Note

An Explicit 1-Factorization in the Middle of the Boolean Lattice

D. A. DUFFUS*

Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322

H. A. KIERSTEAD[†]

Department of Mathematics, Arizona State University, Tempe, Arizona 85287

AND

H. S. SNEVILY

Department of Mathematics, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801

Communicated by the Managing Editors

Recieved June 19, 1991

An explicit definition of a 1-factorization of \mathbf{B}_k (the bipartite graph defined by the k- and (k+1)-element subsets of [2k+1]), whose constituent matchings are defined using addition modulo k + 1, is introduced. We show that the matchings are invariant under rotation (mapping under $\sigma = (1, 2, 3, ..., 2k + 1)$), describe the effect of reflection (mapping under $\rho = (1, 2k + 1)(2, 2k) \cdots (k, k + 2)$), determine that there are no other symmetries which map these matchings among themselves, and prove that they are distinct from the lexical matchings in \mathbf{B}_k . © 1994 Academic Press, Inc.

1. INTRODUCTION

For a fixed k, denote the collection of j-element subsets of $[2k+1] = \{1, 2, ..., 2k+1\}$ by \mathbf{R}_j and let \mathbf{B}_k be the bipartite graph defined on the vertex set $\mathbf{R}_k \cup \mathbf{R}_{k+1}$ by letting A be adjacent to B iff $A \subset B$ or vice versa. In [KT] the second author and Trotter introduced an explicit 1-factorization $\{l_0, ..., l_k\}$ of \mathbf{B}_k , called the *lexical* factorization, and determined its behavior under the automorphisms of \mathbf{B}_k . In this article we report on

^{*} Supported by Office of Naval Research Grant N0004-85-K-0769.

[†] Supported by Office of Naval Research Grant N00014-90-J-1206.

another explicit 1-factorization $\{\mathbf{m}_1, ..., \mathbf{m}_{k+1}\}\$ of \mathbf{B}_k , which we call the *modular* factorization, and whose component matchings we call *modular* matchings. The origins of the modular factorization are quite murky; it has apparently been rediscovered several times. We first learned of it in 1986, defined in terms of lattice paths, from Robinson [R], who asked if it was the same as the lexical factorization. Here we show that this is not the case: for $k \ge 4$, no modular matching \mathbf{B}_k is a lexical matching. However, they behave remarkably similarly under the automorphisms of \mathbf{B}_k . We show that the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabilizer of each modular matching \mathbf{m}_i is the same as the stabi

The odd graph O_k is defined on the vertices of \mathbf{R}_k by letting A be adjacent to B iff $A \cap B = \emptyset$. In the case where k is even, Kierstead and Trotter used the k/2-lexical matching $\mathbf{l}_{k/2}$ to obtain an explicit perfect matching in O_k . Here we show that the same construction, with $\mathbf{l}_{k/2}$ replaced by $\mathbf{m}_{k/2+1}$, gives a new explicit perfect matching of O_k . For more results on this subject, the reader is referred to the third author's dissertation [S].

Given a *j*-subset A of [2k+1], we take $A = \langle a_1, a_2, ..., a_j \rangle$ to mean $a_1 < a_2 < ...$, and $A^{\mathbb{C}} = [2k+1] \setminus A = \langle \bar{a}_1, \bar{a}_2, ..., \bar{a}_{(2k+1)-j} \rangle$ to mean $\bar{a}_1 > \bar{a}_2 > ...$. When there is no chance for confusion, we simply write a_i for the *i*th smallest element of A and \bar{a}_i for the *i*th largest element of $A^{\mathbb{C}}$. Also, $\sum A$ denotes the sum of the elements in A. We denote the symmetric group on [2k+1] by S_{2k+1} . A perfect matching in \mathbf{B}_k is a collection **M** of edges such that each vertex of \mathbf{B}_k is incident to exactly one edge of **M**. A 1-factorization of \mathbf{B}_k is a collection of k+1 disjoint perfect matchings of \mathbf{B}_k . However, it will be convenient for us to consider a perfect matching to be an injection $\mathbf{m} : \mathbf{R}_k \to \mathbf{R}_{k+1}$ such that A is adjacent to $\mathbf{m}(A)$, for all $A \in \mathbf{R}_k$.

