Note

An Explicit 1-Factorization in the Middle of the Boolean Lattice

D. A. Duffus*
Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
H. A. Kierstead ${ }^{\dagger}$
Department of Mathematics, Arizona State University, Tempe, Arizona 85287
AND
H. S. Snevily
Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
Communicated by the Managing Editors
Recieved June 19, 1991

An explicit definition of a 1 -factorization of \mathbf{B}_{k} (the bipartite graph defined by the k - and ($k+1$)-element subsets of $[2 k+1]$), whose constituent matchings are defined using addition modulo $k+1$, is introduced. We show that the matchings are invariant under rotation (mapping under $\sigma=(1,2,3, \ldots, 2 k+1)$), describe the effect of reflection (mapping under $\rho=(1,2 k+1)(2,2 k) \cdots(k, k+2)$), determine that there are no other symmetries which map these matchings among themselves, and prove that they are distinct from the lexical matchings in \mathbf{B}_{k}. © 1994 Academic Press, Inc.

1. Introduction

For a fixed k, denote the collection of j-element subsets of $[2 k+1]=$ $\{1,2, \ldots, 2 k+1\}$ by \mathbf{R}_{j} and let \mathbf{B}_{k} be the bipartite graph defined on the vertex set $\mathbf{R}_{k} \cup \mathbf{R}_{k+1}$ by letting A be adjacent to B iff $A \subset B$ or vice versa. In [KT] the second author and Trotter introduced an explicit 1-factorization $\left\{\boldsymbol{l}_{0}, \ldots, \boldsymbol{l}_{k}\right\}$ of \mathbf{B}_{k}, called the lexical factorization, and determined its behavior under the automorphisms of \mathbf{B}_{k}. In this article we report on

[^0]another explicit 1-factorization $\left\{\mathbf{m}_{1}, \ldots, \mathbf{m}_{k+1}\right\}$ of \mathbf{B}_{k}, which we call the modular factorization, and whose component matchings we call modular matchings. The origins of the modular factorization are quite murky; it has apparently been rediscovered several times. We first learned of it in 1986, defined in terms of lattice paths, from Robinson [R], who asked if it was the same as the lexical factorization. Here we show that this is not the case: for $k \geqslant 4$, no modular matching \mathbf{B}_{k} is a lexical matching. However, they behave remarkably similarly under the automorphisms of \mathbf{B}_{k}. We show that the stabilizer of each modular matching \mathbf{m}_{i} is the same as the stabilizer of each lexical matching \mathbf{l}_{i-1}.

The odd graph \mathbf{O}_{k} is defined on the vertices of \mathbf{R}_{k} by letting A be adjacent to B iff $A \cap B=\varnothing$. In the case where k is even, Kierstead and Trotter used the $k / 2$-lexical matching $\mathbf{I}_{k / 2}$ to obtain an explicit perfect matching in \mathbf{O}_{k}. Here we show that the same construction, with $\mathbf{I}_{k / 2}$ replaced by $\mathbf{m}_{k / 2+1}$, gives a new explicit perfect matching of \mathbf{O}_{k}. For more results on this subject, the reader is referred to the third author's dissertation [S].

Given a j-subset A of $[2 k+1]$, we take $A=\left\langle a_{1}, a_{2}, \ldots, a_{j}\right\rangle$ to mean $a_{1}<a_{2}<\ldots$, and $A^{\mathrm{C}}=[2 k+1] \backslash A=\left\langle\bar{a}_{1}, \bar{a}_{2}, \ldots, \bar{a}_{(2 k+1)-j}\right\rangle$ to mean $\bar{a}_{1}>\bar{a}_{2}>\ldots$. When there is no chance for confusion, we simply write a_{i} for the i th smallest element of A and \bar{a}_{i} for the i th largest element of A^{C}. Also, $\sum A$ denotes the sum of the elements in A. We denote the symmetric group on $[2 k+1]$ by $S_{2 k+1}$. A perfect matching in \mathbf{B}_{k} is a collection \mathbf{M} of edges such that each vertex of \mathbf{B}_{k} is incident to exactly one edge of \mathbf{M}. A 1-factorization of \mathbf{B}_{k} is a collection of $k+1$ disjoint perfect matchings of \mathbf{B}_{k}. However, it will be convenient for us to consider a perfect matching to be an injection $\mathbf{m}: \mathbf{R}_{k} \rightarrow \mathbf{R}_{k+1}$ such that A is adjacent to $\mathbf{m}(A)$, for all $A \in \mathbf{R}_{k}$.

