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COLORING ORDERED SETS TO AVOID 
MONOCHROMATIC MAXIMAL CHAINS 

D. DUFFUS, V. RODL, N. SAUER AND R. WOODROW 

ABSTRACT. This paper is devoted to settling the following problem on (infinite, 
partially) ordered sets: Is there always a partition (2-coloring) of an ordered set X so that 
all nontrivial maximal chains ofX meet both classes (receive both colors)? We show 
this is true for all countable ordered sets and provide counterexamples of cardinality 
H3. Variants of the problem are also considered and open problems specified. 

0. Introduction. It is obvious that if a finite ordered set contains no one-element 
maximal chains (isolated points) then the set can be 2-colored so that every maximal 
chain receives both colors—let the maximal elements be blue and the rest, red. More 
generally, the top half of a finite ordered set can be made blue, and the bottom, red: 
every maximal chain makes an appearance in each half. But in the infinite case, can we 
halve in a similar manner and guarantee that every maximal chain intersects both halves? 

QUESTION 1. Given an ordered set X without isolated points, is there a 2-coloring of 
the elements of X by blue and red so that each maximal chain receives both colors and 
so that the blue set is a final segment and the red, an initial segment of X? 

In Section 1 we show that the answer is yes for countable orders but that in general, 
there fails to be such a partition. We can ask for somewhat less. 

QUESTION 2. Given X, without isolated points, is there a 2-coloring so that each 
maximal chain receives both colors? 

In Section 2 we consider examples of partial orders for which the answer to Question 2 
is positive, including the counterexamples to the first question. For instance a finite prod
uct of scattered chains admits a good 2-coloring. It is not the case that all scattered orders 
have good 2-colorings (Example 2 of Section 4 settles this). However, we do not know 
whether all finite products of arbitrary chains admit such colorings. 

Section 3 is comprised of some small examples (of size the continuum) showing that, 
for them, it is at least consistent that good 2-colorings always exist. 

In Section 4, we settle Question 2 in the negative by providing examples of orders 
for which all 2-colorings have monochromatic maximal chains. Indeed we show that for 
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each cardinal [i there is an order P for which each //-coloring leaves a monochromatic 
maximal chain. These examples are, in fact, products of two orders which admit good col
orings. The counterexamples in the section are uncomfortably large because they depend 
on applications of the partition calculus. These results, and the theorem in the countable 
case, leave as the most interesting open question whether there are counterexamples of 
cardinality the continuum. 

To avoid constant reference to isolated points, we shall assume that all ordered sets 
under discussion have none. As used above, the term good coloring refers to a coloring 
of the elements of an ordered set that leaves no maximal chain monochromatic. 

1. The countable case. Here is the main result of the section. 

THEOREM 1. IfX is a countable ordered set then X has a good 2-coloring with one 
color class an initial segment and the other, a final segment. 

PROOF. Let X — {xn | n < uu}. We construct two increasing sequences of subsets 
of X, Bn and Rn so that for each n 

Bnisa final segment, 
Rn is an initial segment, 
BnnRn = 0, and 
xn GBnURn. 

To initiate the sequences set B0 = max(X) and Ro — min(X) and remember that no 
isolated points appear in X. Let [JC, —•) be the closed final segment {y G X \ x < y} and 
let (<—, x) = { y € X I y < x}, the open initial segment generated by x. 

With Bn and Rn defined, for n > 0 set 

Bn+l =BnU([xn,-+)-Rn), and 

Rn+l =RnU((+-,xn)-Bn). 

Notice that Bn+\ can replace Bn in the définition of Rn+\ without change, so Bn+\ Pi Rn+\ = 
0. 

It is evident that the conditions above are satisfied. With B = [jBn and R = \JRn, B 
is an initial segment of X, R is a final segment and X = B U R. We now argue that there 
are no maximal chains of X contained in B (blue chains) and leave out the (essentially) 
dual argument for red chains. 