For the sake of completeness we include the definition of the lexical factorization given in [KT]. Let [y, x) denote the set $\{y, y+1, ..., x-2, x-1\}$, where addition is modulo 2k+1. For $S, R \subset [2k+1]$, let $R/S = |R \cap S| - |R \cap S^{C}|$ and $d_{S}(x) = |\{y \in S^{C} - \{x\} : [y, x)/S < 0\}|$. It can be shown that for each set $S \in \mathbf{R}_{k}$ and each i = 0, ..., k, there exists a unique $x \in S^{C}$ such that $d_{S}(x) = i$. The *i*-lexical matching $\mathbf{l}_{i} : \mathbf{R}_{k} \to \mathbf{R}_{k+1}$ is defined by $\mathbf{l}_{i}(S) = S \cup \{x\}$, where $d_{S}(x) = i$.

2. MODULAR MATCHINGS

We are now ready to define the modular factorization. The *i*th perfect matching \mathbf{m}_i , i = 1, ..., k + 1, in the modular factorization is defined by $\mathbf{m}_i: \mathbf{R}_k \to \mathbf{R}_{k+1}$, with

$$\mathbf{m}_i(A) = A \cup \{\bar{a}_y\}, \quad \text{where} \quad y \equiv \left(i + \sum A\right) \pmod{k+1}.$$
 (1)

NOTE

Our first task is to verify that this is indeed a factorization.

THEOREM 1. For $i = 1, ..., k + 1, \mathbf{m}_i$ is a matching in \mathbf{B}_k and $\{\mathbf{m}_1, ..., \mathbf{m}_{k+1}\}$ is a 1-factorization of \mathbf{B}_k .

Proof. The second assertion is an immediate consequence of the first and the definition of \mathbf{m}_i via (1). To see that \mathbf{m}_i is a matching, we find a rule $\mathbf{b}_i: \mathbf{R}_{k+1} \to \mathbf{R}_k$ such that $\mathbf{b}_i \circ \mathbf{m}_i = id$. Define \mathbf{b}_i by $\mathbf{b}_i(B) = B - \{b_x\}$, where

$$x \equiv \left(i + \sum B\right) \pmod{k+1}.$$
 (2)

Suppose that for some $S \in \mathbf{R}_k$, $\mathbf{m}_i(S) = S \cup \{\bar{s}_y\}$. Then there are $(2k+1) - \bar{s}_y$ elements of [2k+1] larger than \bar{s}_y ,

y-1 are in \overline{S} , so $(2k+1)-\overline{s}_y-(y-1)$ are in S, so $k((2k+2)-(\overline{s}_y+y))$ elements of S are less than \overline{s}_y .

Computing modulo k + 1, we get

$$k - ((2k+2) - (\bar{s}_y + y)) \equiv k + \bar{s}_y + y$$
$$\equiv k + \bar{s}_y + \left(i + \sum S\right)$$
$$\equiv -1 + i + \sum (S \cup \{\bar{s}_y\})),$$

and thus \bar{s}_y is the $i + \sum (S \cup \{\bar{s}_y\})$ smallest element of $(S \cup \{\bar{s}_y\})$. Hence, $\mathbf{b}_i(\mathbf{m}_i(S)) = \mathbf{b}_i(S \cup \{\bar{s}_y\}) = S$, by (2).

We say that a function \mathbf{f} on \mathbf{O}_k is a perfect matching if, for all $S \in \mathbf{R}_k$, both (1) S is adjacent to $\mathbf{f}(S)$ and (2) $\mathbf{f}^2(S) = S$. The second condition is needed since \mathbf{O}_k is not bipartite.

THEOREM 2. Suppose that k is even. Let **f** be the function defined on the vertices, the sets in \mathbf{R}_k , of the odd graph \mathbf{O}_k by $\mathbf{f}(S) = (\mathbf{m}_i(S))^C$, where i = k/2 + 1. Then **f** is a perfect matching of \mathbf{O}_k .