For the sake of completeness we include the definition of the lexical factorization given in [KT]. Let $[y, x)$ denote the set $\{y, y+1, \ldots$, $x-2, x-1\}$, where addition is modulo $2 k+1$. For $S, R \subset[2 k+1]$, let $R / S=|R \cap S|-\left|R \cap S^{\mathrm{C}}\right|$ and $d_{S}(x)=\left|\left\{y \in S^{\mathrm{C}}-\{x\}:[y, x) / S<0\right\}\right|$. It can be shown that for each set $S \in \mathbf{R}_{k}$ and each $i=0, \ldots, k$, there exists a unique $x \in S^{\mathrm{C}}$ such that $d_{S}(x)=i$. The i-lexical matching $\mathrm{I}_{i}: \mathbf{R}_{k} \rightarrow \mathbf{R}_{k+1}$ is defined by $\mathbf{l}_{i}(S)=S \cup\{x\}$, where $d_{S}(x)=i$.

2. Modular Matchings

We are now ready to define the modular factorization. The i th perfect matching $\mathbf{m}_{i}, i=1, \ldots, k+1$, in the modular factorization is defined by $\mathbf{m}_{i}: \mathbf{R}_{k} \rightarrow \mathbf{R}_{k+1}$, with

$$
\begin{equation*}
\mathbf{m}_{i}(A)=A \cup\left\{\bar{a}_{y}\right\}, \quad \text { where } \quad y \equiv\left(i+\sum A\right)(\bmod k+1) \tag{1}
\end{equation*}
$$

Our first task is to verify that this is indeed a factorization.

Theorem 1. For $i=1, \ldots, k+1, \mathbf{m}_{i}$ is a matching in \mathbf{B}_{k} and $\left\{\mathbf{m}_{1}, \ldots, \mathbf{m}_{k+1}\right\}$ is a 1-factorization of \mathbf{B}_{k}.

Proof. The second assertion is an immediate consequence of the first and the definition of \mathbf{m}_{i} via (1). To see that \mathbf{m}_{i} is a matching, we find a rule $\mathbf{b}_{i}: \mathbf{R}_{k+1} \rightarrow \mathbf{R}_{k}$ such that $\mathbf{b}_{i} \circ \mathbf{m}_{i}=$ id. Define \mathbf{b}_{i} by $\mathbf{b}_{i}(B)=B-\left\{b_{x}\right\}$, where

$$
\begin{equation*}
x \equiv\left(i+\sum B\right) \quad(\bmod k+1) \tag{2}
\end{equation*}
$$

Suppose that for some $S \in \mathbf{R}_{k}, \mathbf{m}_{i}(S)=S \cup\left\{\bar{s}_{y}\right\}$. Then there are $(2 k+1)-\bar{s}_{y}$ elements of $[2 k+1]$ larger than \bar{s}_{y},

$$
\begin{aligned}
& y-1 \text { are in } \bar{S}, \text { so } \\
& (2 k+1)-\bar{s}_{y}-(y-1) \text { are in } S \text {, so } \\
& k\left((2 k+2)-\left(\bar{s}_{y}+y\right)\right) \text { elements of } S \text { are less than } \bar{s}_{y} .
\end{aligned}
$$

Computing modulo $k+1$, we get

$$
\begin{aligned}
k-\left((2 k+2)-\left(\bar{s}_{y}+y\right)\right) & \equiv k+\bar{s}_{y}+y \\
& \equiv k+\bar{s}_{y}+\left(i+\sum S\right) \\
& \left.\equiv-1+i+\sum\left(S \cup\left\{\bar{s}_{y}\right\}\right)\right),
\end{aligned}
$$

and thus \bar{s}_{y} is the $i+\sum\left(S \cup\left\{\bar{s}_{y}\right\}\right)$ smallest element of $\left(S \cup\left\{\bar{s}_{y}\right\}\right)$. Hence, $\mathbf{b}_{i}\left(\mathbf{m}_{i}(S)\right)=\mathbf{b}_{i}\left(S \cup\left\{\bar{s}_{y}\right\}\right)=S$, by (2).