Let C be a maximal chain of X. If C has a minimum element then C H R ^ 0, so 
we assume it lacks a minimum. Let n be least such that xn G C. For m < n, xm is 
incomparable with some element of C. Therefore the final segment Cm of those elements 
of C which dominate xm is not all of C. As there are only finitely many such segments 
Cm, their union is not all of C. The initial segment of C not in their union is contained in 
Rn+\• • 

We understand that Igor Kriz has found this result independently. In Section 3, this 
argument will be generalized to cover some uncountable orders satisfying further condi
tions. 
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This countable result cannot be extended to provide a positive answer to Question 1 
in general. Here is a nice example Bill Sands obtained from two familiar chains. 

Let ujd denote the dual of UJ , let u\ be the first uncountable ordinal and let P = ujdxuj\, 
where this is the usual coordinate-wise product of relations. Suppose that P has been 
partitioned into an initial segment R and a final segment B. For each n G ud let an be the 
least member of UJ\ such that (n, an) E B. For each n this ocn exists—just consider the 
maximal chain {(ra, 0) | m < nin ujd} U {(n, a)\ a < LJ\}. Let a be the supremum 
of { an} in u\. It is now easy to see that B contains a maximal chain: 

{ (m,a ) | meujd} U {(0,/3) | a < / ? } . 

Of course, a good 2-coloring of this example is readily constructed using parity. We 
exploit this for a variety of orders in the next section. 

2. Positive results based on alternating colorings. Recall that an ordered set X is 
scattered if the rational chain cannot be embedded in X. 

The main result of the section is 

THEOREM 2. A finite product of scattered chains admits a good 2-coloring. 

The proof of Theorem 2 follows easily from these observations. 

PROPOSITION 1. A scattered chain admits a 2-coloring so that consecutive elements 
receive different colors. 

PROOF. Let C be a scattered chain. Call elements x and y equivalent if there are only 
finitely many elements of C between them. (This is the usual finite condensation). Pick 
an element in each equivalence class; color each element of the class according to the 
parity of its distance from the chosen point. • 

A 2-coloring of an ordered set X is called alternating if whenever x is covered by y in 
X, x and y receive different colors. 

PROPOSITION 2. IfP and Q are ordered sets which each have alternating 2-colorings 
then P X Q has an alternating 2-coloring. 

PROOF. Let c: P —» 2 and d: Q —• 2 be alternating 2-colorings. Define/: PxQ^l 
by 

I 1 otherwise 
The coloring/ is alternating because a covering pair in a product occurs exactly when 
there are equal entries in one coordinate and covering in the other. • 

PROPOSITION 3. A finite product of scattered orders is scattered. 

This is well known. 

PROOF OF THEOREM 2. Let P be a finite product of scattered chains. Propositions 1 
and 2 yield an alternating 2-coloring c of P. We claim that c is a good coloring. To see 



94 D. DUFFUS, V. RODL, N. SAUER AND R. WOODROW 

this let C be a maximal chain of P and let x < y in C Now C is scattered so there must 
beax<x'<yf<y such that / covers x/ in P. • 

The method of proof of Theorem 2 breaks down for an arbitrary scattered ordered set 
X as the graph defined on the elements of X with edges the covering pairs in X fails to be 
bipartite. (Again, Example 2 below provides a scattered order with no good 2-coloring). 

This result does suggest another problem, at this point not fully resolved. 

PROBLEM 1. Does every finite product of chains admit a good 2-coloring? 

Problem 1 may well prove difficult: the examples of Section 4 are of the form A x B 
where both A and B have good 2-colorings by final and initial segments. 

When looking for natural examples of orders not easily 2-colored and, hence, without 
maximal or minimal elements, one is led to consider this lattice. Let X be an infinite 
set and let X denote the set of subsets of X which are both infinite and coinfinite, with 
the containment order. Define an equivalence relation A on X by AAB if the symmetric 
difference of A and B is finite. Now 2-color X by fixing an element from each A-class 
and letting sets whose symmetric difference with the fixed set is odd be colored 1 and 
the others, 0. We need only see that every maximal chain contains two sets differing by 
exactly one element. Let C be a maximal chain in X and let 

A = U C a n d £ = n C . 

Since C is infinite, so is A — B. Let x G A — B. Let 

Y=\J{SeC\xgS}, 

z=f]{sec\ xes}. 

Since C is a maximal chain, both F and Z are in C. Moreover, Y and Z must differ in 
precisely the element x. 