Proof. Clearly **f** satisfies (1) of the definition above. We check (2). Fix $S \in \mathbf{R}_k$ and let $S^{\mathbb{C}} = \langle s_1^{\mathbb{C}}, ..., s_{k+1}^{\mathbb{C}} \rangle$. First note that $\mathbf{f}^{-1}(S) = \mathbf{b}_i(S^{\mathbb{C}})$ and $\sum S^{\mathbb{C}} = -\sum S \pmod{k+1}$. It suffices to check that $\mathbf{f}(S) = \mathbf{f}^{-1}(S)$:

NOTE

$$\mathbf{f}(S) = (\mathbf{m}_i(S))^{\mathsf{C}} = S^{\mathsf{C}} - \{\bar{s}_x\},$$

where $x \equiv i + \sum S \pmod{k+1};$
$$\mathbf{f}^{-1}(S) = \mathbf{b}_i(S^{\mathsf{C}}) = S^{\mathsf{C}} - \{s_y^{\mathsf{c}}\},$$

where $y \equiv i + \sum S^{\mathsf{C}} \equiv i - \sum S \pmod{k+1}.$

Since $x + y \equiv 1 \pmod{k+1}$, it follows that $\bar{s}_x = s_y^c$, and we are done.

3. Orbits of Modular Matchings

It is well known (cf. [DHR]) that the automorphisms of \mathbf{B}_k which preserve levels are just those induced by the action of S_{2k+1} on [2k+1]. We denote, therefore, automorphisms of \mathbf{B}_k by permutations on [2k+1]. Given a permutation α , that a subgraph H of \mathbf{B}_k is α -invariant means that AB is an edge in H if and only if $A^{\alpha}B^{\alpha}$ is an edge in H. In other words, α is a member of the stabilizer of H. A matching \mathbf{a} of \mathbf{B}_k is α -invariant means $\mathbf{a}(S^{\alpha}) = (\mathbf{a}(S))^{\alpha}$ for all $S \in \mathbf{R}_k$. In general, let \mathbf{a}^{α} be the matching given by the rule $\mathbf{a}^{\alpha}(S^{\alpha}) = (\mathbf{a}(S))^{\alpha}$.

Let $\sigma = (1, 2, 3, ..., 2k + 1) \in S_{2k+1}$. We call a permutation of the form σ^i a *rotation*.

THEOREM 3. For i = 1, ..., k + 1, \mathbf{m}_i is a σ -invariant matching, i.e., $\mathbf{m}_i^{\sigma} = \mathbf{m}_i$.

Proof. Let $S \in \mathbf{R}_k$, $S = \langle s_1, s_2, ..., s_k \rangle$ and take $S^{\sigma} = \langle s'_1, s'_2, ..., s'_k \rangle$. Let

 $\mathbf{m}_i(S) = S \cup \{\bar{s}_y\}, \text{ i.e., } y \equiv i + \sum S \pmod{k+1}, \text{ and} \\ \mathbf{m}_i(S^{\sigma}) = S^{\sigma} \cup \{\bar{s}'_z\}, \text{ i.e., } z \equiv i + \sum S^{\sigma} \pmod{k+1}.$

If $2k + 1 \notin S$ then $\sum S^{\sigma} \equiv \sum S - 1 \pmod{k+1}$, so $z \equiv y - 1 \pmod{k+1}$. Because $\bar{s}_1 = 2k + 1$ and $\bar{s}_1^{\sigma} = 1$, \bar{s}_y^{σ} is the y - 1 st largest element of $(S^{\mathbb{C}})^{\sigma}$. Thus, $\bar{s}_y^{\sigma} = \bar{s}_z'$.

If $2k + 1 \in S$ then $\sum S^{\sigma} \equiv \sum S \pmod{k+1}$, so $z \equiv y \pmod{k+1}$. Therefore, $\bar{s}_{y}^{\sigma} = \bar{s}_{y} + 1$ is the *y*th largest element of $(S^{C})^{\sigma}$ and $\bar{s}_{y}^{\sigma} = \bar{s}_{y} + 1 = \bar{s}_{z}'$.

Next we consider the permutation $\rho = (1, 2k + 1)(2, 2k) \cdots (k, k + 2)$, which we call a *reflection*. The action of ρ on the \mathbf{m}_i 's is also easily described.

THEOREM 4. For i, j = 1, ..., k + 1, $\mathbf{m}_i^{\rho} = \mathbf{m}_j$, where $i + j \equiv 1 \pmod{k + 1}$.

