergraph Xp. Construct r from Xp as follows: 

1. Let V(T) =V. 
2. Define E ( r )  according to the following. 

(a) For every 2; each hyperedge induces the appropriate graph from 
Figure 13 if (G, < ) = ( G l ,  <), depending on whether el E EM,, or 
el E E,,,, or from Figure 14 if (G, <) = (G2, <), again depending on  
whether e ,  E EM,, or el E E,,,. 

(b) For every X: ,  1 I j 5 6, each hyperedge induces a copy of (G, <) if the 
vertices on the hyperedge are ordered to correspond to the orientation 
of the hyperedge. 

The procedure takes polynomial time because each step of the construction 
depends only upon d and (G, <), not upon the size of 9. Therefore, the following 
claim establishes the NP-completeness of (G, <)ORD for 2-block graphs. 

Claim 2. r is a yes-instance of (G, <)ORD if and only if 9 is a yes-instance of 
d-MIDDLE. 

Proof. 
and so are suppressed. We will only outline the proof here. 

The details of the proof of this claim are similar to those of earlier claims 



COMPUTATIONAL COMPLEXITY OF SUBCRAPH RECOGNITION 261 

Xi,l x a  X b  x c  X i 5  

Edges inserted if e in EMiM 

Conncct to entire block 

Edges inserted for e i in EMOM 
Fig. 13. Insertions for (GI, <). 

Let 9 be a yes-instance of d-MIDDLE. We order I? according to the following 
rules. All of the Xj , l ’ s  are ordered before all of the Xo’s, which are ordered the 
same way as a good ordering of the a’s in 9 and before all of the Xj,5’s .  At the 
same time, we order each X = X,, in the ordering provided by Lemma 7.1. 
One can check that (r, <) will not contain a (G, <). 
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Conversely, if r is a yes-instance of (G, <)ORD, then, defining an ordering on 
9 from a good ordering of r in the same way as in Section 8.1, a badly ordered 
edge of 9 would correspond to a copy of (G, <) in (r, <) and hence does not 
exist. This verifies the claim. 

With the NP-completeness of (G, <)ORD for all 2-block, 2-connected ordered 
graphs now established, we have completed the proof of Theorem 1.5. 
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9. FURTHER DIRECTIONS 

9.1. Some Open Problems 

There are many open problems left in this area. 
The first, and most obvious, of these is to settle the conjecture made in the 

introduction on the sufficiency of 2-connectedness for the NP-completeness of 
(G, <)ORD. 

Conjecture 1.6. For any ordered graph (G,  <), such that (G, <) is neither a 
complete nor an empty graph, (G, <)ORD is NP-complete if either G or its 
complement is 2-connected. 

One could also ask the following question. 

Problem 9.1. 
which (G,  <)ORD E P? 

What are some other large classes of ordered graphs (G,  <) for 

With the exception of a few small graphs G ,  (G, <)ORD is known to be in P 
only for G complete or G(, <) a star with the cut vertex first or last in the order. 

At the same time, if we assume that Conjecture 1.6 is true, the graphs 
remaining to be considered for NP-completeness are those for which neither G 
nor its complement are 2-connected. These graphs are characterized by Rod1 and 
Sauer in [24]. We give their description here. Denote by A the class of graphs G 
with the property that there is a cut vertex u EV(G) which is adjacent to every 
other vertex of G. Denote by X the class of graphs G with u E V(G) which is 
adjacent to every other vertex of G except one. Finally, for any class % of graphs, 
we denote by %' the class of complements of %. 

Theorem 9.2. If neither G nor G' is 2-connected, then, 

This characterization leads us to our next problem, whose solution would shed 
considerable light on the computational complexity of (G, <)ORD for ordered 
graphs which have the property that neither they nor their complements are 
2-connected. Given an ordered graph (C ,  <) = (V, E, <), we will denote by 
(G, <) the ordered graph obtained from (C ,  <) by adding a vertex x, joining it to 
every vertex of G, and placing it last in the ordering. 