Parity can be used to obtain good 2-colorings in some dense ordered sets. We illustrate 
this with an infinite family of examples based on the r)a -chains. 

Hausdorff (cf. [Ro]) defined these chains: for an ordinal a , a chain A is an rja-chain 
if for any two subsets X and F of A of cardinality less than Ka and with each element 
of X less than each of F, there exists a G A such that x < a < y for all x in X and y 
in F. To construct examples, let Ka be a regular cardinal and let Qa denote the set of 
all uja -sequences a of 0 and 1 for which there exists S such that as = 1 and ap = 0 
for all (5 > 6. With the lexicographic order Qa is an rja-chain (cf. [Ro]). Here is the 
property of Qa which is important to us: for all a in Qa, the cofinality (coinitiality) of 
(<—,a) (respectively, (a,—•)) is uia. 

With Ha and K̂  distinct regular cardinals, let Pap — Qa x Qp have the coordinate-
wise order. 

To obtain a good 2-coloring / of Pap, let (a, b) G Pap, suppose that 6 is maximum 
in a with as = 1 and e is maximum in /3 with b£ — 1 ; define 

f(( hVi — / ^ ^ anc* e n a v e ^ e s a m e P^ity 
1 1 otherwise. 
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(Every ordinal is the sum of a limit and an integer; the ordinal's parity is that of the 
integer). Let C be a maximal chain in Pap and let (a, b) be in C. With C, = 717(C), for 
/ = 1,2, it is easy to see that the maximality of C forces 

inf(Ci H (a,—•)) = a = sup(Ci H (<—,a)), and 

inf(C2 H (b , -0 ) = b = sup(C2 H (*-,b)). 

We claim that there is a' > a such that (a', b) is in C or that there is b' > b such that 
(a,b') is in C (and dually). Otherwise, the projections TT\ and 7r2 are both 1 — 1 on an 
initial segment of CD ((a, b), —>). This would cause the final segments (a, —>) and (b, —•) 
to have the same coinitiality. 

To finish, it suffices to consider the case that there is some a' > a such that (a', b) is 
in C. Notice that C contains every element of the form (a", b) where a < a" < a'. This 
easily gives two elements of C with distinct colors. Indeed, this coloring is such that every 
proper interval of every maximal chain of Pap receives both colors. This observation 
raised the question of whether Question 2 could be settled affirmatively with "dense" 
colorings. The answer is yes for arbitrary chains but fails in P = Poo, the product of two 
rational chains. 

PROPOSITION 4. Every chain C admits a 2-coloring such that each nontrivial inter
val receives both colors. 

PROOF. Assume first that C is a dense chain. Let { Xa \ a < K } be an enumeration 
of the nonempty open intervals of C. We define a coloring of C with red and blue as 
follows. At step a : 

- if Ia has no element of color red (blue) choose a point xa (respectively, ya ) in Ia 

and color it red (respectively, blue); 

- if Ia has no colored points choose distinct elements xa and ya of the interval and 
color them red and blue, respectively; 

- if Ia has points of both colors, do nothing. 

Color all uncolored points arbitrarily. We claim that each interval receives both col
ors. If not, there is a least a so that Ia is monochromatic, say all its points are red. By 
definition of the coloring, Ia has an enumeration {x^ | /37 < a ,7 < | / a | } . There is 
some 7 such that x^ is between xpQ and xp]. As x^ was colored red and /3o, /3i < /37, 
the interval 1^ is properly between xpQ and x^ and, so, is properly contained in Ia. But 
then the guaranteed blue point of 1^ is a point of Ia. 

Now, let C be any chain. Let ~ denote the finite condensation relation on C: x~y 
if the interval with endpoints x and y is finite. By the argument above the dense chain 
C /~ has a coloring so that all nontrivial intervals are 2-colored. To endow C with such 
a coloring, choose an arbitrary element from each ~-class, give it the color of the class 
in C/~ and color alternate elements of the class with alternate colors, starting from the 
representative. • 

The argument above was suggested by Eric Milner and is more direct than the original. 
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PROPOSITION 5. Let c be a 2-coloring ofP, the product of two rational chains, such 

that each proper subinterval ofP receives both colors. Then P has monochromatic max

imal chains in each color. 