Proof. First observe that for all $S \in \mathbf{R}_k$, $\sum S^{\rho} \equiv -(\sum S) \pmod{k+1}$. It is enough to prove that for any $S \in \mathbf{R}_k$, $\mathbf{m}_i(S)^{\rho} = \mathbf{m}_j(S^{\rho})$. Taking $S^{\rho} = \{s'_1, ..., s'_k\}$, let

$$\mathbf{m}_i(S) = S \cup \{\bar{s}_y\}, \text{ where } y \equiv (i + \sum S) \pmod{k+1}, \text{ and} \\ \mathbf{m}_j(S^{\rho}) = S^{\rho} \cup \{\bar{s}'_z\}, \text{ where } z \equiv (j + \sum S^{\rho}) \pmod{k+1}.$$

We must show that $\bar{s}_{v}^{\rho} = \bar{s}_{z}'$. Computing modulo k + 1, we get

$$z \equiv j + \sum S^{\rho} \equiv j - \sum S$$
$$\equiv (1 - i) - \sum S$$
$$\equiv 1 - (i + \sum S)$$
$$\equiv 1 - v.$$

Since \bar{s}_y is the *y*th largest element of S^C , \bar{s}_y^{ρ} is the *y*th smallest element of $(S^C)^{\rho} = (S^C)^{\rho}$. But then, as $z + y \equiv 1 \pmod{k+1}$, \bar{s}_y^{ρ} is the *z*th largest element of $\overline{S^{\rho}}$. Hence $\bar{s}_y^{\rho} = \bar{s}'_z$.

Now we show that relations among the matchings $\mathbf{m}_1, ..., \mathbf{m}_{k+1}$ induced by S_{2k+1} are confined to those described in Theorems 2 and 3, except for the special case k = 2, where \mathbf{m}_2 is also τ -invariant, for $\tau = (1, 3, 2, 5)$. Suppose that $\mathbf{m} = \mathbf{m}_i^{\alpha}$, for some $\alpha \in S_{2k+1}$ and some i = 1, ..., k+1. For $x, y \in \lfloor 2k+1 \rfloor$ write

$$x \sim_{\alpha} y$$
 if $|\alpha^{-1}(x) - \alpha^{-1}(y)| \equiv 1 \pmod{2k+1}$,

meaning that $\alpha^{-1}(x)$ and $\alpha^{-1}(y)$ are consecutive in the cyclic permutation 1, 2, ..., 2k + 1. We show that the relation \sim_{α} on [2k + 1] is determined by **m** and so α is determined up to rotation and reflection. Since each **m**_i is σ -invariant, **m** determines **m**_i up to the action of ρ . In particular, we have

THEOREM 5. For all *i*, *j*, $\mathbf{m}_i^{\alpha} = \mathbf{m}_j$ implies that either $\alpha = \sigma^p$ and i = j, or $\alpha = \sigma^p \rho$ and $i + j \equiv 1 \pmod{k+1}$, or k = 2, i = j = 2, and $\alpha = \tau$.

Proof. For k = 1 or 2, the result follows by inspection. Now assume that $k \ge 3$. Given a matching $\mathbf{m} : \mathbf{R}_k \to \mathbf{R}_{k+1}$ and $z \in [2k+1]$, say that $u \in [2k+1]$ is special for the pair (z, \mathbf{m}) if, for all $S \in \mathbf{R}_{k-1}$ and all $u, v \notin S$, $\mathbf{m}(S \cup \{u\}) = S \cup \{u, z\}$ and $\mathbf{m}(S \cup \{v\}) = S \cup \{v, z\}$ imply v = u.

CLAIM A. Let $k \ge 3$. For all i = 1, ..., k+1 and $u \in [k-1]$, u is not special for $(2k+1, \mathbf{m}_i)$.

Proof. It suffices to construct $S \in \mathbf{R}_{k-1}$ such that $u, u+k+1, 2k+1 \notin S$ and

$$\sum S \equiv 1 - (i+u) \pmod{k+1},$$

since then both $\mathbf{m}_i(S \cup \{u\}) = S \cup \{u, 2k+1\}$ and $\mathbf{m}_i(S \cup \{u+k+1\}) = S \cup \{u+k+1, 2k+1\}.$

If u > 1 we set

$$U_r = \{u+1, ..., u+k\} \setminus \{u+r\}, \text{ for } r = 1, ..., k \text{ and} \\ U_{k+1} = \{u-1\} \cup \{u+2, ..., u+k-2\} \cup \{u+k\}.$$

Then $u, u+k+1 \notin U_r$, for all r. Also $\sum U_{r+1} \equiv \sum U_r - 1 \pmod{k+1}$, for r=1, ..., k. This gives k+1 distinct residues modulo k+1, so $S = U_r$ works, for some r=1, ..., k+1.