We say that a function \mathbf{f} on \mathbf{O}_{k} is a perfect matching if, for all $S \in \mathbf{R}_{k}$, both (1) S is adjacent to $\mathbf{f}(S)$ and (2) $\mathbf{f}^{2}(S)=S$. The second condition is needed since \mathbf{O}_{k} is not bipartite.

Theorem 2. Suppose that k is even. Let \mathbf{f} be the function defined on the vertices, the sets in \mathbf{R}_{k}, of the odd graph \mathbf{O}_{k} by $\mathbf{f}(S)=\left(\mathbf{m}_{i}(S)\right)^{\mathrm{C}}$, where $i=k / 2+1$. Then \mathbf{f} is a perfect matching of \mathbf{O}_{k}.

Proof. Clearly \mathbf{f} satisfies (1) of the definition above. We check (2). Fix $S \in \mathbf{R}_{k}$ and let $S^{\mathrm{C}}=\left\langle s_{1}^{\mathrm{c}}, \ldots, s_{k+1}^{\mathrm{c}}\right\rangle$. First note that $\mathbf{f}^{-1}(S)=\mathbf{b}_{i}\left(S^{\mathrm{C}}\right)$ and $\sum S^{\mathrm{C}}=-\sum S(\bmod k+1)$. It suffices to check that $\mathrm{f}(S)=\mathbf{f}^{-1}(S)$:

$$
\begin{gathered}
\mathbf{f}(S)=\left(\mathbf{m}_{i}(S)\right)^{\mathrm{C}}=S^{\mathrm{C}}-\left\{\bar{s}_{x}\right\}, \\
\text { where } \quad x \equiv i+\sum S(\bmod k+1) \\
\mathbf{f}^{-1}(S)=\mathbf{b}_{i}\left(S^{\mathrm{C}}\right)=S^{\mathrm{C}}-\left\{s_{y}^{\mathrm{C}}\right\}, \\
\text { where } \quad y \equiv i+\sum S^{\mathrm{C}} \equiv i-\sum S(\bmod k+1) .
\end{gathered}
$$

Since $x+y \equiv 1(\bmod k+1)$, it follows that $\bar{s}_{x}=s_{y}^{\mathrm{c}}$, and we are done.

3. Orbits of Modular Matchings

It is well known (cf. [DHR]) that the automorphisms of \mathbf{B}_{k} which preserve levels are just those induced by the action of $S_{2 k+1}$ on $[2 k+1]$. We denote, therefore, automorphisms of \mathbf{B}_{k} by permutations on $[2 k+1]$. Given a permutation α, that a subgraph H of \mathbf{B}_{k} is α-invariant means that $A B$ is an edge in H if and only if $A^{\alpha} B^{\alpha}$ is an edge in H. In other words, α is a member of the stabilizer of H. A matching a of \mathbf{B}_{k} is α-invariant means $\mathbf{a}\left(S^{\alpha}\right)=(\mathbf{a}(S))^{\alpha}$ for all $S \in \mathbf{R}_{k}$. In general, let \mathbf{a}^{α} be the matching given by the rule $\mathbf{a}^{\alpha}\left(S^{\alpha}\right)=(\mathbf{a}(S))^{\alpha}$.

Let $\sigma=(1,2,3, \ldots, 2 k+1) \in S_{2 k+1}$. We call a permutation of the form σ^{i} a rotation.

Theorem 3. For $i=1, \ldots, k+1, \mathbf{m}_{i}$ is a σ-invariant matching, i.e., $\mathbf{m}_{i}^{\sigma}=\mathbf{m}_{i}$.

Proof. Let $S \in \mathbf{R}_{k}, S=\left\langle s_{1}, s_{2}, \ldots, s_{k}\right\rangle$ and take $S^{\sigma}=\left\langle s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{k}^{\prime}\right\rangle$. Let

$$
\begin{aligned}
& \mathbf{m}_{i}(S)=S \cup\left\{\bar{s}_{y}\right\}, \text { i.e., } y \equiv i+\sum S(\bmod k+1), \text { and } \\
& \mathbf{m}_{i}\left(S^{\sigma}\right)=S^{\sigma} \cup\left\{\bar{s}_{z}^{\prime}\right\}, \text { i.e., } z \equiv i+\sum S^{\sigma}(\bmod k+1) .
\end{aligned}
$$

If $2 k+1 \notin S$ then $\sum S^{\sigma} \equiv \sum S-1(\bmod k+1)$, so $z \equiv y-1(\bmod k+1)$. Because $\bar{s}_{1}=2 k+1$ and $\bar{s}_{1}^{\sigma}=1, \bar{s}_{y}^{\sigma}$ is the $y-1$ st largest element of $\left(S^{\mathrm{C}}\right)^{\sigma}$. Thus, $\bar{s}_{y}^{\sigma}=\bar{s}_{z}^{\prime}$.