PROOF. Call the colors red and blue. We shall obtain a maximal chain C consisting 

of red elements. Enumerate the blue elements bn(n < LU) of P. Construct finite chains 

Cn with these properties: 

if (JC, y) < («, v) in Cn then x < u and y < v, 

Cn Q Cn+\ for all n, and 

bn is incomparable to some element of Cn. 

Once we manage this, any chain C which is maximal and contains (J Cn will have all 

elements red. 

This observation is required for the construction. Given an interval / = [(JC, y), (x\,y\ )] 

where x < x\ and y < y\, and an element (p, q) in / which is not either endpoint, there is 

a subinterval J of 1 such that J has the same form as / and (/?, q) is incomparable to each 

element of J. (There are several cases—all straightforward and left to the reader). 

Let Co = { r} where r is any red element incomparable to bo. If Cn has been defined, 

set Cn+] = Cn unless bn+\ is comparable to all elements of Cn. Suppose that (x,y) and 

(x\,y\) are consecutive elements of Cn with bn+\ in the interval / which they determine. 

Apply the observation to find a red element { /} of the subinterval / . Add this element 

to Cn to form Cn+\. (see Figure 1). • 

The analogous proposition with Paa in place of P = Poo is also true. The proof is 

essentially the same. 

3. A natural example/counterexample?. The examples of Section 2 were, for the 

most part, rich in covering pairs. A natural example of a structure without maximals, 

minimals and covers is obtained by taking the example X (Section 2) and factoring by the 

equivalence relation A. Let XA denote this ordered set. This structure has been studied for 

its applications in set-theoretic topology—for instance, see [Ju],[Ru]. We have not been 

able to decide if it possesses a good 2-coloring without appeal to extensions of ZFC. Our 

investigations led, however, to the following generalization of Theorem 1. 

As usual, for an ordered set P, cf(P) is the cofinality of P, that is, the minimum cardi

nality of cofinal subsets of P. The coinitiality of P, ci(P), is defined dually. 

THEOREM 3. Let P be an ordered set of cardinality K . Suppose that for each maximal 

chain C of P, cf(C), ci(C) G { 1 ,«} . Then P admits a good 2-coloring with one color 

class an initial segment and the other, a final segment of P. 

PROOF. AS in the proof of Theorem 1, we fix an enumeration of P—{ xa \ a < 

K } —and construct increasing sequences Ba and Ra for a < K . We begin the sequences 
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J = [(x,y),fcti,yi)] 

Cn+] = C„ u M 

<M> 

Figure 1. Construction of C„+i in the proof of Proposition 5. 

with B-\ — max(P) and R-\ — min(P). For a < K, let 

Ba= [j BpU ([*«,—)- U * A 
(3<a V (3<a y 

Ra= U fyU ((^,X a)- U ^ ) . 

We define 5 and /? as the respective unions of these two sequences. The argument that 
there is no maximal chain C contained in B is essentially the same as that in the proof of 
Theorem 1. The only substantial modification is this: take a least such that xa G C and 
define Cp to be the set of elements of C which dominate xp for (3 < a. Since ci(C) = K 
and a < «, the union of the final segments Cp(f3 < a) cannot be all of C. The initial 
segment of C not contained in this union is colored red at stage a. m 

We wish to apply this result to the ordered set XA where X = a;. It is known that no 
maximal chain in XA has countable cofinality (or coinitiality) [Ru]. For completeness, 
we furnish an argument now. 

Consider a strictly increasing sequence of sets (An | n < UJ) in UJ such that for n < m, 
(1) Am — An is infinite, and 
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(2) An — Am is finite. 
(The sets An are representatives of a strictly increasing sequence in XA). We construct a 
set A such that 

(1) Â is infinite, and 
(2) for n < u, An — A is finite. 

Thus the A-equivalence class containing A is an upper bound of the sequence in XA. We 
actually enumerate Â as follows: let 

xn = min(Ai UA 2 U • • • U An U {xm \ m < n}). 