If u = 1 we set

$$U_r = \{u+1, ..., u+k\} \setminus \{u+r\}, \text{ for } r = 1, ..., k \text{ and} \\ U_{k+1} = \{u+1\} \cup \{u+3, ..., u+k-1\} \cup u+k+2\}$$

Again, $u, u+k+1 \notin U_r$, for all r, and $\sum U_{r+1} \equiv \sum U_r - 1 \pmod{k+1}$, for r=1, ..., k. Thus $S = U_r$ works, for some r=1, ..., k+1. Note that we need $k+3 \leq 2k$, so $3 \leq k$, to define U_{k+1} .

Conversely, we have

CLAIM B. For all i = 1, ..., k+1 and $u \in \{k, k+1\}$, u is special for $(2k+1, \mathbf{m}_i)$.

Proof. Suppose u = k. Then $\mathbf{m}_i(T \cup \{k\}) = T \cup \{k, 2k+1\}$ means that

 $\sum (T \cup \{k\}) + i \equiv 1 \pmod{k+1}.$

If $\mathbf{m}_i(T \cup \{v\}) = T \cup \{v, 2k+1\}$, then $k \equiv v \pmod{k+1}$. Since $v \neq 2k+1$, v = k.

With u=k+1, we also obtain v=k+1, since no other element of [2k+1] is congruent to k+1 modulo k+1.

CLAIM C. Let $\mathbf{m} = \mathbf{m}_i^{\alpha}$ for some *i* and α . For all $x, y \in [2k+1]$, $x \sim_{\alpha} y$ if and only if there exists $z \in [2k+1]$ such that both x and y are special for (z, \mathbf{m}) .

Proof. Assume $x \sim_{\alpha} y$. Then without loss of generality, there exists $u \in [2k+1]$ such that $u^{\alpha} = x$ and $(u+1)^{\alpha} = y$. Let $t = u+k+1 \pmod{2k+1}$. We first show that both u and u+1 are special for (t, \mathbf{m}_i) . Suppose that

$$\mathbf{m}_i(S \cup \{u\}) = S \cup \{u, t\} \quad \text{and} \quad \mathbf{m}_i(S \cup \{v\}) = S \cup \{v, t\}.$$
(3)

NOTE

By the σ -invariance of \mathbf{m}_i , with $\sigma^j(u) = k$ and $T = S^{\sigma^j}$,

$$\mathbf{m}_i(T \cup \{k\}) = T \cup \{k, 2k+1\}$$

and

$$\mathbf{m}_i(T \cup \{\sigma^j(v)\}) = T \cup \{\sigma^j(v), 2k+1\}.$$

Applying Claim B, we see that $\sigma^{j}(v) = k$, and so v = u. Thus, u is special for (t, \mathbf{m}_{i}) .

Now suppose that (3) holds with u replaced by u + 1. Let $\sigma^{j}(u+1) = k + 1$ and $T = S^{\sigma^{j}}$. Then (4) holds with k replaced by k + 1. Again, Claim B yields $\sigma^{j}(v) = k + 1$ and v = u + 1. Thus, u + 1 is special for (t, \mathbf{m}_{j}) .

By applying α , we have that $x = u^{\alpha}$ and $y = (u+1)^{\alpha}$ are special for $(t^{\alpha}, \mathbf{m}_{i}^{\alpha})$.

Conversely, assume that there exists z such that x and y are special for (z, \mathbf{m}) . Let $x = u^{\alpha}$, $y = v^{\alpha}$, $z = w^{\alpha}$. Then both u and v are special for (w, \mathbf{m}_i) . Choosing l such that $w^{\sigma^l} = 2k + 1$, and using σ -invariance, both u^{σ^l} and v^{σ^l} are special for $(2k + 1, \mathbf{m}_i)$. By Claim A, u^{σ^l} , $v^{\sigma^l} \in \{k, k + 1\}$, so $|u - v| \equiv 1 \pmod{2k + 1}$. This means that $x \sim_{\alpha} y$.

CLAIM D. If $\sim_{\alpha} = \sim_{id}$ then $\alpha = \sigma^{p} \rho^{q}$.