If $2 k+1 \in S$ then $\sum S^{\sigma} \equiv \sum S(\bmod k+1)$, so $z \equiv y(\bmod k+1)$. Therefore, $\bar{s}_{y}^{\sigma}=\bar{s}_{y}+1$ is the y th largest element of $\left(S^{\mathrm{C}}\right)^{\sigma}$ and $\bar{s}_{y}^{\sigma}=\bar{s}_{y}+1=\bar{s}_{z}^{\prime}$.

Next we consider the permutation $\rho=(1,2 k+1)(2,2 k) \cdots(k, k+2)$, which we call a reflection. The action of ρ on the \boldsymbol{m}_{i} 's is also easily described.

Theorem 4. For $i, j=1, \ldots, k+1, \mathbf{m}_{i}^{\rho}=\mathbf{m}_{j}$, where $i+j \equiv 1(\bmod k+1)$.

Proof. First observe that for all $S \in \mathbf{R}_{k}, \sum S^{\rho} \equiv-\left(\sum S\right)(\bmod k+1)$. It is enough to prove that for any $S \in \mathbf{R}_{k}, \mathbf{m}_{i}(S)^{\rho}=\mathbf{m}_{j}\left(S^{\rho}\right)$. Taking $S^{\rho}=\left\{s_{1}^{\prime}, \ldots, s_{k}^{\prime}\right\}$, let

$$
\begin{aligned}
& \mathbf{m}_{i}(S)=S \cup\left\{\bar{s}_{y}\right\}, \text { where } y \equiv\left(i+\sum S\right)(\bmod k+1), \text { and } \\
& \mathbf{m}_{j}\left(S^{\rho}\right)=S^{\rho} \cup\left\{\bar{s}_{z}^{\prime}\right\}, \text { where } z \equiv\left(j+\sum S^{\rho}\right)(\bmod k+1) .
\end{aligned}
$$

We must show that $\bar{s}_{y}^{\rho}=\bar{s}_{z}^{\prime}$. Computing modulo $k+1$, we get

$$
\begin{aligned}
z \equiv j+\sum S^{\rho} & \equiv j-\sum S \\
& \equiv(1-i)-\sum S \\
& \equiv 1-\left(i+\sum S\right) \\
& \equiv 1-y
\end{aligned}
$$

Since \bar{s}_{y} is the y th largest element of $S^{\mathrm{C}}, \bar{s}_{y}^{\rho}$ is the y th smallest element of $\left(S^{\mathrm{C}}\right)^{\rho}=\left(S^{\mathrm{C}}\right)^{\rho}$. But then, as $z+y \equiv 1(\bmod k+1), \bar{s}_{y}^{\rho}$ is the z th largest element of $\overline{S^{\rho}}$. Hence $\bar{s}_{y}^{\rho}=\bar{s}_{z}^{\prime}$.

Now we show that relations among the matchings $\mathbf{m}_{1}, \ldots, \mathbf{m}_{k+1}$ induced by $S_{2 k+1}$ are confined to those described in Theorems 2 and 3 , except for the special case $k=2$, where \mathbf{m}_{2} is also τ-invariant, for $\tau=(1,3,2,5)$. Suppose that $\mathbf{m}=\mathbf{m}_{i}^{\alpha}$, for some $\alpha \in S_{2 k+1}$ and some $i=1, \ldots, k+1$. For $x, y \in[2 k+1]$ write

$$
x \sim_{\alpha} y \quad \text { if } \quad\left|\alpha^{-1}(x)-\alpha^{-1}(y)\right| \equiv 1(\bmod 2 k+1)
$$

meaning that $\alpha^{-1}(x)$ and $\alpha^{-1}(y)$ are consecutive in the cyclic permutation $1,2, \ldots, 2 k+1$. We show that the relation \sim_{α} on $[2 k+1]$ is determined by \mathbf{m} and so α is determined up to rotation and reflection. Since each \mathbf{m}_{i} is σ-invariant, \mathbf{m} determines \mathbf{m}_{i} up to the action of ρ. In particular, we have

Theorem 5. For all $i, j, \mathbf{m}_{i}^{\alpha}=\mathbf{m}_{j}$ implies that either $\alpha=\sigma^{p}$ and $i=j$, or $\alpha=\sigma^{p} \rho$ and $i+j \equiv 1(\bmod k+1)$, or $k=2, i=j=2$, and $\alpha=\tau$.

