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An explicit definition of a 1-factorization of B k (the bipartite graph defined by the 
k- and (k+l)-element subsets of [ 2k+ l ] ) ,  whose constituent matchings are 
defined using addition modulo k + 1, is introduced. We show that the matchings are 
invariant under rotation (mapping under ~r = (1, 2, 3 ..... 2k + 1 )), describe the effect 
of reflection (mapping under p = (1, 2k + 1)(2, 2k).. .  (k, k + 2)), determine that 
there are no other symmetries which map these matchings among themselves, and 
prove that they are distinct from the lexical matchings in B k. © 1994 Academic Press, 
Inc. 

1. INTRODUCTION 

F o r  a f ixed k, d e n o t e  the  co l l ec t i on  o f  j - e l e m e n t  subse ts  of  [2k  + 1]  = 

{ 1, 2 .... .  2k + 1 } by  R j  a n d  let  B k be the  b ipa r t i t e  g r a p h  def ined  on  the  

ve r t ex  set Rk ~ Rk+  1 by  le t t ing  A be  a d j a c e n t  to  B iff A c B o r  vice versa.  

I n  [ K T ]  the  s econd  a u t h o r  a n d  T r o t t e r  i n t r o d u c e d  an  expl ic i t  1- fac tor iza-  

t i on  {1o .... .  lk} of  Bk, ca l led  the  lexical f ac to r i za t ion ,  and  d e t e r m i n e d  its 

b e h a v i o r  u n d e r  the  a u t o m o r p h i s m s  of  Bk. In  this a r t ic le  we r e p o r t  o n  
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another explicit 1-factorization {ml, ..., mk+l} of Bk, which we call the 
modular factorization, and whose component matchings we call modular 
matchings. The origins of the modular factorization are quite murky; it has 
apparently been rediscovered several times. We first learned of it in 1986, 
defined in terms of lattice paths, from Robinson [R],  who asked if it was 
the same as the lexical factorization. Here we show that this is not the case: 
for k >/4, no modular matching Bk is a lexical matching. However, they 
behave remarkably similarly under the automorphisms of B k. We show 
that the stabilizer of each modular matching m~ is the same as the stabilizer 
of each lexical matching !~_ 1. 

The odd graph Ok is defined on the vertices of R k by letting A be 
adjacent to B iff A c~ B = ~ .  In the case where k is even, Kierstead and 
Trotter used the k/2-1exical matching lk/2 to obtain an explicit perfect 
matching in Ok. Here we show that the same construction, with |k/2 
replaced by mk/2+l, gives a new explicit perfect matching of Ok. For  
more results on this subject, the reader is referred to the third author's 
dissertation I-S 3. 

Given a j-subset A of [ 2 k + l ] ,  we take A = ( a l ,  a2 ..... aj) to 
mean al < a2 < .... and A c = [2k + 1 ] \A = (c71, a2 ..... c~(2k+ 1 ) - j )  to mean 
~il > 82 > .... When there is no chance for confusion, we simply write a~ for 
the ith smallest element of A and ~ for the ith largest element of A c. Also, 
Z A denotes the sum of the elements in A. We denote the symmetric group 
on [ 2 k + l ]  by $2k+1. A perfect matching in Bk is a collection M of 
edges such that each vertex of B k is incident to exactly one edge of M. 
A 1-factorization of B k is a collection o f k  + 1 disjoint perfect matchings of 
Bk. However, it will be convenient for us to consider a perfect matching to 
be an injection m: R k ~ Rk+ 1 such that A is adjacent to m(A), for all A e R k. 

For the sake of completeness we include the definition of the lexical 
factorization given in [KT] .  Let [y,x) denote the set {y, y + l ,  ..., 
x - 2 ,  x - 1  }, where addition is modulo 2k + 1. For  S, R c [2k + 1], let 
R/S= Iec~sI- IN,SOl and ds(x)= ] { y ~ S  c -  {x}: [y, x)/S<O}[. It can 
be shown that for each set S e Rk and each i = 0 ..... k, there exists a unique 
x s S  c such that ds(x)= i. The i-lexical matching li: R k ~  Rk+ 1 is defined 
by l i ( S ) =  S u  {x}, where ds(x)= i. 