Now suppose $\mathbf{m}_i^{\alpha} = \mathbf{m}_j$. By Claim C, $x \sim_{\alpha} y$ iff there exists z such that both x and y are special for $(z, \mathbf{m}_i^{\alpha}) = (z, \mathbf{m}_j)$ iff $x \sim_{id} y$. Thus by Claim D, $\alpha = \sigma^p \rho^q$. If q is even, then $\alpha = \sigma^p$, so i = j, by Theorems 1 and 3. If q is odd then $\alpha = \sigma^p \rho$ and $i + j \equiv 1 \pmod{k+1}$ by Theorems 1, 3, and 4.

Consider the orbit $\mathbf{M}_i = \{\mathbf{a}_i^{\alpha} : \alpha \in S_{2k+1}\}$ of \mathbf{m}_i . By Theorem 5, if $2i \neq k+2$, then the stabilizer of \mathbf{m}_i is the cyclic group Z_{2k+1} and thus $|\mathbf{M}_i| = (2k)!$; otherwise the stabilizer of \mathbf{m}_i is the dihedral group D_{2k+1} and thus $|\mathbf{M}_i| = (2k)!/2$. Also for $1 \leq i < j \leq \lfloor k/2 \rfloor + 1$, $\mathbf{M}_i \cap \mathbf{M}_j = \emptyset$. Thus it makes sense to call any matching in \mathbf{M}_i an *i*-modular matching.

We show that for $k \ge 3$ the modular matchings \mathbf{m}_i , i = 1, ..., k + 1, are different from the lexical matchings $\mathbf{l}_0, \mathbf{l}_1, ..., \mathbf{l}_k$ obtained in [KT]. Let $\mathbf{L}_i = \{\mathbf{l}_i^{\alpha} : \alpha \in S_{2k+1}\}$ be the orbit of \mathbf{l}_i . We shall need some terminology from [KT]. For a matching \mathbf{m} of \mathbf{B}_k and $x \in [2k+1]$, we call $S \in \mathbf{L}_k$ an *x-vertex of* \mathbf{m} if $\mathbf{m}(S) = S \cup \{x\}$. Call $F \subseteq [2k+1]$ an *x-filter of* \mathbf{m} if $F \cap S \neq \emptyset$ for every *x*-vertex *S* of \mathbf{m} . In [KT] it is shown that $\mathbf{L}_i = \mathbf{L}_j$ iff i+j=k. By Theorem 5, we need only prove that $\mathbf{m}_i \notin \mathbf{L}_j$ for $i=1, ..., \lfloor k/2 \rfloor + 1$ and $j=0, ..., \lfloor k/2 \rfloor$.

LEMMA 6. For k > 4 and $j = 0, 1, ..., \lfloor k/2 \rfloor$ there are three distinct (2k+1)-vertices S_1, S_2, S_3 of l_j such that $|S_1 \cap S_2 \cap S_3| = k - 1$. Moreover, $S_p \neq S_q^{\sigma'}$, when $p \neq q$. The same holds for k = 4 and j = 0, 1.

340

(4)

Proof. Let

$$\begin{split} S_1 &= \{k-j+1, \, ..., \, 2k-j\}, \\ S_2 &= (S_1-\{k-j+1\}) \cup \{k-j\}, \\ S_3 &= (S_2-\{k-j\}) \cup \{k-j-1\}. \end{split}$$

Then the fact that $l_i(S_p) = S_p \cup \{2k+1\}$ for p = 1, 2, 3, follows directly from the definition of l_i in [KT], except in the case where k = 4 and j = 2. Also $S_1 \cap S_2 \cap S_3 = \{k-j+2, k-j+3, ..., 2k-j\}$ and $S_p \neq S_q^{ol}$.

THEOREM 7. For $k \ge 4$ and all *i* and *j*, $\mathbf{m}_i \notin \mathbf{L}_j$.

Proof. First assume that k > 4 or k = 4 and $j \neq 2$. Since S_0 , S_1 , S_2 , as given in Lemma 6, belong to distinct σ -classes in \mathbf{R}_k , for \mathbf{m}_i to belong to \mathbf{L}_j would require that there exist three (2k+1)-vertices T_1 , T_2 , T_3 in distinct σ -classes such that $|T_1 \cap T_2 \cap T_3| = k - 1$. By definition of \mathbf{m}_i this would mean that for p = 1, 2, 3,

$$\sum T_p + i \equiv 1 \qquad (\text{mod } k + 1).$$

As $|T_1 \cap T_2 \cap T_3| = k - 1$ and $|T_p| = k$, this requires $x_1, x_2, x_3 \notin [2k]$ distinct yet pairwise congruent modulo k + 1, which is nonsense.