Proof. For $k=1$ or 2 , the result follows by inspection. Now assume that $k \geqslant 3$. Given a matching $\mathbf{m}: \mathbf{R}_{k} \rightarrow \mathbf{R}_{k+1}$ and $z \in[2 k+1]$, say that $u \in[2 k+1]$ is special for the pair (z, \mathbf{m}) if, for all $S \in \mathbf{R}_{k-1}$ and all $u, v \notin S$, $\mathbf{m}(S \cup\{u\})=S \cup\{u, z\}$ and $\mathbf{m}(S \cup\{v\})=S \cup\{v, z\}$ imply $v=u$.

Claim A. Let $k \geqslant 3$. For all $i=1, \ldots, k+1$ and $u \in[k-1], u$ is not special for $\left(2 k+1, \mathbf{m}_{i}\right)$.

Proof. It suffices to construct $S \in \mathbf{R}_{k-1}$ such that $u, u+k+1,2 k+1 \notin S$ and

$$
\sum S \equiv 1-(i+u) \quad(\bmod k+1)
$$

since then both $\mathbf{m}_{i}(S \cup\{u\})=S \cup\{u, 2 k+1\}$ and $\mathbf{m}_{i}(S \cup\{u+k+1\})=$ $S \cup\{u+k+1,2 k+1\}$.

If $u>1$ we set

$$
\begin{aligned}
& U_{r}=\{u+1, \ldots, u+k\} \backslash\{u+r\}, \text { for } r=1, \ldots, k \text { and } \\
& U_{k+1}=\{u-1\} \cup\{u+2, \ldots, u+k-2\} \cup\{u+k\} .
\end{aligned}
$$

Then $u, u+k+1 \notin U_{r}$, for all r. Also $\sum U_{r+1} \equiv \sum U_{r}-1(\bmod k+1)$, for $r=1, \ldots, k$. This gives $k+1$ distinct residues modulo $k+1$, so $S=U_{r}$ works, for some $r=1, \ldots, k+1$.

If $u=1$ we set

$$
\begin{aligned}
& U_{r}=\{u+1, \ldots, u+k\} \backslash\{u+r\}, \text { for } r=1, \ldots, k \text { and } \\
& \left.U_{k+1}=\{u+1\} \cup\{u+3, \ldots, u+k-1\} \cup u+k+2\right\}
\end{aligned}
$$

Again, $u, u+k+1 \notin U_{r}$, for all r, and $\sum U_{r+1} \equiv \sum U_{r}-1(\bmod k+1)$, for $r=1, \ldots, k$. Thus $S=U_{r}$ works, for some $r=1, \ldots, k+1$. Note that we need $k+3 \leqslant 2 k$, so $3 \leqslant k$, to define U_{k+1}.

Conversely, we have
Claim B. For all $i=1, \ldots, k+1$ and $u \in\{k, k+1\}, u$ is special for $\left(2 k+1, \mathbf{m}_{i}\right)$.

Proof. Suppose $u=k$. Then $\mathbf{m}_{i}(T \cup\{k\})=T \cup\{k, 2 k+1\}$ means that

$$
\sum(T \cup\{k\})+i \equiv 1(\bmod k+1)
$$

If $\mathbf{m}_{i}(T \cup\{v\})=T \cup\{v, 2 k+1\}$, then $k \equiv v(\bmod k+1)$. Since $v \neq 2 k+1$, $v=k$.

With $u=k+1$, we also obtain $v=k+1$, since no other element of $[2 k+1]$ is congruent to $k+1$ modulo $k+1$.

Claim C. Let $\mathbf{m}=\mathbf{m}_{i}^{\alpha}$ for some i and α. For all $x, y \in[2 k+1], x \sim_{\alpha} y$ if and only if there exists $z \in[2 k+1]$ such that both x and y are special for (z, \mathbf{m}).