2. MODULAR MATCHINGS 

We are now ready to define the modular factorization. The ith perfect 
matching mi, i - -1  ..... k + 1, in the modular factorization is defined by 
mi: R k ~ R k + 1, with 

mi(A)=Aw{@},  where y = ( i + ~ A ) ( m o d k + l ) .  (1) 

582a/65/2-12 
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Our first task is to verify that this is indeed a factorization. 

THEOREM 1. For i= 1 ..... k + 1, m~ is a matching in Bk and {ml, ..., mk+ 1 } 
is a 1-factorization of  B k. 

Proof The second assertion is an immediate consequence of the first 
and the definition of mi via (1). To see that me is a matching, we find a rule 
bi: Rk+ 1 --*R k such that biom~=id. Define b,. by b ~ ( B ) = B - { b x } ,  where 

x = - ( i + ~ B )  ( m o d k +  1). (2) 

Suppose that for some S e R k ,  
(2k + 1) - gy elements of [2k + 1 ] larger than gy, 

y -  1 are in S', so 

( 2 k + l ) - g y - ( y - 1 )  are in S, so 

k((2k + 2) - (gy + y)) elements of S are less than ~y. 

Computing modulo k + 1, we get 

m ; ( S ) = S u { ~ y } .  Then there are 

k -  ((2k + 2 ) -  (gy+ y)) =-k+gy+ y 

=-k + g y + ( i +  ~ S)  

= 1 + i + ~  ( S u  {~y})), 

and thus fly is the i + Z  ( S u  {~y}) smallest element of ( S u  {gy}). Hence, 
be(me(S))=bi(Sw {~y})=S, by (2). II 

We say that a function f on Ok is a perfect matching if, for all S e Rk, 
both (1) S is adjacent to f(S) and (2) f2(S)= S. The second condition is 
needed since Oh is not bipartite. 

THEOREM 2. Suppose that k & even. Let f be the function defined on the 
vertices, the sets in Rk, of the odd graph Ok by f (S )=  (mi(S)) c, where 
i = k/2 + 1. Then f is a perfect matching of  Ok. 

Proof Clearly f satisfies (1) of the definition above. We check (2). Fix 
S~Rk and let S c =  (s~ ..... s~+l) .  First note that f - I ( S ) = B ; ( S  c) and 
Z S c =  - Z  S(mod k + 1). It suffices to check that f (S )=  f - l (S ) :  
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f(S)  = (m~(S)) ¢ = S c - {Sx}, 

where x = i + ~ S ( m o d k + l ) ;  

= b (S - -  S - 

where y - i + ~ S C - i - ~ . S ( m o d k + l ) .  

c Since x + y - 1 (mod  k + 1), it follows that  2~ = ST, and we are done. 
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3. ORBITS OF MODULAR MATCHINGS 

I t  is well known  (cf. [ D H R ] )  that  the au tomorph i sms  of B k which 
preserve levels are just  those induced by the act ion of $2k+1 on [2k  + 1 ]. 
We denote,  therefore, a u t o m o r p h i s m s  of Bk by permuta t ions  on [2k  + 1]. 
Given  a pe rmuta t ion  e, that  a subgraph  H of Bk is ~-invariant  means  that  
A B  is an edge in H if and only if A~B ~ is an edge in H. In  other  words, 

is a m e m b e r  of  the stabilizer of H. A matching  a of Bk is e- invar iant  
means  a ( S ~ ) = ( a ( S ) )  ~ for all S e R k .  In general, let a ~ be the match ing  
given by the rule a~(S ~) = (a(S))  ~. 

Let  a = (1, 2, 3 ..... 2k + 1) e Szk+ ~. We call a pe rmuta t ion  of the form a i 
a rotation. 

THEOREM 3. For i=  1, . . . , k +  1, mi is a a-invariant matching, i.e., 
m ~  ~- m i. 

Proof  Let S e R k ,  S =  ( s l ,  s2 ..... sk )  and take S ° =  (s'~, s~ ..... s~).  Let 

m i ( S ) =  S w  {Sv}, i.e., y = i + ~ S ( m o d k +  1), and 

m i ( S  ~) = S ~ w {g'z}, i.e., z -- i + ~ S ~ (rood k + 1). 