Problem 9.3. 
NP-completeness of (G,  <)ORD imply the NP-completeness of ( G ,  <)ORD? 

For an ordered graph (G,  <) decide the following. Does the 

A positive answer to this question would give a large class of ordered graphs 

More generally one may pose the following. 
which are not 2-connected but for which (G, <)ORD is still NP-complete. 



264 DUFFUS, GI”, AND RODL 

Problem 9.4. 
imply that (G2, <)ORD is NP-complete? 

I f  (GI,  <)ORD is NP-complete and (G2, <) 2 (G,, <), does this 

If the answer to this question is “yes,” then indeed for nearly all ordered 

It would also be interesting to know if changing the ordering of V(G)  could 
graphs (G,  <), (G, <)ORD would be NP-complete. 

change the complexity. Thus we ask the following question. 

Problem 9.5. 
such that (G, <,)ORD is NP-complete and (G, <,)ORD is in P? 

Does there exist a graph G and two orderings of V(G), and < 2 ,  

9.2. The Problem (0, <)ORD 

A natural generalization of (G, <)ORD is the problem (9, <)ORD where one 
asks for an ordering which avoids a whole class of graphs instead of just a single 
graph. There are well studied classes of graphs which may be characterized by 
(9, <)ORD (cf. [7]). Here we will list a few of them. 

Threshold Graph. A graph G = (V, E )  such that there is a weight assignment 
w : V+ Z’ and an integer t such that for all sets {x, y }  E [V]’, { x ,  y} E E if and 
only if w(x) + w( y )  > t. 

Split Graph. A graph G = (V, E )  whose vertex set Vmay be partitioned into two 
sets S and K in such a way that S is an independent set and K induces a complete 
graph. 

lnterval Graph. A graph whose vertex set may be represented as intervals on the 
real line in such a way that two vertices are adjacent if and only if their intervals 
intersect. 

Permutation Graph. 
permutation 7~ E S,  and a labeling (1, 2, . . . , n )  of V such that 

A graph G=(V,  E )  with IVl = n  such that there is a 

{i, j )  E E e ( i  - j ) ( r - l ( i )  - 7 ~ - ’ ( j ) )  < O  . 

The following theorem may be inferred from 171. 

and 

then r is a yes-instance of (3, <)ORD if and only i f :  

( i )  r is a threshold graph, for (3, <) = {(GI, <), ( G f ,  <)}, 
( i i )  r is a split graph, for  (3, <) = {(G,, <), (Gf ,  >)}, 

(iii) r is an interval graph, for  (9, <) = { (G, ,  <), (Gi,  <), 
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(iv) r is a permutation graph, for (3, <) = {(G2, <), (Gi ,  <)}, 

( v i )  r is a bipartite graph, for (%, <) = {(G2, <), (G3, <)}, 
(vii)  r is a threshold graph, for  (3, <) = {(G,, <), (G2, <), ( G f ,  >)}. 

( v )  r is a forest, for  (3, <) = {(GI, <), (G3, <)I,  

All of the classes of graphs characterized in Theorem 9.6 are recognizable in 
polynomial time [14,19]. Hence for all of the classes (3, <) mentioned in the 
theorem, (3, <)ORD is in P. 

In [7], the author also lists (3, <)ORD characterizations for many other 
classes, including circular arc graphs and outerplanar graphs. 

Another interesting class of graphs that can be characterized by (3, <)ORD 
are perfectly orderable graphs, first defined by Berge and Chvfital in [3]. The 
problem of recognizing if a graph is perfectly orderable was shown to be 
NP-complete by Middendorf and Pfeiffer [20]. The (3, <)ORD characterization 
of perfectly orderable graphs allows us to state their result as follows. 

Graphs of bounded arboricity constitute a class of graphs which can be 
“approximated” by (3, <)ORD classes. The arboricity of a graph G, Y(G) is 
defined to be the minimum numbers of edge-disjoint spanning forests into which 
G can be decomposed [16]. The following theorem by Nash-Williams [21] allows 
us to give a (3, <)ORD characterization for approximating the arboricity of a 
graph. 