The choice of xn is always possible since only finitely many elements of A/ do not belong 
to An for / < n, while An is coinfinite. On the other hand, the elements of An — A must 
be amongst jq, . . . ,xn-\. 

Theorem 3 can now be applied to XA whenever all maximal chains have cofinality 
and coinitiality 2**°. This is the case if the Continuum Hypothesis holds or if Martin's 
Axiom is invoked [Ru]. 

4. The counterexamples. The examples of this section provide a negative answer 
to Question 2. They depend upon results from the partition calculus, in particular the 
Erdôs-Rado theorem, and properties of interval orders. Specifically, if the pairs from UJ 
are finitely colored, Ramsey's theorem guarantees an infinite homogeneous subset. This 
can be used to easily construct a monochromatic chain in the interval order which is 
maximal in the segment above its least element. Igor Kriz suggested that this idea and 
a Ramsey cardinal could be used to produce an example. However, partition relations 
themselves are not sufficient to obtain monochromatic maximal chains (as we shall see). 
Some subtle adjustments are required to overcome this deficiency, and, as a result, the 
examples become rather large. 

This notation will prove useful in the constructions to follow. Let (S„ </)(/ = 0,1) be 
given where </ is a transitive, antisymmetric relation on Si (as when </ is a strict order 
or a reflexive one). Denote by So <8) S\ the partially ordered set obtained as the reflexive 
closure of the relational product So x Si. When So is a reflexive order and S\ is a strict 
order, this follows: 

x <o v and u is covered by v in Si 
(0) 

imply (x, y) is covered by (y, v) in So 0 Si. 

Given a chain C, the interval order 1(C) has underlying set [C]2, the set of pairs x < y of 
C, with relation (JC, y) < (z, w) if y < z in C. 

If « is a cardinal, denote by tt+ the successor cardinal. Also, define a sequence expa = 
expa(«)by exp0 = K, e x p ^ = 2exp«, and exp^ = sup(expa | a < 6), for S a limit. 
With this notation, the form of the Erdôs-Rado theorem (cf. [EH]) we apply is 

exp^/O*—•(«)«• 
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This means that however the pairs of exp{ are K -colored there is a subset of size K all of 
whose pairs receive the same color. 

Here is the observation that partition results are not sufficient to obtain a counterex
ample. 

PROPOSITION 6. Let K be an uncountable cardinal. There is a 2-coloring ofI(K ) such 
that in every maximal chain ofI(n) both colors occur cofinally. 

PROOF. Let C = {(xa,ya )} be a chain in I(K). Note that C is maximal if and only 
if the set { xa } of left endpoints of members of C contains 0 and for xa different from 0, 
xa is the supremum of { yp \yp < xa }. In particular, when C is maximal, the set of left 
endpoints forms a closed, unbounded set (club) in K . 

Since K is uncountable, there exist disjoint stationary sets, that is, sets S and T, each of 
which has nonempty intersection with every club. A coloring/ with the desired properties 
can be obtained as follows:f(x,y) — 0 or 1 according as x G S or is not. • 

We have two objectives remaining: to provide an example answering Question 2 neg
atively, and to address [i -colorings for arbitrary cardinals \i. Although the lemmas re
quired to do both are similar, we choose to construct the first example, for [i — 2, sep
arately. There are two reasons for this: the first example is simpler to understand, and it 
has smaller size than would be obtained by applying the general result in the special case 
that [i = 2. 

LEMMA 1. Let K be an infinite cardinal. There is an ordered set P of cardinality 2K 

such that for each K -coloring ofP there is a strictly increasing, unbounded sequence pn 

which is monochromatic. 

PROOF. Let P be the set of functions from /c+ to u with support of cardinality at 
most K. For / G P, let supp(/) be the least ordinal a < n+ such that/(/3) = 0 for 
(5 > a. Endow P with the coordinatewise order. It is easy to see that P has cardinality 
K+ - 2K = 2K. To see that P has the desired property fix a «-coloring c of P. Define an 
increasing sequence of elements of P, ĝ C/x < ft), such that for /x < v, gv — g^ on 
supp(g^). Let Co be the least color occurring among all elements of P. Suppose there is 
a sequence of functionpn(n < u) satisfying 

c(pn) — Co for all n, and 

a < supp(pn) impliespn(a) < pn+\(a). 