Now suppose k = 4. We must show that $\mathbf{m}_i \notin \mathbf{L}_2$ for i = 1, 2, 3. Here it is convenient to define for each σ -invariant matching $\mathbf{m} : \mathbf{R}_k \to \mathbf{R}_{k+1}$ the distribution vector $\overline{d}(\mathbf{m})$ by

$$\bar{d}(\mathbf{m})_i = |\{S \in \mathbf{R}_k : i \in S \text{ and } \mathbf{m}(S) = S \cup \{2k+1\}\}|.$$

Direct computation shows that

$$\vec{d}(\mathbf{m}_1) = (5, 7, 7, 7, 7, 7, 7, 9),$$

 $\vec{d}(\mathbf{m}_2) = (6, 7, 7, 7, 7, 7, 7, 8),$
 $\vec{d}(\mathbf{m}_3) = (7, 7, 7, 7, 7, 7, 7, 7),$

while

$$d(\mathbf{l}_2) = (7, 7, 7, 7, 7, 7, 7, 7).$$

So the only matching \mathbf{m}_i whose distribution vector is (a permutation of) \mathbf{l}_2 's is \mathbf{m}_3 . Examination of the $\binom{8}{3} = 56$ 3-subsets of [8] shows that the 9-vertices of \mathbf{l}_2 contain 10 9-filters of size 3, while the 9-vertices of \mathbf{m}_3 contain 11 9-filters of size 3. Hence, $\mathbf{m}_3 \notin \mathbf{L}_2$.

For $k \leq 3$ we have the following special cases.

PROPOSITION 8. If k = 1, then $\mathbf{m}_1 = \mathbf{l}_0$ and $\mathbf{m}_2 = \mathbf{l}_1$; if k = 2, then $\mathbf{L}_2 = \mathbf{L}_0 = \mathbf{M}_3 = \mathbf{M}_1 \neq \mathbf{M}_2 = \mathbf{L}_1$; and if k = 3, then $\mathbf{M}_1 = \mathbf{M}_4 = \mathbf{L}_1 = \mathbf{L}_2$ and $\mathbf{M}_2 = \mathbf{M}_3 \neq \mathbf{L}_0 = \mathbf{L}_3$.

Proof. The case k = 1 is clear by inspection. Suppose k = 2. Using Theorem 4 and its analog in [KT] for lexical matchings, we have $\mathbf{M}_1 = \mathbf{M}_3$ and $\mathbf{L}_0 = \mathbf{L}_2$, while direct calculation shows $\mathbf{l}_0^{\tau} = \mathbf{m}_3$, with $\tau = (1, 3, 2, 5)$, as before. Moreover $\mathbf{l}_1 = \mathbf{m}_2$, and $\mathbf{L}_0 \neq \mathbf{L}_1$ by [KT], finishing the case. Now suppose k = 3. By inspection we have $\mathbf{m}_4 = \mathbf{l}_1^{(1,4,2)(3,5,6)}$. To see that $\mathbf{M}_3 \neq L_0$, we compute the sizes of the smallest x-filters in \mathbf{m}_3 and \mathbf{l}_0 , which are 2 and 1. As in the case above, Theorem 4 and the corresponding result in [KT] establish the rest.

4. QUESTIONS

Given the unexpected identical behavior of the lexical and modular factorizations under the automorphisms of \mathbf{B}_k , one is led naturally to look for an explanation. Could it be that every factorization of \mathbf{B}_k into σ -invariant matchings behaves the same way? In particular, if \mathbf{m} is a matching in such a factorization, is \mathbf{m}^{ρ} also in the factorization? If \mathbf{m} is a matching of \mathbf{B}_k , which is both σ -invariant and ρ -invariant, is $f(S) = (\mathbf{m}(S))^{C}$ a matching in \mathbf{O}_k ?

References

- [KT] H. A. KIERSTEAD AND W. T. TROTTER, Explicit matchings in the middle two levels of the Boolean algebra, Order 5 (1988), 163–171.
- [DHR] D. DUFFUS, P. HANLON, AND R. ROTH, "Matchings and Hamiltonian Cycles in Some Families of Symmetric Graphs," Emory University Technical Report, 1986.
- [R] D. G. ROBINSON, private communication (1986).
- [S] H. S. SNEVILY, "Combinatorics of Finite Sets," Ph.D. Dissertation, University of Illinois (1991).