Theorem 9.8. Let G be a graph, then 

Using this, we can obtain the following (3, <)ORD characterization to 
approximate the arboricity of a graph within a factor of 2. 

Theorem 9.9. Let (9, <) be the class of all ordered graphs on d vertices and 
(3, <) = {(G, <) : G E 9}. [Refer to 9.1 for  the definition of ( G ,  <).I Zfa graph 
r is a yes-instance of (3, < ) O R D ,  then it has 

y ( r )  < d ,  
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and if r is a no-instance of (3, <)ORD, then 

Y(T) > d / 2 .  

A similar result may be obtained for p-arrangeable graphs which are consid- 
ered with a problem in Ramsey theory (41. To define a p-arrangeable graph, we 
first need the following terminology. Given a graph G = (V, E )  and A ,  B C_ V,  we 
define N,(A) = (U,,, N(a)) f l  B .  For an ordered graph (G, <) with V =  ( u I ,  
u 2 ,  . . . , u k )  and any i E [ k ] ,  we define L, = ( u l ,  . . . , u, )  and R,  = ( u , + ~ ,  . . . , u k ) .  
A graph G of order n is said to be p-arrangeable if there exists an ordering 
(u ,  , . . . , u n )  of the vertices of G such that for each 1 5 i 5 n - 1 

It is not hard to see that there is a natural (3, <)ORD characterization of 
p-arrangeable graphs. We omit, however, the somewhat tedious description of 
this characterization. To further investigate the general (3, <)ORD problem, the 
first, most general question to ask is the following. 

Problem 9.10. 
complete and for what classes is it in P ?  

For what classes of ordered graphs (3, <) is (3, <)ORD NP- 

A starting point for this type of question could be the following. 

Problem 9.11. if (GI, <,)ORD and (G2, <,)ORD are both NP-complete and 

(3, <) = {(G*, < I ) >  (G2, < 2 ) >  7 

then is (3, <)ORD NP-complete? 

Perhaps this question has a negative answer, but we can get a partial positive 
answer to this problem by adapting some of the proofs that we have used for 
earlier results. 

Theorem 9.12. Let ordered graphs 

(GI7 < ) 7  ($9 <), * . ?  (Gk7 <) 9 

satisfy each of the following: 

1. Each G, is 2-connected. 
2. G i Z G j  for i # j .  
3. For some i, (G,, <)ORD is one of the problems that we have shown is 

NP-complete. 

This theorem does not apply if we take different orderings of the same graph to 
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define our class. This is the type of class used to characterize perfectly orderable 
graphs in Theorem 9.7 and may give other useful characterizations. Hence we 
pose the following final problem. 

Problem 9.13. If (9, <) is a class of ordered graphs obtained by taking different 
orderings of a simple graph G ,  what is the computational complexity of 
(9, <)ORD? In particular, how is this related to the computational complexity of 
(G,  <)ORD for the various orderings < of V(G)? 

Adapting the technique we used in proving Theorem 1.5, we can again give a 
partial answer. For a given ordered graph (G ,  <), where 

V ( G 7  <) = (u l  7 u27 * * * 9 uk) 9 

we denote by (G, < f )  the ordered copy of G, where 

V(G7 = (Uk, V k - 1 ,  . * . , u , )  3 

and by ( G ,  <') the ordered copy of G where, 

V(G,  <') = (uz, U j r  . . . 7 U k r  u1) . 
Our result may now be stated as follows. 

Theorem 9.14. Let G be a 2-connected graph and let 

(9, <) = { ( G ,  < I ) ,  ( G ,  < 2 ) ,  * * 9 9 (G7 <,>I . 

( ~ 7  (G ,  < j )  

(G7 <: )7(G? <,I 

Zf for some i E [m]  

and 

f o r  all j E [ m ] ,  then (9, <)ORD is NP-complete. 
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