Proof. Assume $x \sim_{\alpha} y$. Then without loss of generality, there exists $u \in[2 k+1]$ such that $u^{\alpha}=x$ and $(u+1)^{\alpha}=y$. Let $t=u+k+1(\bmod 2 k+1)$. We first show that both u and $u+1$ are special for $\left(t, \mathbf{m}_{i}\right)$. Suppose that

$$
\begin{equation*}
\mathbf{m}_{i}(S \cup\{u\})=S \cup\{u, t\} \quad \text { and } \quad \mathbf{m}_{i}(S \cup\{v\})=S \cup\{v, t\} . \tag{3}
\end{equation*}
$$

By the σ-invariance of \mathbf{m}_{i}, with $\sigma^{j}(u)=k$ and $T=S^{\sigma^{j}}$,

$$
\mathbf{m}_{i}(T \cup\{k\})=T \cup\{k, 2 k+1\}
$$

and

$$
\begin{equation*}
\mathbf{m}_{i}\left(T \cup\left\{\sigma^{j}(v)\right\}\right)=T \cup\left\{\sigma^{j}(v), 2 k+1\right\} . \tag{4}
\end{equation*}
$$

Applying Claim B, we see that $\sigma^{j}(v)=k$, and so $v=u$. Thus, u is special for $\left(t, \mathbf{m}_{i}\right)$.

Now suppose that (3) holds with u replaced by $u+1$. Let $\sigma^{j}(u+1)=$ $k+1$ and $T=S^{\sigma^{j}}$. Then (4) holds with k replaced by $k+1$. Again, Claim B yields $\sigma^{j}(v)=k+1$ and $v=u+1$. Thus, $u+1$ is special for $\left(t, \mathbf{m}_{i}\right)$.

By applying α, we have that $x=u^{\alpha}$ and $y=(u+1)^{\alpha}$ are special for $\left(t^{\alpha}, \mathbf{m}_{i}^{\alpha}\right)$.

Conversely, assume that there exists z such that x and y are special for (z, \mathbf{m}). Let $x=u^{\alpha}, y=v^{\alpha}, z=w^{\alpha}$. Then both u and v are special for (w, \mathbf{m}_{i}). Choosing l such that $w^{\sigma^{i}}=2 k+1$, and using σ-invariance, both $u^{\sigma^{l}}$ and $v^{\sigma^{d}}$ are special for $\left(2 k+1, \mathbf{m}_{i}\right)$. By Claim A, $u^{\sigma^{l}}, v^{\sigma^{l}} \in\{k, k+1\}$, so $|u-v| \equiv 1(\bmod 2 k+1)$. This means that $x \sim_{\alpha} y$.

Claim D. If $\sim_{\alpha}=\sim_{\text {id }}$ then $\alpha=\sigma^{p} \rho^{q}$.
Now suppose $\mathbf{m}_{i}^{\alpha}=\mathbf{m}_{j}$. By Claim C, $x \sim_{\alpha} y$ iff there exists z such that both x and y are special for $\left(z, \mathbf{m}_{i}^{\alpha}\right)=\left(z, \mathbf{m}_{j}\right)$ iff $x \sim_{i d} y$. Thus by Claim D, $\alpha=\sigma^{p} \rho^{q}$. If q is even, then $\alpha=\sigma^{p}$, so $i=j$, by Theorems 1 and 3. If q is odd then $\alpha=\sigma^{p} \rho$ and $i+j \equiv 1(\bmod k+1)$ by Theorems 1,3 , and 4.

Consider the orbit $\mathbf{M}_{i}=\left\{\mathbf{a}_{i}^{\alpha}: \alpha \in S_{2 k+1}\right\}$ of \mathbf{m}_{i}. By Theorem 5, if $2 i \neq k+2$, then the stabilizer of \mathbf{m}_{i} is the cyclic group $Z_{2 k+1}$ and thus $\left|\mathbf{M}_{i}\right|=(2 k)$!; otherwise the stabilizer of \mathbf{m}_{i} is the dihedral group $D_{2 k+1}$ and thus $\left|\mathbf{M}_{i}\right|=(2 k)!/ 2$. Also for $1 \leqslant i<j \leqslant\lfloor k / 2\rfloor+1, \mathbf{M}_{i} \cap \mathbf{M}_{j}=\varnothing$. Thus it makes sense to call any matching in \mathbf{M}_{i} an i-modular matching.