If 2 k +  1 ¢ S  then Z S ~ - Z  S ~ I  ( m o d k +  1), so z -  y - 1  ( m o d k +  1). 
Because ~ = 2k + 1 and Sl-°-- 1, sy-~ is the y -  1 st largest element of  (SC)L 
Thus,  g~ = S'z- 

If  2k + 1 e S then Z S ° = Y~ S (rood k + 1), so z -= y (rood k + 1). There-  
fore, Sy-~-- gy + 1 is the y t h  largest element of (SC) ~ and sT-° = sT- + 1 = Y'z. | 

Next  we consider the pe rmuta t ion  p = (1, 2 k +  1)(2, 2 k ) . . - ( k ,  k + 2 ) ,  
which we call a reflection. The act ion of p on the m~'s is also easily 
described. 

THEOREM 4. For i , j =  l .... , k +  1, m f = m j ,  where i + j ~  1 ( m o d k +  1). 
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Proo f  First observe that for all S eRk,  Z SP =- - - ( ~  S ) ( r o o d  k +  1). 
It is enough to prove that for any S e R e ,  mi(S)P=mj(S°). Taking 

{ ' '} let S p =  $ 1 ,  ..., S k , 

mi(S) = S w {gy}, where y ~ (i + ~ S) (rood k + 1), and 

mj (S  p) = S p w {g'~ }, where z - ( j  + Z S p) (mod k + 1 ). 

We must show that sy -p--  Sz.-' Computing modulo k + 1, we get 

z = j + Z S P = - j - ~ S  

- (1- i ) -Zs 

= I - ( i + ~ S )  

= l - y .  

-P is the y th  smallest element Since fly is the y th  largest element of S c, Sy 
of (SC) p = (SC) p. But then, as z + y = 1 (rood k + 1), gP is the zth largest 

- p  - !  
element of S p. Hence Sy = s z. | 

Now we show that relations among the matchings ml .... , mk+l induced 
by $2k+1 are confined to those described in Theorems 2 and 3, except 
for the special case k = 2, where m 2 is also z-invariant, for ~ = (1, 3, 2, 5). 
Suppose that m = m ~ ,  for some eeS2k+l  and some i = 1  ..... k + l .  For 
x, y ~ [2k + 1 ] write 

x ~ y  if [ e - l ( x ) - e - l ( y ) [ = - l ( m o d 2 k + l ) ,  

meaning that e - l (x )  and a - l ( y )  are consecutive in the cyclic permutation 
1, 2, ..., 2k + 1. We show that the relation ~ on [2k + 1 ] is determined by 
m and so ~ is determined up to rotation and reflection. Since each mi is 
o--invariant, m determines mi up to the action of p. In particular, we have 

THEOREM 5. For all i, j, m7 = m j  implies that either ~ = a p and i = j ,  or 
= a P p  and i + j = l  ( m o d k +  l),  or k = 2 ,  i = j = 2 ,  a n d ~ = z .  

Proo f  For k = 1 or 2, the result follows by inspection. Now assume 
that k~>3. Given a matching m : R k - ~ R k + l  and z~ [ 2 k + 1 ] ,  say that 
u~ [-2k+ 1] is special for  the pair (z, m) if, for all S~ Rk _ I  and all u, v ~ S ,  
m ( S u  { u } ) = S w  {u, z} and m ( S u  { v } ) = S w  {v, z) imply v=u .  

CLAIM A. Let  k>~3. For all i = 1 , . . . , k + 1  and u ~ [ k - l - l ,  u is not 
special f o r  (2k+ 1, mi). 
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Proof It  suffices to construct  S t  R k ~ such that  u, u + k + 1, 2k + 1 6 S 
and 

~ S - l - ( i + u )  ( m o d k +  1), 

since then bo th  m i ( S u  { u } ) = S w  {u, 2 k +  1} and m , ( S u  { u + k +  1 } ) =  
S u  { u + k +  1, 2 k +  1}. 

I f u > l  we set 

Ur= {u+  1, ..., u + k } \ { u + r } ,  for r =  1,...,k and 

U e + l =  { u -  1} u { u + 2  ..... u + k - 2 }  u { u + k } .  

Then u, u + k +  1 ¢ U r ,  for all r. Also ~_, U r + l - Z  Ur--1 (mod k +  1), for 
r = 1 .... , k. This gives k + 1 distinct residues modu lo  k + 1, so S = U~ works,  
for some r = 1, ..., k + 1. 