Then the sequence pn has the desired property. Thus, we may suppose that there is a 
function p0 such that c(p0) = c0 and whenever q e P and/?0(«) < q(a) for a < 
supp(/?o), c(q) is not CQ. Fix such a/?o and let go be defined by supp(go) = supp(po) and 
for a < supp(/?o), go(oc) = po(&) + 1- Now, let A > 0 be given and let 

gx = sup(g0 I p < A ), 

meaning that g\ extends gp on the common support. Let c\ be the least color occurring 
for functions which agree with g\ on its support. Notice that c\ > A. As with Co, we 
may assume there is a function p\ such that 
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(1) c(po) = CA, 

(2) f o r a < supp(gx),g\(a) = p\(a), 

(3) for all q satisfying q(a) = p\(a) for a < supp(gA) and q(a) > p\(oc) for 

supp(gA) <a < supp(pA), we have c(q) ^ cx. 

We now define g\ so that g\ agrees with g\ on the support of the latter, and so that 

gx (ex) — p\ (a) + 1 on the remainder of the support of p\. 

Let g = sup(gA | A < K). Notice that g G P and that there is no color for g since 

c(g) — A contradicts the facts that À < c\ and g agrees with each gp on the latter's 

support. This contradiction completes the proof. • 

LEMMA 2. Let S be a set of cardinality K and let P be as in Lemma 1. Let c be an 

arbitrary K, -coloring of the pairs in P X S. Then there is p G P such that for each s G S, 

there exists a strictly increasing, unbounded sequence pn in P such that po = p and 

{(pn,s) | n < UJ} is monochromatic. 

PROOF. Suppose otherwise for some coloring c. For each p G P, let d(p) — 

(s, c(p, s)^j for a witness s to the nonexistence of the desired sequence. Then d induces 

a «-coloring of P. Applying Lemma 1, we obtain a strictly increasing, unbounded d-

monochromatic sequence pn. This contradicts the choice of s for p = po. m 

We are now in a position to produce a counterexample for 2-colorings, indeed, for all 

finite [i. 

EXAMPLE 1. Let P be as in Lemma 1 for n — Ko. Let 

G = ( / ( ^ ) x P ) 0 / ( e x p 2 ( K o ) + ) . 

This ordered set is depicted in Figure 2. The elements of Q are to be understood as rect

angles labelled by pairs from I(tud) and /(exp2(No)+), giving the horizontal and vertical 

boundaries, respectively with an element of P inserted in the rectangle. 

THEOREM 4. For finite p, every /x -coloring of Q has a monochromatic maximal 

chain. 

PROOF. Let c be an arbitrary /x -coloring of Q and for brevity let exp2(Ko)+ = A. For 

a < f3 < A, c induces a /i -coloring cap of the (a, f3 )-copy of I(u;d)x P. Apply Lemma 2 

with S — I(ujd), selecting p = pap. Now the triple (p,a,/3) induces a /x-coloring of 

1(UJd). Since \x is finite, we can apply Ramsey's Theorem to extract a sequence 

nPap : «o > «i > • • • 

so that all pairs from this sequence receive the same color cpa$. With s — (n\,no), let 

Pap = (po,Pi,- • •) be a strictly increasing, unbounded sequence in P such that/?o = p 

and the common color of ((n\, no),pn, (cx,/3)) is cpap for all n. This effects a coloring of 

/(A ) with the 4-tuples (pap, npap, cpap, p a ^ ). Since the number of countable sequences 

from P is at most 2U, this is a 2U -coloring of the pairs of A. The Erdôs-Rado Theorem 

applies to guarantee a strictly increasing sequence an of ordinals so that for all n the pair 



COLORING ORDERED SETS TO AVOID MONOCHROMATIC MAXIMAL CHAINS 101 

/(exp2(K0)*> 

0 1 2 oo ^ a* a„+1 
I J L I L I L 

0-. 

1-1 
«o -| 

n i i 

J(a/) j 

nk+l H 

Figure 2. The ordered set Q of Example 1. 