We show that for $k \geqslant 3$ the modular matchings $\mathbf{m}_{i}, i=1, \ldots, k+1$, are different from the lexical matchings $\mathbf{l}_{0}, \mathbf{l}_{1}, \ldots, \mathbf{l}_{k}$ obtained in [KT]. Let $\mathbf{L}_{i}=\left\{\mathbf{I}_{i}^{\alpha}: \alpha \in S_{2 k+1}\right\}$ be the orbit of \mathbf{I}_{i}. We shall need some terminology from [KT]. For a matching \mathbf{m} of \mathbf{B}_{k} and $x \in[2 k+1]$, we call $S \in \mathbf{L}_{k}$ an x-vertex of \mathbf{m} if $\mathbf{m}(S)=S \cup\{x\}$. Call $F \subseteq[2 k+1]$ an x-filter of \mathbf{m} if $F \cap S \neq \varnothing$ for every x-vertex S of \mathbf{m}. In [KT] it is shown that $\mathbf{L}_{i}=\mathbf{L}_{j}$ iff $i+j=k$. By Theorem 5, we need only prove that $\mathbf{m}_{i} \notin \mathbf{L}_{j}$ for $i=1, \ldots,\lfloor k / 2\rfloor+1$ and $j=0, \ldots,\lfloor k / 2\rfloor$.

Lemma 6. For $k>4$ and $j=0,1, \ldots,\lfloor k / 2\rfloor$ there are three distinct $(2 k+1)$-vertices S_{1}, S_{2}, S_{3} of \mathbf{l}_{j} such that $\left|S_{1} \cap S_{2} \cap S_{3}\right|=k-1$. Moreover, $S_{p} \neq S_{q}^{\sigma^{t}}$, when $p \neq q$. The same holds for $k=4$ and $j=0,1$.

Proof. Let

$$
\begin{aligned}
& S_{1}=\{k-j+1, \ldots, 2 k-j\}, \\
& S_{2}=\left(S_{1}-\{k-j+1\}\right) \cup\{k-j\}, \\
& S_{3}=\left(S_{2}-\{k-j\}\right) \cup\{k-j-1\} .
\end{aligned}
$$

Then the fact that $\mathrm{I}_{i}\left(S_{p}\right)=S_{p} \cup\{2 k+1\}$ for $p=1,2,3$, follows directly from the definition of \mathbf{l}_{i} in [KT], except in the case where $k=4$ and $j=2$. Also $S_{1} \cap S_{2} \cap S_{3}=\{k-j+2, k-j+3, \ldots, 2 k-j\}$ and $S_{p} \neq S_{q}^{\sigma^{l}}$.

Theorem 7. For $k \geqslant 4$ and all i and $j, \mathbf{m}_{i} \notin \mathbf{L}_{j}$.
Proof. First assume that $k>4$ or $k=4$ and $j \neq 2$. Since S_{0}, S_{1}, S_{2}, as given in Lemma 6, belong to distinct σ-classes in \mathbf{R}_{k}, for \mathbf{m}_{i} to belong to \mathbf{L}_{j} would require that there exist three $(2 k+1)$-vertices T_{1}, T_{2}, T_{3} in distinct σ-classes such that $\left|T_{1} \cap T_{2} \cap T_{3}\right|=k-1$. By definition of \mathbf{m}_{i} this would mean that for $p=1,2,3$,

$$
\sum T_{p}+i \equiv 1 \quad(\bmod k+1)
$$

As $\left|T_{1} \cap T_{2} \cap T_{3}\right|=k-1$ and $\left|T_{p}\right|=k$, this requires $x_{1}, x_{2}, x_{3} \notin[2 k]$ distinct yet pairwise congruent modulo $k+1$, which is nonsense.