I f u = l  we set 

U ~ = { u + l  ..... u + k } \ { u + r } , f o r r = l  .... , k a n d  

V k + , =  { u +  1} u { u +  3 ..... u + k -  1} w u + k + 2 }  

Again, u, u + k + 1 6 U ~ ,  for all r, and Z U r + ~ = Z  U~--I ( m o d k +  1), for 
r = 1 .... , k. Thus  S = U,. works,  for some r = 1, ..., k + 1. No te  that  we need 
k + 3 ~ < 2 k ,  so 3~<k, to define Uk+l .  | 

Conversely,  we have 

CLAIM B. For all i = 1 .... , k + 1 and u ~ {k, k + 1 }, u & special for 
(2k + 1, m~). 

Proof Suppose  u = k .  Then  m~(Tvo { k } ) =  T w  {k, 2 k +  1} means  that  

( T w  { k } ) + i -  = 1 ( m o d k +  1). 

If  m~ ( T  va { v } ) = r w { v, 2k + 1 }, then k -= v (rood k + 1 ). Since v # 2k + 1, 
V~---k. 

With u = k +  1, we also obta in  v = k +  1, since no other  element of 
[ 2 k +  1] is congruent  to k +  1 modu lo  k +  1. | 

CLAIM C. Let m = m T  for some i and e. For all x, y e [ 2 k  + l], x ~ y  
i f  and only i f  there exists z ~ [2k  + 1 ] such that both x and y are special for 
(z, m). 

Proof Assume x ~  y. Then  without  loss of generality, there exists 
u e [2k + 1 ] such that  u s = x and (u + 1)" = y. Let t = u + k + 1 (mod 2k + 1 ). 
We first show that  bo th  u and u + 1 are special for (t, mi). Suppose tha t  

m i ( S w  { u } ) = S w  {u, t} and m i ( S w  { v } ) = S v o  {v, t}. (3) 
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By the a-invariance of me, with aJ(u)= k and T =  S ~j, 

m e ( T u  {k} )=  T w  {k, 2 k +  1} 

and (4) 

me(T~ {aJ(v)})= Tu {aJ(v), 2k+ I}. 

Applying Claim B, we see that aJ(v) = k, and so v = u. Thus, u is special for 
(t, m3. 

Now suppose that (3) holds with u replaced by u +  1. Let aJ(u+ 1)=  
k + 1 and T =  S ~j. Then (4) holds with k replaced by k + 1. Again, Claim B 
yields aJ(v) = k + 1 and v = u + 1. Thus, u + 1 is special for (t, mi). 

By applying c~, we have that x = u s and y =  (u + 1) ~ are special for 
(t s, m~'). 

Conversely, assume that there exists z such that x and y are special 
for (z, m). Let x =  u s, y = v  s, z =  w s. Then both u and v are special for 
(w, me). Choosing I such that w~= 2k + 1, and using a-invariance, both u ~t 
and v ~' are special for (2k+  1, m~). By Claim A, u ~, v ~  {k, k +  1}, so 
[ u - v ]  - 1 (rood 2 k +  1). This means that x '- 's  y. I 

CLAIM D. I f  ~s  = Hid then ~ = tyPp q. 

Now suppose m~' = mj. By Claim C, x ~s  Y iff there exists z such that 
both x and y are special for (z, m~') = (z, mj) i f f x  Hid y. Thus by Claim D, 
o~ = aPp q. If q is even, then ~ = cr p, so i = j, by Theorems 1 and 3. If q is odd 
then ~ = aPp and i + j -  1 (rood k + 1) by Theorems 1, 3, and 4. I 

Consider the orbit M i = { a ~ ' : e e S 2 k + l }  of mi. By Theorem5,  if 
2 i ~ k + 2 ,  then the stabilizer of m~ is the cyclic group Z2k+l and thus 
IM~I = (2k) !; otherwise the stabilizer of m~ is the dihedral group Ozk + 1 and 
thus IMel = (2k) !/2. Also for 1 <<. i < j <<. Lk/2J + 1, M~ c~ Mj = ~ .  Thus it 
makes sense to call any matching in Me an /-modular matching. 

We show that for k>~ 3 the modular matchings me, i =  1 ..... k +  1, are 
different from the lexical matchings 1o, 11 ..... lk obtained in [KT] .  Let 
L i =  {l~':c~eS2k+l} be the orbit of I i. We shall need some terminology 
from [KT] .  For  a matching m of B k and x~  [ 2 k +  1], we call S ~ L k  an 
x-vertex o f  m if m ( S ) = S u { x } .  Call F___[2k+ l ]  an x-filter o f  m if 
F ~ S ¢ ~  for every x-vertex S of m. In [ K T ]  it is shown that L~=Lj  
iff i + j = k .  By Theorem5,  we need only prove that m ~ L j  for 
i = 1 ..... Lk/21 + 1 and j = 0, ..., Lk/2J. 