(an,an+\) is assigned the same 4-tuple, say (p,n,c,p). We describe a monochromatic 
maximal chain C by giving the final segment C+ above a = ((n\9no),p, («o, «i)) and 
the initial segment C - below a: 

C* = {((ni,n0),Pit,(«it,Of*+i)) | &< CJ} and 

C~ = {((/ijk+i,/ijk),p,(a0,ai)) | k< u}. 

When checking that C+ is maximal above «, it is important to recall that the sequence pk 
is not bounded above in P and that the elements (ak, otk+\ ), (ak+i, a^+2) are consecutive 
in the strict order on I(X ) (see (0) of this section). The maximality of C~ is more obvious: 
it is contained in a copy of I(ud) (see Figure 2). • 

For the case of infinitely many colors //, the first temptation is to replace I(ud) by 
I(Xd) for some sufficiently large A so that the Erdôs-Rado Theorem may be invoked 
instead of Ramsey's Theorem. After some reflection, it is obvious that the remark on the 
failure of /(«), contained in Lemma 4, applies in a dual form. This forces us to employ 
the techniques developed above to handle the initial as well as the final segments when 
building a monochromatic maximal chain. 

Po 

Po 

Pn 
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EXAMPLE 2. Let /x be an infinite cardinal. Let P be as in Lemma 1 for « = \i and 
set À = exp2(/x)+. Let 

Rx ^Pd^I{\\ 

Take Q as in Lemma 1 for K — À and set v — exp2(A )+. Let 

THEOREM 5. Every /x -coloring ofR\ x R2 has a monochromatic maximal chain. 

PROOF. Let c be a /[x-coloring of R\ x R2. For a < (3 < i/,c induces a //-coloring 
of the copy of R\ x Q with at most /x colors. Now apply Lemma 2 with S = R\ to select 
qap = g for this copy. Then (qap ,a,(3) induces a /x-coloring of the copy of R\. 

For 7 < 6 < A, ((£, 7 ), qa(3, (a » /? )) induces a /x -coloring of the copy of Q. Let 

P(0§,7),<?«/?,(<*,/?» :/*o < P\ < '" 

be a strictly increasing unbounded monochromatic sequence with common color 
c((6ff),qafi,(<x,P)) — c- An application of the Erdôs-Rado Theorem to the resulting 2M-
coloring of I(Xd) yields a sequence 

8 : <5o < «i < • • • 

so that for all k < UJ,C and sequence p are the same for all (6k+\,£*). 
To complete the application of Lemma 2 with s = (po, (6\, £0)), select a sequence 

q : q0 < qx < • • • 

strictly increasing and unbounded in Q such that {(po,(£i»^o)><?*) I & < ^ } is 
monochromatic with color c, in the (a,/3)-copy of R\ x (?. 

Assign the 5-tuple (qap, p, S, q, c) to (a , (3 ). Since (2A )w = 2A, this is a 2A -coloring 
of I(i/) and the Erdôs-Rado Theorem gives a sequence ao < «1 < • • • such that for all 
/ < UJ, (a/, a/+i) is assigned the same 5-tuple (q, p, Ô, q, c). 

A maximal chain C is determined by giving its final segment C+ above a = 
(/?o, 0 i , <?oX #o> («0, «1)) and the initial segment below a: 

C* = {(po,(*i,*o),^/,(a/,a/+i)) | / < o>}, 

C" = {(pit,(5jt+i,*ik),^0,(«0,«i)) \ k< UJ). 

The verification of C's maximality is as in the result for finite /x. • 

With R2 = Q <S> I(v) as in Example 2, it is easy to see that each maximal chain in 
R2 must have a minimum element of the form (q, (0, a)V In fact, /?2 has no infinite 
decreasing chains as this is true of the irreflexive order on I(y). Dually, every maximal 
chain of R\ contains a maximal element of R\. Therefore, each of R\ and R2 admits a 
good 2-coloring by initial and final segments. Moreover, each is a scattered order, and, 
thus R\ x R2 is a scattered order with no good 2-coloring. 

Finally, observe that with the Generalized Continuum Hypothesis and /x < Ho, Ex
ample 1 is of size K3, while the second is of size #$. 

PROBLEM 2. Are there any counterexamples of size Hi ? 
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