Now suppose $k=4$. We must show that $\mathbf{m}_{i} \notin \mathbf{L}_{2}$ for $i=1,2,3$. Here it is convenient to define for each σ-invariant matching $\mathbf{m}: \mathbf{R}_{k} \rightarrow \mathbf{R}_{k+1}$ the distribution vector $\bar{d}(\mathbf{m})$ by

$$
\bar{d}(\mathbf{m})_{i}=\mid\left\{S \in \mathbf{R}_{k}: i \in S \text { and } \mathbf{m}(S)=S \cup\{2 k+1\}\right\} \mid .
$$

Direct computation shows that

$$
\begin{aligned}
& \bar{d}\left(\mathbf{m}_{1}\right)=(5,7,7,7,7,7,7,9), \\
& \bar{d}\left(\mathbf{m}_{2}\right)=(6,7,7,7,7,7,7,8), \\
& \bar{d}\left(\mathbf{m}_{3}\right)=(7,7,7,7,7,7,7,7),
\end{aligned}
$$

while

$$
\bar{d}\left(\mathbf{I}_{2}\right)=(7,7,7,7,7,7,7,7)
$$

So the only matching \mathbf{m}_{i} whose distribution vector is (a permutation of) \mathbf{l}_{2} 's is \mathbf{m}_{3}. Examination of the $\binom{8}{3}=563$-subsets of [8] shows that the 9 -vertices of \mathbf{I}_{2} contain 109 -filters of size 3 , while the 9 -vertices of \mathbf{m}_{3} contain 119 -filters of size 3 . Hence, $\mathbf{m}_{3} \notin \mathbf{L}_{2}$.

For $k \leqslant 3$ we have the following special cases.

Proposition 8. If $k=1$, then $\mathbf{m}_{1}=\mathbf{l}_{0}$ and $\mathbf{m}_{2}=\mathbf{l}_{1}$; if $k=2$, then $\mathbf{L}_{2}=$ $\mathbf{L}_{0}=\mathbf{M}_{3}=\mathbf{M}_{1} \neq \mathbf{M}_{2}=\mathbf{L}_{1} ;$ and if $k=3$, then $\mathbf{M}_{1}=\mathbf{M}_{4}=\mathbf{L}_{1}=\mathbf{L}_{2}$ and $\mathbf{M}_{2}=$ $\mathbf{M}_{3} \neq \mathbf{L}_{0}=\mathbf{L}_{3}$.

Proof. The case $k=1$ is clear by inspection. Suppose $k=2$. Using Theorem 4 and its analog in [KT] for lexical matchings, we have $\mathbf{M}_{1}=\mathbf{M}_{3}$ and $\mathbf{L}_{0}=\mathbf{L}_{2}$, while direct calculation shows $\mathbf{l}_{0}^{\tau}=\mathbf{m}_{3}$, with $\tau=(1,3,2,5)$, as before. Moreover $\mathbf{l}_{1}=\mathbf{m}_{2}$, and $\mathbf{L}_{0} \neq \mathbf{L}_{1}$ by [KT], finishing the case. Now suppose $k=3$. By inspection we have $\mathbf{m}_{4}=\mathbf{l}_{1}^{(1,4,2)(3,5,6)}$. To see that $\mathbf{M}_{3} \neq L_{0}$, we compute the sizes of the smallest x-filters in \mathbf{m}_{3} and \mathbf{I}_{0}, which are 2 and 1. As in the case above, Theorem 4 and the corresponding result in [KT] establish the rest.

4. Questions

Given the unexpected identical behavior of the lexical and modular factorizations under the automorphisms of \mathbf{B}_{k}, one is led naturally to look for an explanation. Could it be that every factorization of \mathbf{B}_{k} into σ-invariant matchings behaves the same way? In particular, if \boldsymbol{m} is a matching in such a factorization, is \mathbf{m}^{ρ} also in the factorization? If \mathbf{m} is a matching of \mathbf{B}_{k}, which is both σ-invariant and ρ-invariant, is $f(S)=$ $(\mathbf{m}(S))^{\mathrm{C}}$ a matching in \mathbf{O}_{k} ?

References

[KT] H. A. Kierstead and W. T. Trotter, Explicit matchings in the middle two levels of the Boolean algebra, Order 5 (1988), 163-171.
[DHR] D. Duffus, P. Hanlon, and R. Roth, "Matchings and Hamiltonian Cycles in Some Families of Symmetric Graphs," Emory University Technical Report, 1986.
[R] D. G. Robinson, private communication (1986).
[S] H. S. Snevily, "Combinatorics of Finite Sets," Ph.D. Dissertation, University of Illinois (1991).

[^0]: * Supported by Office of Naval Research Grant N0004-85-K-0769.
 ${ }^{\dagger}$ Supported by Office of Naval Research Grant N00014-90-J-1206.