LEMMA 6. For k > 4  and j = 0 ,  1 .... , [ k /2 ]  there are three distinct 
(2k + 1)-vertices $1, $2, $3 o f  lj such that IS1 n $2 c~ $31 = k -  1. Moreover, 
Sp ~ Sq t, when p ~ q. The same holds for  k = 4 and j = O, 1. 
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Proof Let 

31 = { k - j +  1 ..... 2 k - j } ,  

$2= ($1-  { k - j +  1})u  { k - j } ,  

$3 = ( $ 2 -  { k - j } ) u  { k - j -  1}. 

Then the fact that l i(Sp)= Sp~ {2k+ 1} for p =  1, 2, 3, follows directly 
from the definition of li in [KT] ,  except in the case where k = 4 and j = 2. 
Also Slc~S2c~S3= { k - j +  2, k - j +  3 ..... 2 k - j }  and SpvaSq[ | 

THEOREM 7. For k>~4 and all i and j, m~¢L i. 

Proof First assume that k > 4 or k = 4 and j ¢ 2. Since So, $1, $2, as 
given in Lemma 6, belong to distinct ~-classes in Rg, for mi to belong to 
Lj would require that there exist three (2k+ 1)-vertices T1, T2, T3 in 
distinct a-classes such that [ T1 ~ / ' 2  c~ T31 = k - -  1. By definition of mi this 
would mean that for p = 1, 2, 3, 

~ T p + i - 1  ( m o d k +  1). 

As ITac~T2~T3I=k-1 and ITpi=k, this requires xl,x2, x3¢[2k] 
distinct yet pairwise congruent modulo k + 1, which is nonsense. 

Now suppose k--4.  We must show that miCL 2 for i-- 1, 2, 3. Here it 
is convenient to define for each cr-invariant matching m: R~ ~ Rk+ 1 the 
distribution vector d(m) by 

d(m)i= [{SeRk: i e S  and m(S)=S~  {2k+ 1}} 1. 

Direct computation shows that 

d(ml) = (5, 7, 7, 7, 7, 7, 7, 9), 

d(m2) = (6, 7, 7, 7, 7, 7, 7, 8), 

d(m3) = (7, 7, 7, 7, 7, 7, 7, 7), 

while 
d(12) = (7, 7, 7, 7, 7, 7, 7, 7). 

So the only matching mi whose distribution vector is (a permutation of) 
12'8 is m 3. Examination of the ( ] )=  56 3-subsets of [8] shows that the 
9-vertices of 12 contain 10 9-filters of size 3, while the 9-vertices of m3 
contain 11 9-filters of size 3. Hence, m3 q~L2. II 

For k ~< 3 we have the following special cases. 
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PROPOSITION 8. If k = 1, then m~ = 1 o and m 2 = 11; / f  k = 2, then L2 = 
L o = M 3 = M I C M 2 = L 1 ;  and i f  k =  3, then M I = M 4 = L I = L 2  and M2 = 
M3 ¢ Lo = L3. 

Proof. The case k =  1 is clear by inspection. Suppose k = 2 .  Using 
Theorem 4 and its analog in [ K T l  for lexical matchings, we have M~ = M 3 

and Lo = L 2 ,  while direct calculation shows 1; = m 3 ,  with z = (1, 3, 2, 5), as 
before. Moreover  1~ = m2, and L o 56 L 1 by [ K T ] ,  finishing the case. Now 
suppose k = 3 .  By inspection we have m 4 : l ~  1'4'2)(3'5'6). T o  see that 
M 3 5 6 Lo, we compute the sizes of the smallest x-filters in m3 and lo, which 
are 2 and 1. As in the case above, Theorem 4 and the corresponding result 
in [ K T ]  establish the rest. I 

4. QUESTIONS 

Given the unexpected identical behavior of the lexical and modular  
factorizations under the automorphisms of Bk, one is led naturally to 
look for an explanation. Could it be that every factorization of Bk into 
a-invariant matchings behaves the same way? In particular, if m is a 
matching in such a factorization, is m ° also in the factorization ? If m is a 
matching of Bk, which is both a-invariant and p-invariant, is f ( S ) =  
(m(S))  c a matching in Ok? 
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